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INTRODUCTION 
 

Hazardous chemicals are found to have an inhibitory impact 
on bacterial development. Due to the presence of heavy metals in 
the environment, biodegradation may be hindered, which in turn 
can impede the bioremediation process. The reason for this is 
because, in contrast to a number of other inhibitors, heavy metal 
ions cannot be destroyed and, if accumulated by microbes to a 
hazardous level, cause a decrease in the rate of development in 
the microorganism under consideration. There may be substantial 
variations in the sensitivity to metals of microorganisms 
depending on the microorganism, even across different strains of 
the same species, and even between different activities of the 
same microbial species. When soils with similar physical and 
chemical properties were compared to one another, it was 
discovered that the sensitivity of the microbiome that is 
responsible for acetate mineralization in soils with no history of 
exposure to elevated metal concentrations differed by orders of 

magnitude between soils with varying physical and chemical 
characteristics [1].  

 
A large number of studies have shown that the addition of 

trace quantities of heavy metals to the surroundings of microbial 
cells may promote the development of the bacteria. However, the 
concentration at which increased microbial activity is seen leads 
in a substantial reduction in growth rate as well as an increase in 
the lag time for the occurrence of the event (due to the higher lag 
time). A slew of studies has shown that heavy metals are harmful 
to microorganisms, especially sulfate-reducing bacteria, and that 
these effects are widespread [1–10].  

 
The start of enhanced metabolic activity is delayed as a 

consequence of elevated heavy metal concentrations, and the rate 
of oxygen mass transfer is reduced as a result of elevated heavy 
metal concentrations, both of which are detrimental. Since the 
discovery that bacteria, like all other forms of life, are highly 
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 ABSTRACT 
Since the 1970s, tributyltin (TBT) has been used as a biocide in antifouling paints to prevent the 
growth of bacteria. In 2003, the Marine Environmental Protection Committee (MEPC) proposed 
that TBT be banned internationally due to the negative environmental impacts of the substance. 
However, even though BTs are banned, they may be found in large quantities in seawater, bottom 
sediments, and the biota, all of which are contaminated with them. To prevent the adhesion of 
fouling organisms to the surface of ships and boats, tributyltin (TBT) has been widely employed 
as an antifouling agent in marine paints for many years. Tributyltin has been discovered to be 
very persistent, particularly in sediment, and to be extremely harmful to species other than those 
targeted. Bacillus subtilis growth was intensely inhibited by tributyltin (TBT). As the TBT 
concentration increases, the overall specific growth rate was inhibited. The growth rates obtained 
were then modelled according to the modified Han-Levenspiel, Amor, Wang, Liu, Shukor and 
modified Andrews. Among the five models, the Andrew and Amor models show poor fittings. 
Results of the statistical analysis showed that the Shukor model was the best model based on the 
lowest values for RMSE and AICc, highest adjusted correlation coefficient (AdR2) and values of 
AF and BF closest to unity. The parameters obtained from the Shukor model were Ccrit 742.32 
nM (95%, C.I., 303.35 to 1181.29), µmax 1.20 h-1 (95% C.I., 1.08 to 1.319) and m 0.507 (95% 
C.I., 0.308 to 0.832). The findings of this study can be utilized for further bioremediation works. 
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susceptible to heavy metal exposure, researchers have been 
working on this problem for many decades. Chemistry was 
employed in some of the first efforts to control microbes, 
including the use of copper chloride in plants as a fungicide and 
mercury salts in the treatment of some infectious illnesses, 
among other things. In the treatment of fungal infections, copper 
chloride was employed, and mercury salts were used in the 
detection of some infectious illnesses, to name only a few of 
examples. A number of these metals are components or cofactors 
of enzyme systems. A number of variables, including the 
organism, the metal, and the chemical and physical composition 
of the metal, are known to have an effect on the average 
concentrations at which the activities take place in a particular 
environment. Heavy metals are very weakly interacted with by 
the vast majority of organisms, and such reactions occur at lower 
concentrations [11–2] . 

 
The bioamplification of butyltins in the marine environment 

has been observed by scientists. Animal and human research 
have shown that organotin compounds are harmful. In BTs' 
testing, toxicity on immune system cells (as shown by thymus 
shrinkage, decreased spleen weight, and cytotoxicity to bone 
marrow and red blood cells) was discovered, particularly in tests 
performed on cells and tissues [21–23]. Tributyltin is extremely 
persistent in sediment, and it's harmful to all species, including 
those that are not the target of the toxin [24]. High concentrations 
of the chemical may persist in fresh water and sediments for up 
to 30 years. Although the international maritime organization 
(IMO) banned the use of tbt as a marine biocide in 2008, its 
residue has been detected in numerous locations around the 
world, including South Africa, Portugal, Malaysia's strait of 
Johore, and Australia [25–27].   

