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INTRODUCTION 
 
Phenols and phenolic compounds are harmful to humans even at 
small concentrations, all of which are listed as hazardous 
substances for different reasons owing to their toxicity to human 
health [1,2]. Several of the phenolics includes chlorophénols, 
nitrophenols, methyl phenols, alkylphenols and aminophenols. 
Phenol is inhibitory to bacterial growth, which is expressed in 
decreased growth levels as the concentration of phenols increases 
[3]. The design and optimisation of biological transformation 
processes include quantitative empirical data. A selection of 
mathematical models has been developed to characterize the 
metabolism dynamics of compounds introduced to the pure 
culture of microorganism or natural environment microbial 
populations. A useful resource in biotechnology is the 
relationship between the specific growth rate (µ) of a microbial 
community and the substrate concentration (S). The Monod 
equation was commonly used to describe the rate of utilization of 
substrates linked to growth [4,5]. However, the original Monod 
model could not be used when a substratum shows inhibition 
against its biodegradation. In this case, instead, its derivatives 
have been invented that have new constants that provided 
substrate corrections. Table 1 shows a variety of microbial 
growth of the kinetic model available for this work 

biodegradation. There are numerous kinds of literature which 
generalize the use of the Haldane model in the literature to model 
substratum inhibition to growth or degradation rate. This is even 
though many other models are more reliable for a single 
substrate-inhibiting compound such as phenol. Aside from the 
commonly documented Haldane model, for example [6]. Many 
other models, such as Luong [7–9] and Edward [10] were found 
to be optimal. In some circumstances, therefore, the use of 
extensive models available could replace the Haldane. Without 
directly applying these other models to the available data on 
growth or degradation rate and proper statistical evaluation, the 
Haldane model cannot be used exclusively in a liberal fashion. 
 

The purpose of this work is therefore to analyze similarities 
and differences between models using published available data 
for additional detailed modelling and, based on statistical 
reasoning, to answer the question of which model(s) should be 
used. It would offer fresh evidence and results that could spurn 
and expose new knowledge and changes in researchers' work 
already completed.  
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 ABSTRACT 
Kinetic equations, which explain the behaviour of a microbe or an enzyme towards a specific 
substrate, are key to understanding many phenomena in biotechnological processes. They facilitate 
the mathematical prediction of growth parameters essential for the identification of key growth 
control parameters. We remodelled Banerjee and Ghoshal's published research (Banerjee and 
Ghoshal 2010) using some more kinetic growth models, such as Monod, Teissier, Andrews and 
Noack, Hinshelwood, Moser, Aiba, Webb (Edward), Yano and Koga, Han and Levenspiel and 
Luong used statistical methods such as Root Mean Square (RMSE), Adjusted Coefficient of 
Determination ( R2), corrected Akaike Information Criterion (AICc), Bias Factor, Accuracy Factor  
to determine the accuracy of the fitted model. The best model was Haldane with the true value of 
µmax determined as the value where the gradient for the slope is zero was 0.115 h-1 at 51 mg/L 
phenol. The results indicate that the exhaustive use of mathematical models on available published 
results could gleam new optimal models that can provide new knowledge on the way toxic 
substance inhibits growth rate in microbes. 
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Table 1. Various mathematical models developed for degradation 
kinetics involving substrate inhibition. 
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Note: 
qmax maximal degradation rate (h-1) 
Ks  half saturation constant for maximal degradation (mg/L) 
Sm  maximal concentration of substrate tolerated and (mg/L) 
m, n, K curve parameters 
S  substrate concentration (mg/L) 
P  product concentration (mg/L) 

 
 
MATERIALS AND METHODS 
 
Acquisition of Data 
The graph showing the degradation rate against substrate phenol 
concentration [18] for Pseudomonas putida LY1 in Figure 4 was 
processed electronically using WebPlotDigitizer 2.5 [19], which 
helps digitize scanned plots into the data table with sufficient 
accuracy [20]. 
 

 
 
Fig 1. Replotted data of the degradation rate against substrate phenol 
concentration for Pseudomonas putida LY1. 
 
