Association between *ARID5B* Polymorphisms and the Risk for Childhood B- Acute Lymphoblastic Leukaemia

Chow Yock Ping¹, Noraidatulakma Abdullah¹ and Nor Adzimah Johdi¹*

¹UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur Campus, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia.

*Corresponding author:
Dr. Nor Adzimah Johdi,
KM Medical Molecular Biology Institute (UMBI),
Universiti Kebangsaan Malaysia,
Kuala Lumpur Campus,
Jalan Yaacob Latif,
56000 Cheras,
Kuala Lumpur,
Malaysia
Email: adzimah@ppukm.ukm.edu.my

INTRODUCTION

B-cell precursor acute lymphoblastic leukemia (B-ALL) is the commonest cancer in children, comprising over 80% of the entire childhood leukemia. However, the etiology of childhood B-ALL remains poorly understood and genetic susceptibility is a major risk factor for this disease. *ARID5B* appeared as one of the most promising genetic markers with nearly a 3-fold increased risk of disease. Method: In this meta-analysis, a total of six candidate *ARID5B* polymorphisms (i.e. rs10821936, rs10994982, rs7089424, rs10821938, rs10740055, and rs7073837) which have been analyzed in at least 2 studies were included for analysis of the risk association between *ARID5B* polymorphisms and childhood B-ALL. Results: Pooled analysis revealed that the dominant model of these six *ARID5B* polymorphisms was associated with an increased risk of childhood B-ALL. However, subgroup analysis based on ethnicity suggested that only four polymorphisms (i.e. rs10821936, rs10994982, rs7089424 and rs10821938) consistently conferred increased risk to childhood B-ALL across different populations, whereas the other 2 polymorphisms (rs10740055, rs7073837) were causative to Caucasians (OR=2.01, 95% CI=1.66-2.44; OR=1.98, 95% CI=1.69-2.31) but maybe protective for Asian (OR=0.49, 95% CI=0.22-1.09; OR=0.95, 95% CI=0.43-2.09) respectively. Conclusion: Our meta-analysis demonstrated could serve as promising markers for assessing the susceptibility risk to childhood B-ALL in both the Asian and Caucasian populations. Further development of a multigene panel inclusive of *ARID5B* is desirable for screening children with a higher risk of developing B-ALL and to improve clinical management of the disease.

KEYWORDS
crude lymphoblastic leukemia
ARID5B polymorphism
genetic susceptibility
meta-analysis

HISTORY
Received: 22 April 2021
Received in revised form: 21 June 2021
Accepted: 25 July 2021