 
Organotin used in industries have also been detected in 

terrestrial environment [28]. Bacteria have been well-known to 
degrade organic pollutants [29]. Martin et al. [30] studied the 
interactions between Bacillus stearothermophilus and bacillus 
subtilis with different TBT concentrations (0, 100, 200, 300, 400 
and 500 nM).  The growth of both bacteria was severely inhibited 
as the TBT concentration increases. The effect of TBT on the 
growth rate of B. stearothermophilus been previously modelled 
using several toxicant inhibition kinetics models such as 
modified Han-Levenspiel, Amor, Wang, Liu, Shukor and 
modified Andrews with Wang as the best model [8]. The aim of 
this work is to model the effect of tributyltin on the growth rate 
of Bacillus subtilis through the use of the same inhibition models. 
 
MATERIALS AND METHODS 
 
Data source 
Data from Table 1 from Martins et al [30] was processed using 
the software Webplotdigitizer 2.5 [31] which digitizes the 
scanned figure and has been utilized by many researchers and 
acknowledged for its reliability [32,33].  
 
Effect of metal on growth rate of on SDS 
Six models for tributyltin inhibition to the growth rate of this 
bacterium is available (Table 1). 
 
 
 
 
 
 
 
 
 

Table 1. Growth inhibition models. 
 
Models    Equation Authors 
Modified Han-
Levenspiel 𝑟𝑟 = 𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚 �1 −

𝐶𝐶
𝐶𝐶𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

�
𝑚𝑚

 
[34] 

Wang 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚

1 + � 𝐶𝐶𝐾𝐾𝐶𝐶
�
𝑚𝑚 

 

[35] 

Liu 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐶𝐶
𝐾𝐾𝐶𝐶 + 𝐶𝐶

 [36] 

Modified Andrews 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶

𝐾𝐾𝑠𝑠 + 𝐶𝐶 + �𝐶𝐶
2

𝐾𝐾𝑖𝑖
�

 [37] 

Shukor 
𝑟𝑟 = 𝜐𝜐𝑚𝑚𝑚𝑚𝑚𝑚 �1− �

𝐶𝐶
𝑆𝑆𝑚𝑚
�
𝑛𝑛
� 

[38] 

Amor 𝑟𝑟 =
𝑢𝑢𝑚𝑚𝑚𝑚𝑚𝑚𝐶𝐶

𝐶𝐶 + �𝐶𝐶
2

𝐾𝐾𝑖𝑖
�
 

 

[39] 

Fitting of the data 
The nonlinear equations were fitted with a Marquardt algorithm 
using CurveExpert Professional software (Version 1.6). The 
algorithm searches the best method that minimizes the sum of the 
squares between predicted and measured values. The software 
calculates the starting values automatically through via the 
steepest ascent method. 
 
Statistical analysis 
To choose the best model, numerous statistical methods 
including the corrected AICc (Akaike Information Criterion), 
Root-Mean-Square Error (RMSE), bias factor (BF), accuracy 
factor (AF), and adjusted coefficient of determination (R2) were 
utilized as before [40]. 
 
RESULTS AND DISCUSSION 
 
The growth rates at various concentrations of TBT was then 
modelled using the available metal inhibition models. Out of the 
five models, only Wang, modified Han-Levenspiel and the Liu 
models were able to fit the curve, whilst the modified Andrews 
and Amor models were unable to fit the curves (Figs. 1 to 5). 
Both the Wang and modified Han-Levenspiel models show 
acceptable fitting while the Liu model shows poor fitting. Results 
of the statistical analysis showed that the Wang model was the 
best model based on the lowest values for RMSE and AICc, 
highest adjusted correlation coefficient (adR2) and values of AF 
and BF closest to unity (Table 2). 
 
Table 2. Error function analysis of the effect of increasing concentrations 
of tributyltin to the maximum specific growth rate of Bacillus subtilis as 
fitted to various secondary models. 
 