 

Fitting of the data 
Via nonlinear regression, the nonlinear equations were fitted to 
growth data with a Marquardt algorithm that minimizes residual 
square sums using CurveExpert Professional software (version 
1.6). It is a search method to minimize the sum of the differences 
between the expected and observed values in the squares. The 
software determines starting values automatically by looking for 
the steepest elevation of the curve between four datum points 
(estimation of µmax), intersecting this line with the x-axis 
(prediction of half) and taking the final data point as an asymptote 
(A) estimate. The model of the Huang needs to be numerically 
solved, as it is a differential equation. The differential equation 
was numerically resolved using the Runge-Kutta method. To 
solve this equation a differential equation solver (ode45) was 
used in MATLAB (version 7.10.0499, The MathWorks, Inc., and 
Natick, MA). 
 
Statistical analysis 
To assess whether there is a statistically significant difference 
between models with different parameters, the consistency of fit 
to the same experimental data was statistically tested using 
various methods such as the root-mean-square error (RMSE), the 
adjusted determination coefficient (R2), the bias factor (BF), the 
accuracy factor (AF), (R2), bias factor (BF), accuracy factor (AF), 
corrected AICc (Akaike Information Criterion) and F-test [21]. 
 

The RMSE has been calculated according to the Eq. (1) 
where Pdi is the values predicted by the model and Obi are 
experimental data, n is the number of experimental data and p is 
the number of parameters of the model is evaluated. The smaller 
number of parameters of the model is expected to give smaller 
RMSE values.  
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The coefficient of determination or R2 is used in linear regression 
models to assess the quality of fit of the model. However, in the 
case of nonlinear regression, where the difference in the number 
of parameters between one model and another is normal, the 
adoption of the method does not readily provide comparative 
analysis. The adjusted R2 is therefore used to calculate the quality 
of nonlinear models according to the formula where the RMS is 

the Residual Mean Square and 
2
ys is the total variance of the y-

variable.  
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The Akaike Information Criterion (AIC) offers a system of 

model selection by evaluating the quality of a given statistical 
model for a given set of experimental data [22]. AIC deals with 
the trade-off concerning the fitness of the model as well as the 
complexity of the model. It is based on the theory of information. 
The method provides a relative approximation of the information 
lost for each time a model is used to represent a process that 
generates information or data. The most preferred model would 
be the model showing the minimum value for AIC for the output 
of a set of predicted models. This value is often a negative value, 
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with, for example, an AICc value of-10 more preferred than that 
of-1. The equation includes the number of penalty parameters, 
the more parameters, the lower the output preference or the 
higher the AIC value. The most preferred model would be the 
model showing the minimum value for AIC for the output of a 
set of predicted models. This value is often a negative value, with, 
for example, an AICc value of-10 more preferred than that of-1. 
The equation includes the number of penalty parameters, the 
more parameters, the lower the output preference or the higher 
the AIC value.  

 
AIC therefore not only rewards fitness but also does not 

encourage the use of more complicated models (overfitting) for 
fitting experimental data. Since the data in this work is small 
compared to the number of parameters used in the corrected 
version of AIC, the Akaike Information Criterion (AIC) with 
correction or AICc is used instead. The AICc is calculated for 
each data set for each model according to the following equation; 
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Where  
n is the number of data points  
p is the number of parameters of the model.  
 

 
The analysis takes into consideration the change in fitness 

and the difference in the number of parameters between the two 
models. The model with the smallest AICc value is most 
probably correct for each data set [23]. 
 

Accuracy Factor (AF) and Bias Factor (BF) to test for the 
goodness-of-fit of the models as suggested by Ross [25] were 
also used.  The identical to1 Bias factor indicates a perfect match 
between the predicted and observed values. A bias factor with 
values < 1 indicates a fault-dangerous model for microbial 
growth curves or degradation studies while a bias factor with 
values > 1 indicates a fail-safe model. The accuracy factor is 
usually as high as 1 and higher AF values are less accurate 
predictions. 
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RESULTS AND DISCUSSION 
 
The results of the curve fitting are shown in Figures 2 to 6. The 
model from Han and Levenspiel did not fit the experimental data 
and was excluded. All other models tested except the Monod 
model offered a relatively good fit based on visual observation.  
 