ABSTRACT
B-cell precursor acute lymphoblastic leukemia (B-ALL) is the commonest cancer in children, comprising over 80% of the entire childhood leukemia. However, the etiology of childhood B-ALL remains poorly understood and genetic susceptibility is a major risk factor for this disease. *ARID5B* appeared as one of the most promising genetic markers with nearly a 3-fold increased risk of disease. Method: In this meta-analysis, a total of six candidate *ARID5B* polymorphisms (i.e. rs10821936, rs10994982, rs7089424, rs10821938, rs10740055, and rs7073837) which have been analyzed in at least 2 studies were included for analysis of the risk association between *ARID5B* polymorphisms and childhood B-ALL. Results: Pooled analysis revealed that the dominant model of these six *ARID5B* polymorphisms was associated with an increased risk of childhood B-ALL. However, subgroup analysis based on ethnicity suggested that only four polymorphisms (i.e. rs10821936, rs10994982, rs7089424 and rs10821938) consistently conferred increased risk to childhood B-ALL across different populations, whereas the other 2 polymorphisms (rs10740055, rs7073837) were causative to Caucasians (OR=2.01, 95% CI=1.66-2.44; OR=1.98, 95% CI=1.69-2.31) but maybe protective for Asian (OR=0.49, 95% CI=0.22-1.09; OR=0.95, 95% CI=0.43-2.09) respectively. Conclusion: Our meta-analysis demonstrated could serve as promising markers for assessing the susceptibility risk to childhood B-ALL in both the Asian and Caucasian populations. Further development of a multigene panel inclusive of *ARID5B* is desirable for screening children with a higher risk of developing B-ALL and to improve clinical management of the disease.
by Guo et al. [37] and Zeng et al. [38] evaluated only the association between rs10821936, rs10994982 and rs7089424 with the risk of childhood ALL (B-ALL & T-ALL). Since then, additional case-control studies have been conducted to investigate the association of rs10821936 [25, 28, 30, 34], rs7089424 [16, 31, 34, 36] with childhood ALL risk. Tao et al showed that rs7089424 and rs10994982 were susceptible in B-ALL in the Chinese pediatric population via PCR and mass spectrometry [51]. We believe it is important to re-examine the effects of these ARID5B polymorphisms (rs10821936, rs10994982, rs7089424), as well as three others commonly studied ARID5B polymorphisms (rs10821938, rs7073837, rs10740055) concerning the susceptibility to childhood B-ALL. We aim to assess the association of 6 candidate ARID5B polymorphisms, i.e. rs10821936 (10 eligible case-control studies), rs10994982 (6 eligible case-control studies), rs7089424 (6 eligible case-control studies), rs10821938 (2 eligible case-control studies), rs10740055 (3 eligible case-control studies), rs7073837 (4 eligible case-control studies), and their susceptibility to childhood B-ALL by stratifying the populations into Caucasians, African Americans, Asians, and mixed ethnic groups

MATERIALS AND METHODS

Search Strategy
All available studies associated with ARID5B and childhood B-ALL risk were identified using the keywords “ARID5B or leukemia or leukaemia” and “ARID5B or AT-rich interactive domain 5B” by searching the following databases: PubMed, Cochrane library, Google Scholar, and Science Direct (Up to Jan 2021). In addition, other relevant publications found by manually searching references cited in the published articles. After reviewing the titles and abstracts, 291 non-relevant articles were removed. The full-text articles of the remaining 38 articles were reviewed in detail. Subsequently, an additional 23 studies were excluded (3 were reviews or meta-analysis [37-38, 46], 3 were just case studies [14, 20], 14 studies did not supply the genotype data for calculating OR [7, 11, 15-16, 23-24, 27, 30, 31, 47], 2 were studies on adult leukemia [49-50], and 1 was a study on acute myeloid leukemia [30] giving a final total of 15 studies in our meta-analysis. Eight studies involved Caucasians, 1 study involved African Americans, 4 studies involved Asians, and 2 studies had patients from a mixed population. The characteristics of the 15 studies are summarized in Table 1. Notably, the distribution of the rs10821936, rs10994982, and rs7089424 by Kennedy et al [36], and rs7089424 by Lin et al [33] did not conform with the HWE ($p<0.01$) and were excluded from the meta-analysis.

Statistical analysis
The association between ARID5B polymorphisms and leukemia risk was determined by evaluating the pooled OR with 95% CI according to the dominant model. The significance of the summary OR was determined with a Z test and $p>0.05$ was considered as statistically significant. The between-study heterogeneity was assessed by I^2 based on Cochran’s Q statistic (40) and the degree of heterogeneity was assessed by I^2 statistic [41]. If the heterogeneity was significant (I^2 value >50% or $p<0.10$), the random-effects model/DerSimonian and Laird method were used to estimate the pooled OR (42). Otherwise, if the heterogeneity was insignificant (I^2 value <50% or $p>0.10$), then the fixed-effects model/Mantel-Haenszel method was used [43]. Potential publication bias was estimated by Egger’s test ($p>0.05$ was considered representative of statistically significant publication bias) [44] and visualized by using Begg’s funnel plot [45]. All statistical tests were performed using the STATA version13.0 (STATA Corporation, College Station, TX).