Model p RMSE  adr2 AF BF AICc 
Wang 3 0.04 0.94 1.05 1.00 -14.40 
Han-
Levenspiel 3 0.06 0.85 1.04 1.00 -9.29 
Liu 2 0.94 -157.81 197.38 0.01 14.85 
Andrews 4 0.70 -5.68 1.03 0.99 67.05 
Shukor 3 0.03 0.96 1.04 1.00 -17.12 
 
Note:  
p no of parameter 
adR2 adjusted correlation coefficient 
RMSE root mean square error 
AF accuracy factor 
BF bias factor 
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Fig. 1. The effect of increasing concentrations of TBT to the specific 
growth rate of B. subtilis as fitted to the Wang model. 
  

Fig. 2. The effect of increasing concentrations of TBT to the specific 
growth rate of B. subtilis as fitted to the Han-Levenspiel model. 
 

Fig. 2. The effect of increasing concentrations of TBT to the specific 
growth rate of B. subtilis as fitted to the Liu model. 
  

Fig. 4. The effect of increasing concentrations of TBT to the specific 
growth rate of B. subtilis as fitted to the Andrew model.  
 

Fig. 5. The effect of increasing concentrations of TBT to the specific 
growth rate of B. subtilis as fitted to the Shukor model. 
 

In a previous publication, the parameters obtained from the 
Wang model that govern TBT inhibition of Bacillus 
stearothermophilus which are Ccrit, µmax and m which represent 
critical TBT concentration (nM), maximum growth rate (h-1) and 
empirical constant values were 177.99 (nM), 2.41 and 2.76, 
respectively. The parameters obtained from the Shukor model 
(Table 3) were Ccrit 742.32 nM (95%, C.I., 303.35 to 1181.29), 
µmax 1.20 h-1 (95% C.I., 1.08 to 1.319) and m 0.507 (95% 
C.I.,0.308 to 0.832), indicating that TBT is more toxic to Bacillus 
stearothermophilus. Because of its ability to forecast the 
threshold concentrations that will fully limit bacterial growth, the 
Shukor model has been widely used to model the inhibitory effect 
of metals to growth rate of microorganisms on xenobiotics 
[38,41–44].  

 
In a specific example, using a batch photobioreactor, 

researchers investigated the removal of Cu(II) by Nostoc 
muscorum, a cyanobacterium isolated from a hazardous metal-
polluted site in Meghalaya, with the goal of elucidating the 
removal mechanism and the impact on nitrate absorption by the 
cyanobacterium in the process. The Han-Levenspiel and Andrew 
models were the most closely matched to the experimental data. 
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The Han-Levenspiel constant; the critical Cu(II) concentration 
was determined to be 32.5 mg/L [5]. In another study, using a 
mutant of the bacteria Pseudomonas sp., it was determined that 
there is an inhibitory effect by heavy metal ions on the 
biodegradation of Congo Red. The critical heavy metals 
concentrations obtained from the Han–Levenspiel inhibition 
model for Cr, Zn and Cu were 895, 302 and 204 mg/L, 
respectively [42].  

 
In the study on the inhibitive effects of heavy metals on 

Reactive Black 5 decolourization by Pseudomonas aeruginosa 
strain Gb30, the best model modelling the inhibitory effect of 
heavy metals on the decolourization rate was Han-Levenspiel 
with  Ccrit, µmax and m values of 3496 mg/L (50 mM), 2.013 h-1 
and 1.193, respectively, for zinc and 280 mg/L (2.491 mM), 
1.991 h-1 and 0.882, respectively, for cadmium  [45].  

 
 
Table 3. Parameter values for the Shukor’s model. 
 

Parameters Value 95%, confidence interval 
µmax (h-1) 1.20 1.08 to 1.31 
Ccrit (nM) 742.32 303.35 to 1181.29 
m  0.57 0.308 to 0.832 

 
Note 
Ccrit critical heavy metal ion concentration (mg/L) 
µmax maximum growth rate (g/L.h)  
m  empirical constant  
 

However, despite the fact that heavy metals and organic 
pollutants are both ubiquitously present in polluted waters, the 
use of metal inhibition models is underrepresented in the 
literature. Few studies have investigated the effect of heavy 
metals on the growth rate of bacteria that are growing in the 
presence of a toxic substance. According to one study, zinc and 
nickel inhibited the biodegradation of monoaromatic 
hydrocarbons by Bacillus sp. and Pseudomonas aeruginosa 
significantly, and the effect of these heavy metals on the 
degradation rate was successfully modelled using the Andrews 
model [39]. Metals such as gold and silver interact with 
functional groups in enzymes such as the sulfhydryl group, which 
is frequently found at the active sites of enzymes, and this is most 
likely the mechanism of inhibition [42]. 
 

