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INTRODUCTION 
 
Biofilm formation is a process by which microorganisms 
irreversibly bind to and grow on a surface and create 
extracellular polymers that promote the formation of 
attachments and matrixes, resulting in a change in the 
organisms' phenotype in terms of growth rate and transcription 
of genes. Microorganisms mainly occur in nature by binding to 
and developing on living and inanimate surfaces. These surfaces 
may take many types, including those in the soil and marine 
environments, those in the medical device continuum, and those 
in living tissues, such as tooth enamel, heart or lung valves, and 
the middle ear. The common characteristic of this attached 
growth state is that a biofilm is formed by the cells [1]. For 
public health, biofilms have great significance because biofilm-
associated microorganisms show a significantly reduced 
vulnerability to antimicrobial agents. Such susceptibility may be 
intrinsic or acquired (due to transfer of extrachromosomal 
elements to susceptible organisms in the biofilm) [2]. Almost all 

micro-organisms (99.9%) have the ability to generate biofilm on 
a wide variety of surfaces, i.e. Biological and inert surfaces. 
They generate extracellular polymeric material (eps) and form 
biofilm when micro-organisms bind to a surface. Owing to its 
resistant nature to antibiotics and diseases associated with 
domestic medical devices, biofilm presents a major problem for 
public health. It is observed that H. infuenza can form biofilm in 
the human body and can escape from it [2]. 
 

A. philippense is a fern with many curative properties that 
is medicinally treasured. Plant-derived extracts are highly 
known these days because of their lack of side effects, and 
many are currently being used. Traditionally as ethnomedicine 
for treatment and prevention of the various forms of infections 
[3]. In India, A. philippense is widely used in the treatment of 
many medical conditions by local and tribal communities, such 
as epileptic fits, fever, ulcers, diseases of the blood, erysipelas, 
dysentery, rabies, fever, emaciation or cachexia, atrophy of 
muscle pain, paralysis, pimples, wounds and elephantiasis[4]. 
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 ABSTRACT 
Biofilm formation is a process by which microorganisms irreversibly bind to and grow on a 
surface and create extracellular polymers that promote the formation of attachments and 
matrixes, resulting in a change in the organisms' phenotype in terms of growth rate and 
transcription of genes.  A. philippense is a fern with many curative properties that is medicinally 
treasured. Predictive mathematical modeling approach was used to study adhesion of S. aureus 
with biofilm. Out of the eight different primary model, modified Gompertz best fit the effect of 
the plant extract on the biofilm formation and adhesion with S. aureus with the least value for 
RMSE, AICc and the uppermost value for adjusted R2. The parameters obtained from the 
modified Gompertz when compared with control and chloramphenicol were ymax 0.980 (95% 
C.I. 0.889 to 1.070) and 0.637 (95% C.I. 0.604 to 0.670), µmax 0.185 (95% C.I.  0.120 to 0.250) 
and 0.183 (95% C.I. 0.141 to 0.225), lag (h) 0.180 (95% C.I. -0.764 to 1.124) and 3.343 (95% 
C.I. 2.933 to 3.753) respectively. A strong model to use to fit sigmoidal growth or formation 
curves tends to be the modified Gompertz equation. The benefit of using this function is that a 
constant formation rate is not assumed by the Gompertz equation. Instead, it is a model that can 
be used to model rates of formation (of biofilm) that change over time. 

Keywords 
 
Biofilm 
Adentum philippense,  
Mathematical modelling,  
S. aureus 

 

 

JOURNAL OF BIOCHEMISTRY, MICROBIOLOGY 
AND BIOTECHNOLOGY 

 

Website: https://journal.hibiscuspublisher.com/index.php/JOBIMB 
 JOBIMB VOL 8 NO 1 

2020 
SARS-Cov-2 protease 

JOBIMB VOL 8 NO 2 2020 
Rituximab 

mailto:garbauba@jigpoly.edu.ng


JOBIMB, 2020, Vol 8, No 2, 25-29 
 

- 26 - 
 

The existence of phenols, terpenoids, flavonoids and 
carbohydrates, as a result of phytochemical analysis of this 
plant, has been observed [5].  
 

Mathematical modeling is the art of transforming problems 
into tractable mathematical formulas from an application field 
whose theoretical and numerical analysis offers insight, 
responses, and guidance useful for the originating application 
[6]. A model is a framework that serves to explain and measure 
a conceptual or mathematical representation of a system. The 
distinction between mathematical and philosophical lies only in 
the manner in which the representation is formulated. A model 
is often a condensed representation, which the scientist wishes 
to understand and calculate, of the reference system. In the end, 
it serves as a way of systematizing the information and 
understanding available of a given phenomenon and the facts 
about it [6,7]. For the first time the predictive mathematical 
modeling of the effect of A. philippense on biofilm formation 
and adhesion with staphylococcus aureus against foodborne 
pathogens was studied using various models (Table 1).  