RESULTS

Characteristics of the Eligible Studies
The flowchart summarising the selection process of the studies is shown in Fig. 1. The combined search yielded 328 references from PubMed, Science Direct, Google Scholar, and Cochrane Library databases (after removal of duplicates). One additional article was identified from manually searching references cited in the published articles. After reviewing the titles and abstracts, 291 non-relevant articles were removed. The full-text articles of the remaining 38 articles were reviewed in detail. Subsequently, an additional 23 studies were excluded (3 were reviews or meta-analysis [37-38, 46], 3 were just case studies [14, 20], 14 studies did not supply the genotype data for calculating OR [7, 11, 15-16, 23-24, 27, 30, 31, 47], 2 were studies on adult leukemia [49-50], and 1 was a study on acute myeloid leukemia [30] giving a final total of 15 studies in our meta-analysis. Eight studies involved Caucasians, 1 study involved African Americans, 4 studies involved Asians, and 2 studies had patients from a mixed population. The characteristics of the 15 studies are summarized in Table 1. Notably, the distribution of the rs10821936, rs10994982, and rs7089424 by Kennedy et al [36], and rs7089424 by Lin et al [33] did not conform with the HWE ($p>0.01$) and were excluded from the meta-analysis.

Data extraction
All the data were carefully extracted independently by two investigators (CYP & NA) from each publication, according to the inclusion and exclusion criteria listed above. The discrepancies during data extraction were resolved by consensus. A third investigator (NAJ) was consulted to resolve any disagreement. The extracted data included author, year of publication, country of origin, the ethnicity of patients, genotyping methods, number of cases and controls, types of leukemia, and the genotypes distribution of cases and controls. The study populations were categorized as Caucasians, African Americans (Blacks), Asians, or Mixed ethnic groups.

Fig. 1. Flow chart of selection of studies for inclusion in the meta-analysis.

This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
Table 1. Characteristics of studies included in the meta-analysis.

<table>
<thead>
<tr>
<th>First Author</th>
<th>Year</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Genotyping Method</th>
<th>Genotypes frequencies Case/Control</th>
<th>HWE (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kreile</td>
<td>2016</td>
<td>Latvia</td>
<td>Caucasian</td>
<td>PCR-RFLP</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Emmerichiano</td>
<td>2014</td>
<td>Brazil</td>
<td>Caucasian</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Ross</td>
<td>2013</td>
<td>USA</td>
<td>Caucasian</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Camino</td>
<td>2013</td>
<td>Spain</td>
<td>Caucasian</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Healy</td>
<td>2010</td>
<td>Canada</td>
<td>Caucasian</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Trevino</td>
<td>2009</td>
<td>USA</td>
<td>Caucasian</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Yang</td>
<td>2010</td>
<td>USA</td>
<td>Black</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Bhandari</td>
<td>2016</td>
<td>India</td>
<td>Asian</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Wang</td>
<td>2013</td>
<td>China</td>
<td>Asian</td>
<td>Taqman SNphost</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Kennedy</td>
<td>2015</td>
<td>USA</td>
<td>Mixed</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
<tr>
<td>Linabery</td>
<td>2013</td>
<td>USA</td>
<td>Mixed</td>
<td>Taqman</td>
<td>CC 80/193</td>
<td>0.023</td>
</tr>
</tbody>
</table>

Association of ARID5B Polymorphisms and Risk of Childhood B-ALL.

The association between rs10821936 (TC>CC vs. TT) and susceptibility to childhood B-ALL was analyzed in 10 studies involving 2,552 cases and 20,867 healthy controls. As depicted in the Forest plot (Fig 2(A)), the combined analyses suggested that the dominant model of rs10821936 significantly increased the risk of childhood B-ALL across all four ethnic groups (OR, 2.08; 95% CI, 1.86-2.32). Similarly, the subgroup analysis suggested that this marker was significantly associated with increased B-ALL risk in both Caucasians (OR=2.16; 95% CI=1.87-2.50) and Asians (OR=1.89; 95% CI=1.50-2.39) children. As there was only one study each on Blacks and Mixed population, additional replication studies are required to validate the risk effects of rs10821936 in these 2 ethnic groups. A total of 6 studies were included to assess the risk association between rs10994982 (GA>AA vs. GG) and childhood B-ALL and comprises 1,698 cases and 19,786 controls. As shown in Fig. 2(B), the combined analysis showed that the dominant model of rs10994982 was significantly associated with increased risk of childhood B-ALL among Caucasians (OR=1.65; 95% CI=1.38-1.97). Even though the rs10994982 dominant model also showed an increased risk in the Mixed population (OR=1.46; 95% CI, 1.08-1.97), additional replication studies are required to confirm the findings.