Metals can have bactericidal or bacteriostatic effects on 
microorganisms, which can be positive or negative in nature. A 
range of biochemical and morphological effects have been 
observed when delivered at sub-lethal levels. Copper has been 
demonstrated to turn E. coli into spherical forms, whilst platinum 
has been shown to transform E. coli into extremely long 
filamentous forms [2,46]. According to preliminary observations, 
inhibitive metal interference appears to be generating 
abnormalities in the processes of cell wall production and cell 
division. Several species develop in the presence of cobalt or 
copper, and their biochemical makeup varies due to an altered 
ratio of macromolecular elements, particularly nucleic acids, and 
a decreased activity of certain oxidative enzymes, particularly 
porphyrin-containing enzymes, among other variables. 
According to the offered theory, metals may be damaging to 
human health because they establish strong interactions with 
numerous ionic groups on the surface of our cells [11,14,47–51].  
 

Increased toxicity is caused by the metal becoming more 
electronegative, which boosts its bonding and binding strength. 
Because metals can form complexes with metal-binding 
molecules in cells, this notion explains why metals can be 
harmful to cells.  

The toxicity of a medium containing such substances is 
significantly lowered when cells grow and develop in it. The 
amino acids histidine and cysteine, both efficient complexing 
agents, are useful in reversing the bacterium's growth inhibition 
[52,53].  
 

To account for this, cells grown in the presence of cobalt in 
basic glucose-salts growth media have a 1000-fold higher 
toxicity than cells produced in the presence of organic acids. In a 
similar way, cobalt and copper have been demonstrated to reverse 
their inhibitory effects on a variety of bacteria when exposed to 
organic ligands such as citrate, glutamate, and ethylenediamine 
tetraacetic acid. Chelation has the potential to minimise metal 
toxicity in natural ecosystems, which would be advantageous. It 
is considered to be capable if a bacterium that would ordinarily 
be hampered by metals can survive and develop in ground water 
or marine sediments containing complexing agents. Recent study 
indicates that certain species may release complexation organic 
acids into the surrounding environment, which has the effect of 
detoxifying the environment [6,7,10,53–55].  

 
Metals can be removed from solutions in order to make them 

non-toxic, if desired. In this application, the precipitation of 
insoluble metal sulphides in the presence of H2S is the most 
conspicuous phenomenon observed. The addition of inorganic 
ions such as phosphate and thiosulfate to the growth medium 
resulted in a substantial reduction in the toxicity of copper 
[56,57]. When manganese is present, cobalt toxicity is reversed 
in humans; when calcium and copper are present, cobalt toxicity 
is reversed in yeast; and when zinc is present in lactic acid 
bacteria, zinc toxicity may be counteracted by the presence of 
either manganese, magnesium, or calcium, respectively [3]. It is 
still unclear how these connections function at this time. Many 
scientists, on the other hand, believe that they represent a direct 
competition between the inhibitory minerals, such as manganese 
and magnesium, and the required minerals, such as manganese 
and magnesium, for enzyme activation sites in the cell [9]. 
 

After all is said and done, metal inhibition models are only 
utilised in a few scenarios to simulate the impact of metal ions on 
bacterial growth rates on dangerous chemicals, which is 
unfortunate because this knowledge is important to a properly 
functioning biological system. Because bacteria must be able to 
withstand the toxicity of both types of toxicants, the rate of 
development is likely to be greatly delayed when heavy metals 
are present in the environment. When metal contamination in co-
polluted areas is sought, the findings of this study may have a 
substantial impact on the bioremediation field trial operations.  

 
CONCLUSION 
 
In conclusion, the use of inhibition models to model the effect of 
toxicity on the growth rate of bacteria is very rare and largely 
ignored despite the importance of such study. In this study the 
effect of TBT toxicity on the growth of B. subtilis bacterium was 
modelled according to several inhibition models, with the Shukor 
model discovered as the best model. The Shukor model allows 
for the prediction of the critical TBT concentration which can 
completely inhibited the bacterial growth. It is expected that in 
the presence of TBT, the growth rate on toxic substance will be 
even strongly affected as the bacteria have to resist the toxicity 
of both kind of toxicants at the same time. The results from this 
study can be very important in field trial works where TBT 
bioremediation is required. 
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