 
Table 1. Growth models used in modelling the growth curve of nile 
tilapia. 
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Note: 
A= growth lower asymptote; 
Ymax= growth upper asymptote; 
Mmax= maximum specific growth rate; 
V= affects near which asymptote maximum growth occurs. 
L=lag time 
E = exponent (2.718281828) 
T = sampling time 
A,b, k = curve fitting parameters 
H0 = a dimensionless parameter quantifying the initial physiological state of the reduction 
process.  
The lag time (h-1) or (d-1) can be calculated as h0=mmax 
 
 
MATERIALS AND METHODS 

 
A previously published data [3] was processed using the 
software Webplotdigitizer 2.5 (Rohatgi 2018). 
 
Statistical analysis 
In the selection for the best models, statistical analysis or error 
function analysis was carried out using discriminatory factors 
such as accuracy factor (AF), bias factor (BF), adjusted 
determination coefficient (R2), root-mean - square error 
(RMSE) and one based on information theory which is the 
AICc (corrected Akaike information criterion) [36]. 
 
Fitting of the data 
Nonlinear regression analysis was carried out using the curve 
expert professional software (version 1.6). Several popular 
growth models were utilized in this study. The μmax of the 
estimation was performed by the steepest ascent rifle of the 
curve, whereas the x-axis crossing of this line is an estimate of 
λ. For the purposes of modeling, the model that demonstrates 
the highest growth was adopted. 
 
RESULTS AND DISCUSSION 
 
The growth curves were replotted and converted to log units 
prior to modelling (Fig. 1). In the modeling process, the highest 
signal was used to pick the best model. 
The adequate fitting of all the models to the growth curve was 
evident (Figs 2 to 9). The best model was found using the 
modified Gompertz model (Fig 4) with the least value for 
RMSE, AICc and the uppermost value for adjusted R2. For the 
model, the AF and BF values were shown to be superb and their 
values were closest to unity. Biofilm formation was modelled 
using the modified Gompertz model (Fig. 10). Kinetic of 
biofilm formation and adhesion with S. aureus was assumed 
that the growth rate of the bacteria is greatly affected by the 
effect of the plant extract (A. philippense). 
 

The modified Gompertz equation has been used 
successfully to explain nonlinear responses. In food 
microbiology, the modified Gompertz equation has been used 
mainly to model the asymmetrical sigmoid form of microbial 
growth curves. The modified Gompertz equation was further 
used in conjunction with different statistical methods to explain 
single and multiple effects of factors affecting microbial 
development [8]. The least performance was the modified 
logistic model (Table 2). The near absence of lag period for 
growth is likely the reason for the superiority of the modified 
Gompertz model. The coefficients for the modified Gompertz 
model are shown in Table 3.  

 
 
Fig. 1. Growth of S. aureus biofilm (control) in the presence of A. 
philippense and a positive control (chloramphenicol). 
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Table 2. Statistical analysis of the various fitted models. 
 
Model  RMSE Adr2 AF BF AICc 
Huang 4 0.06 0.99 1.03 1.01 -53.08 
Baranyi-Roberts 4 0.04 0.99 1.03 1.00 -60.07 
Modified Gompertz 3 0.04 1.00 1.08 1.01 -68.04 
Buchanan-3-Phase 3 0.08 0.98 1.08 1.02 -48.88 
Modified Richards 4 0.04 0.99 1.05 1.01 -60.56 
Modified Schnute 3 0.04 0.99 1.05 1.01 -60.56 
Modified Logistics 3 0.05 0.99 1.08 1.04 -60.94 
von Bertalanffy 4 0.04 0.99 1.04 0.99 -65.05 
Note: 
p  no of parameters 
AdJR2 adjusted coefficient of determination 
RMSE Root Mean Square Error 
BF  bias factor 
AF accuracy factor 
 
 
 

 
Fig. 2. Growth of S. aureus biofilm (control) fitted to the Huang model. 

 
Fig. 3. Growth of S. aureus biofilm (control) fitted to the Baranyi-
Roberts model. 

 
Fig. 4. Growth of S. aureus biofilm (control) fitted to the modified 
Gompertz model. 

 
Fig. 5. Growth of S. aureus biofilm (control) fitted to the buchanan-3-
phase model. 

 
Fig. 6. Growth of S. aureus biofilm (control) fitted to the Modified 
Richards model. 

 
Fig. 7. Growth of S. aureus biofilm (control) fitted to the Modified 
Logistics model. 