For rs7089424, 6 studies were included in the meta-analysis, in which four involved Caucasian patients and 2 involved Asian patients. As depicted in Fig 2(C), the combined results demonstrated that the dominant model of rs7089424 (GT>GG vs. TT) conferred increased risk to childhood B-ALL (OR=2.02; 95% CI=1.83-2.23). Similar findings were evident in ethnicity-based subgroup analysis for both Caucasians (OR=2.07, 95% CI=1.87-2.30), and Asians (OR=1.45, 95% CI=1.00-2.10), hence suggesting the robustness of this marker in predicting susceptibility to childhood B-ALL.

There were only 2 eligible studies reported on rs10821938, involving Caucasian and Asian patients. As shown in Fig 2(D), the between-study heterogeneity indicated that both studies were homogenous (I²=squared=0.0%, p=0.711), and the fixed-effect model was used to calculate the combined OR. The results demonstrated that the dominant model of rs10821938 (AA>AC+c) was significantly associated with childhood B-ALL risk (OR=1.69, 95% CI=1.23-2.33).

As demonstrated in Fig 3(A) and (B), rs10740055 (AC>CC vs. AA) and rs7073837 (AC>AA vs. CC) conferred an increased risk to childhood B-ALL under the dominant model with OR=2.01 (95% CI=1.66-2.44) and OR=1.98 (95% CI=1.69-2.31) respectively in Caucasians. As there was only one study reported on Asians for rs10740055 (OR=0.49, 95% CI=0.22-1.09) and rs7073837 (OR=0.95, 95% CI=0.43-2.09) respectively, further validation is required to confirm their possible protective effects on childhood B-ALL. All the 6 SNPs were intronic variants that clustered together closely (Fig. 4).
Fig. 2. The forest plot describing the meta-analysis for the dominant model of (A) rs10821936 (TC+CC vs. TT); (B) rs10994982 (GA+AA vs. GG); (C) rs7089424 (GT+GG vs. TT), and (D) rs10821938 (AC+AA vs. CC). The squares represent the study-specific OR and 95% CI whereas the diamond represents the pooled OR and 95% CI calculated using fixed or random effect method.

Fig. 3. The forest plot describing the meta-analysis for the dominant model of (A) rs10740055 AC+CC vs. AA) and (B) rs7073837 (AC+AA vs. CC). The squares represent the study-specific OR and 95% CI whereas the diamond represents the pooled OR and 95% CI calculated using fixed or random effect method.
Publication bias
The publication bias was assessed by both Begg’s funnel plot and Egger’s test. As depicted in Fig. 5, Begg’s funnel plot did not show significant asymmetry. Similarly, Egger’s test demonstrated that there was no publication bias for the five ARID5B polymorphisms (Table 2, p > 0.01). For the rs10821938, the p-value was not able to be determined (only 2 studies were involved). Taken together, the results indicated the absence of publication bias for studies included in this meta-analysis.

Table 2. Summary of the Egger’s test for ARID5B polymorphism.