 
Fig. 2. Fitting experimental data with the Yano model.  
 

 
Fig. 3. Fitting experimental data with the Luong model.  
 

 
Fig. 4. Fitting experimental data with the Haldane model.  
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Fig. 5. Fitting experimental data with the Monod model.  
 

 
Fig. 6. Fitting experimental data with the Teissier-Edward model.  
 

 
Fig. 7. Fitting experimental data with the Aiba model.  
 

The statistical and accuracy analysis of all the six kinetic 
models used, Haldane was showed to the best model dues to its 
lower RMSE and AICc values, highest adjusted R2 values, F-test 
and with Bias Factor and Accuracy Factor nearest to unity (1.0) 
(Table 2). The Haldane model was also stated by Li et al. [18], 
although in the original work, only Haldane was evaluated. The 
calculated value for the Haldane constants; i.e. maximal growth 
rate, half-saturation constant for maximal growth and inhibition 

constant defined as µmax, Ks and Ki were similar to those found by 
Li et al. [18]. It should be noted that the value of  µmax obtained 
based on curve fitting linearization is not the true µmax value as 
the true value should be where the gradient for the slope is zero 
and in this case, the value was approximately 0.115 h-1 at 51 mg/L 
phenol, which is new information not carried out in the original 
work. 
 
Table 2. Statistical analysis of kinetic models. 
 
Model p RMSE R2 adR2 AICc BF AF 
Luong 4 0.0079 0.963 0.943 -93 1.005 1.072 
Yano 4 0.0084 0.959 0.936 -92 1.008 1.078 
Tessier-Edward 3 0.0211 0.700 0.587 -76 0.928 1.180 
Aiba 3 0.0260 0.232 -0.056 -71 0.974 1.233 
Haldane 3 0.0079 0.959 0.943 -100 1.008 1.077 
Monod 2 0.0247 0.190 0.010 -78 0.974 1.233 
Han and Levenspiel  5 n.a. n.a. n.a. n.a. n.a. n.a. 
Note: 
p  No of parameter 
RMSE  Root Mean Squared Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICc Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
 
Table 3. Inhibition kinetics parameters from the Haldane model 
 
 µmax (h-1) Ks (mg/L) Ki (mg/L) 
Value 0.2000 20.0000 129.83 
Std Err 0.0400 9.5200 45.82 
95% confidence interval 0.11 to 0.29 -1.54 to 41.54 26.18 to 233.48 
 

Most studies on substrate inhibition of microbial growth are 
performed using toxic substrates such as aromatic and 
halogenated hydrocarbons [26,27] and therefore it can be 
deduced that the growth rate at high concentrations will be 
heavily affected and the ordinary use of the Monod model will 
fail. There were other models for describing substrate inhibition 
kinetics developed during this period such as the discontinuous 
models of Wayman and Tseng [28]. The reason for the 
development of the discontinuous model is the previous models 
developed such as Haldane, Andrews and Noack, and Webb can 
describe the inhibitory effect on microbial growth but could not 
explain or adequately model for certain situations where the 
growth rate completely ceased or becoming zero at very high 
substrate concentration. However, the discontinuous fitting 
profile of the Wayman and Tseng model is a major drawback 
[29]. A continuous version of the above models developed by 
Luong has found popular support due to its close agreement to 
experimental data in many cases [7,8,30] including this one. The 
key feature of the Luong model is its ability to predict accurately 
the Sm value of the maximum concentration of substrates above 
which growth is completely inhibited.  
 
CONCLUSION 
 
Both growth and degradation kinetics of bacteria can be modelled 
using various models available in the literature. Literature survey 
has shown that for the same compound, various models have 
been found optimum in different systems and hence a 
comprehensive modelling exercise was carried out on available 
published works to demonstrate this observation. In this work, 
we demonstrated based on statistical analysis that the Haldane 
model is the best model in fitting the degradation kinetics data 
from Pseudomonas putida LY1. We predicted that many existing 
published models in the literature could be better modelled using 
the various kind of growth or degradation models available 
instead of the ubiquitous Haldane model for instance.  
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