 
Fig. 8. Growth of S. aureus biofilm (control) fitted to the Modified 
Schnute model. 
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Fig. 9. Growth of S. aureus biofilm (control) fitted to the Von 
Bertalanffy model. 
 
 

 
Fig. 10. Growth of S. aureus biofilm (control) in the presence of A. 
philippense and a positive control (chloramphenicol) fitted to the 
modified Gompertz model (red lines). 
 
Table 3. Coefficients of bacterium biofilm (control) in the presence of 
A. philippense and a positive control (chloramphenicol) fitted to the best 
model. 
 

 
Control 

Value (95% C.I.) 
S. aureus  

Value (95% C.I.) 
Chloramphenicol  
Value (95% C.I.) 

Ymax 1.900 1.850 to 1.950  0.980 0.889 to 1.070 0.637 0.604 to 0.670 
Mmax (h-1) 0.344 0.310 to 0.378  0.185 0.120 to 0.250 0.183 0.141 to 0.225 
Lag (h) -0.097 -0.372 to 0.177  0.180 -0.764 to 1.124 3.343 2.933 to 3.753 
Note: 95% C.I. denotes 95% confidence interval. 

 
The study carried out was to study the effect of plant extract A. 
Phillippense on biofilm formation and adhesion with S. aureus 
on foodborne pathogens using mathematical models’ approach. 
Some of the tested  predictive models  include Baranyi-Roberts 
[7,9] and logistic, modified Gompertz [10–16], Richards, 
Schnute [17,18], Von Bertalanffy [19,20], Buchanan three-
phase [13,21–25] and more recently the Huang model [26]. The 
Modified Gompertz model is the most popular model as it is the 
simplest (having three parameters). 
 

The asymmetrical sigmoidal form of the modified 
Gompertz model provides greater flexibility compared to the 
Logistic model. Sigmoidal models such as Logistics and 
Gompertz differ primarily at the point of inflection between the 
lower and upper asymptotes. There is a distance of 1/2 and 1/e, 
respectively, between the lower and upper asymptotes of the 
logistic and Gompertz models [27]. Most growth models, in 
general, have a flexible slope and variable inflection point 
feature between the lower and upper asymptotes. Such functions 

are either individual or simplified instances of a parent model. 
As an example, the modified logistics, modified Gompertz and 
the von Bertalanffy growth models originates from the parent 
Richard’s model [18,27,28]. The model has its limitations and 
with some primary problems. Firstly, in the static version, y(t=0) 
is not equal to yo. Secondly, the inherent property of the 
sigmoidal curve is an inflection point, allowing the model to 
have a systematic difficulty representing the exponential phase. 
Ultimately, the model appears to overestimate the importance of 
its parameters [29–31]. Notwithstanding this, the modified 
Gompertz model has been commonly used to model the 
development of the processing of bacteria and secondary 
bacterial products including biohydrogen, methane, lactic acid, 
biofuel and bacterioricin to name a few [32–36] including callus 
growth [37–39]. 
 

For more secondary modeling, parameters derived from 
the fitting exercise may later be used. These mechanistic models 
aim to gain a better understanding of the processes of chemistry, 
physics and biology. Mechanistic models, such as the modified 
Gompertz, are more effective compared to purely empirical 
model, as mechanistic models tell you about the underlying 
mechanism or mechanisms that drive the changes in the 
observed growth rates [40]. Modified Gompertz support the 
exemplified this plant's strong inhibitory activity against some 
bacteria (S. aureus). Consequently, this research offers evidence 
of the ethanomedicinal application of A. philippensis in the 
treatment of a number of diseases caused by pathogenic 
microorganisms and infections [3]. To maximize the effect of S. 
aureus, the merging of A. philippense crude extract and 
chloramphenicol was imperative. Futuristic experiments are 
also important for the testing of antibacterial resistance to other 
drugs. 
 
CONCLUSION 
 
In conclusion, the Modified Gompertz model was the best 
model in modelling the biofilm formation curve of the 
bacterium S.Aeureus based on statistical tests such as root-
mean-square error (RMSE), adjusted coefficient of 
determination (R2), bias factor (BF), and accuracy factor (AF) 
and corrected AICC (akaike information criterion).  
A strong model to use to fit sigmoidal growth or formation 
curves tends to be the Gompertz equation. The benefit of using 
this function is that a constant formation rate is not assumed by 
the Gompertz equation. Instead, it is a model that can be used to 
model rates of formation that change over time. However, 
[41,42] justified the use of the Gompertz equation from a 
mathematical point of view to model microbial growth. He 
stated that the Gompertz equation better estimates early lag 
phase, end of lag phase, and maximum growth for sigmoidal 
microbial growth curves than the logistic equation 
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