<table>
<thead>
<tr>
<th>ARID5B Polymorphism</th>
<th>Egger’s test (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>rs10821936</td>
<td>0.88</td>
</tr>
<tr>
<td>rs10994982</td>
<td>0.031</td>
</tr>
<tr>
<td>rs7089424</td>
<td>0.091</td>
</tr>
<tr>
<td>rs10740055</td>
<td>0.314</td>
</tr>
<tr>
<td>rs7073837</td>
<td>0.497</td>
</tr>
</tbody>
</table>

This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).
DISCUSSION

In the past decades, many moderate-penetrance genes which conferred increased risk to childhood ALL have been identified [46]. Among these genes, ARID5B appeared as one of the most promising candidate’s susceptibility markers, and the risk effects of numerous ARID5B polymorphisms in childhood ALL have been investigated across different populations [46]. Globally, B-ALL accounts for nearly 80% of childhood leukemia [1], and screening of children with a higher risk of developing B-ALL is therefore important to improve the clinical management of the disease. In this meta-analysis, our primary aim was to evaluate the association of six reported ARID5B polymorphisms and their susceptibility to childhood B-ALL across different ethnicities.

To date, more than 15 ARID5B polymorphisms have been reported to be associated with childhood ALL risk. Based on the 15 eligible case-control studies, a total of 6 ARID5B polymorphisms (i.e. rs10821936, rs10994982, rs7089424, rs10821938, rs10740055, rs7073837) which have been reported in at least 2/15 eligible studies were included in this meta-analysis. Our meta-analysis suggested that four ARID5B polymorphisms, i.e. rs10821936, rs10994982, rs7089424, and rs10821938 could serve as promising genetic susceptibility markers for screening childhood B-ALL across different ethnicities, including Caucasians (rs10821936, rs10994982, rs7089424, rs10821938), Asians (rs10821936, rs7089424, rs10821938), Blacks (rs10821936), and Mixed population (rs10821936, rs10994982). However, the usefulness of these four markers in other ethnic groups requires further investigation. Ethnicity-based subgroup analysis found that the racial disparity was evident for the dominant model of rs10740055 and rs7073837, in which Caucasians were shown to have a higher risk to childhood B-ALL whereas the Asians were shown to be protected. Considering that studies on non-Caucasians were few and the number of cases and controls was relatively small, additional replication studies are required to confirm their risk effects.

The study by Studd et al. (2016) [47] reported that ALL patients who harbored the ARID5B risk allele in rs7090445 (C is the risk allele) and rs7896246 (A is the risk allele) showed reduced ARID5B expression as compared to those harboring the wildtype allele, and this may have contributed to the leukemogenesis. Moreover, other than childhood leukemia, the loss of ARID5B function has been documented in endometrial cancer and the truncated ARID5B protein inhibited the normal function of wildtype ARID5B in the cancer cells [48]. Hence, it is of great interest to investigate the correlation of ARID5B risk alleles and their expression values in childhood B-ALL and to further dissect the roles of ARID5B in driving leukemogenesis.

CONCLUSION

In summary, this meta-analysis has re-evaluated the association of six ARID5B polymorphisms (rs10821936, rs10994982, rs7089424, rs10821938, rs10740055, rs7073837) and childhood B-ALL risk. Our meta-analysis demonstrated that rs10821936, rs10994982, rs7089424, and rs10821938 could serve as promising markers for assessing the susceptibility risk to childhood B-ALL in both the Asian and Caucasian populations. The usefulness of these four markers in screening other ethnic groups warrants further investigation. As genetic testing is increasingly being used for guiding clinical decisions, the development of a multigene panel inclusive of ARID5B is desirable for screening children with a higher risk of developing B-ALL and to improve clinical management of the disease.

ACKNOWLEDGEMENT

This work was supported by an internal fund from the UKM Medical Molecular Biology Institute (UMBI).

ABBREVIATIONS

B-ALL, Acute B-lymphoblastic leukemia; Genome-wide association studies, GWAS; ARID5B, AT-rich interactive domain 5B; HWE, Hardy–Weinberg equilibrium; OR, odds ratio; CI, confidence interval

CONFLICT OF INTEREST

The authors have declared that no competing interests exist.

AUTHOR CONTRIBUTIONS

CYP and NA performed the literature search, data extraction, and statistical analysis. CYP, NA, and NAJ wrote the manuscript; CYP and NAJ critically reviewed the manuscript. NAJ did the final editing, formatting, and submission.

REFERENCES

