Determination of Nutrients and Anti-Nutrients Contents of *Moringa oleifera* and *Arachis hypogaea*

Alhassan Ahmad Siddan1*, Salisu Maiwada Abubakar2,3, Aisha Muhammad Gadanya2, Fatima Umar Maigari1, AbdulRazaq Sani Yahaya2, Mariya Yarima4

1Department of Biochemistry, Faculty of Science, Gombe State University Gombe, P.M.B 127 Gombe- Nigeria.
2Department of Biochemistry, Bayero University Kano, PMB 3011, Kano – Nigeria.
3Africa Centre of Excellence in Population Health and Policy, Bayero University Kano, P.M. B. 3011, Kano – Nigeria.
4Kano State Senior Secondary Schools Management Board, Kano Municipal Zone, Kano-Nigeria.

*Corresponding author:
Alhassan Ahmad Siddan,
Department of Biochemistry,
Faculty of Science,
Gombe State University, P.M.B. 127,
Tudun wada Gombe, Gombe, State, Nigeria.
Phone Number: +2348032050616, +2348083880890
Email: alhassanahmadsiddan@gmail.com

INTRODUCTION

Moringa oleifera is plants which belong to the family of moringaceae and is a helpful remedy for malnutrition. It is sometimes called a miracle plants due to its numerous important in terms of nutrition and medicine. *M. oleifera* is most widely cultivated because of its adverse uses and vital nutrients. Almost all the parts of the tree are very useful [1]. It is an important tree in which the leaves have been reported to contain substantial amounts of vitamins, proteins, fiber and minerals [2] and also a good source of phytonutrients like carotenoids, tocopherols ascorbate [4,5]. It also consists of minerals such as calcium, potassium, zinc, magnesium, iron, and copper [5]. Vitamins such as beta-carotene of vitamin A, vitamin B like folate, nicotinic acid, and pyridoxine, vitamin C, D, and E are also present [6].

Phytochemicals such as tannins, sterols, terpenoids, flavonoids, saponins, anthraquinones, alkaloids and reducing sugars are also present [7]. Research shows that immature pods contain around 46.78% fiber and around 20.60% protein content. Pods have 30% of amino acid content; leaves have 44% and flower have 31% [8].

Groundnut (*Arachis hypogaea* L.) is a plant of the Fabaceae family, which is the second most important leguminous crop in the world after soybean that contains essential foods for human and livestock consumption and has a component of dietary protein in the absence of meat. The nut has a high nutritive value which is affordable and can be used in a variety of ways such as con factory products and in supplementary feeding programs such as in weaning food formulation in combination with other cereals and pulses in many developing countries.
There is a preparation of food that involves groundnut to improve the level of protein has helped in several ways to reduced malnutrition in many developing countries [9]. Nutritionally, the seeds of groundnut provide an extensive source of high quality of dietary protein, oil, niacin, fiber and rich in sources of minerals such as phosphorus, calcium, magnesium, potassium and manganese, and vitamins (E, K and B complexes) [10]. The seeds of groundnut are reported to contain 44-56% oil and 22-30% protein on a dry seed basis and also contain 9.5-19.0% total carbohydrates as both soluble and insoluble carbohydrates [11, 12, 13, 14, and 15]. They are also naturally free from trans fatty acids and sodium [10].

MATERIALS AND METHODS

Materials

The chemicals used throughout this work were of analytical grade and purity. The major equipment used was Atomic absorption spectrophotometer, Flame Photometer, Amino acid analyzer.

Samples collection and Identification

Moringa leaves, Groundnut seeds were obtained from Rimi main market, Kano State and carefully selected and labeled properly in polythene bags. The samples were taken to the botany unit of Bayero University Kano and identified as: Moringa oleifera (Zogale in Hausa) with BUK Herbarium Accession Number: BUKHAN 00011, and Arachis hypogaea (Gyada in Hausa) with BUK Herbarium Accession Number: BUKHAN 0405.

Proximate Composition

Proximate analysis was carried out according to the methods of the Association of Official Analytical Chemist [16].

Mineral Analysis

Mineral elements were extracted from the samples by wet digestion as described by AOAC, 1990. From the filtrate of the digested samples, Magnesium (Mg), Iron (Fe) and Copper (Cu) were determined using Atomic Absorption Spectrophotometer (BUCK Scientific 205 USA) while Sodium (Na), Potassium (K) and (Ca) were determined using Flame Photometer PFPT (JENWAY UK Model 8515).

Vitamins Analysis

The vitamin A (Retinol), Vitamin C (Ascorbic acid) and Vitamin E (Tocopherol) in the samples were determined by the official methods of the Association of Official Analytical Chemists [16].

Amino acid Analysis

The Amino Acid profile in the known sample was determined using methods described by Benitez [17]. The known sample was dried to constant weight, defatted, hydrolyzed, evaporated in a rotary evaporator and loaded into the Applied Biosystems PTH Amino Acid Analyzer.

Quantitative Phytochemical screening

An analytical method for the quantitative determination of tannin was according to Amadi et al. [18]; Ejikeme et al. [19]. The determination of alkaloids was according to Harborne, [20]. Flavonoid determination was by the method reported by Ejikeme et al. [19]; Boham and Kocipai, [21]. Saponin quantitative determination was carried out using the method reported by Ejikeme et al. [19]; Obadoni and Ochuko, [22]. The determination of Oxalate was carried out using the method reported by Ejikeme et al. [19] and Munro and Bassir, [23]. Glycoside’s quantitative determination of methodology used in this research is that by Amadi et al. [18] as reported by Ejikeme et al. [19].

Statistical Analysis

Each experimental analysis was done in triplicate. Data obtained from experiments were analyzed by U-ANOVA (Univariate Analysis of Variance) using GraphPad INSTAT statistics software. Significance was accepted at 0.05 level of probability (p < 0.05). The analysis was used to compare the proximate, elemental composition, vitamins, phytochemicals of the two samples.

RESULTS

The results of the proximate compositions of Moringa oleifera and Arachis hypogaea is presented in Table 1. The results revealed that M. oleifera has high amount of moisture, ash, protein and carbohydrate while A. hypogaea has highest amount of fat and caloric value. The results of the mineral elements and Vitamins contents of Moringa oleifera and Arachis hypogaea are presented in Table 2. The results showed that both the M. oleifera and A. hypogaea contain a relatively high amount of sodium, magnesium and potassium and a minute amount of calcium, iron and copper, and a significant amount of vitamin A, C and E. The results of amino acids compositions of Moringa oleifera and Arachis hypogaea is presented in Table 3.

The results revealed both the two samples contained all the essential and non-essential amino acids, some at low concentrations while some at higher concentrations. The results of the phytochemical constituents of Moringa oleifera and Arachis hypogaea is presented in Table 4. The results showed that alkaloids, phytate, oxalates were present at high concentration in M. oleifera while flavonoids, steroids and tannins were present at high concentration in A. hypogaea.

Table 1. Proximate Compositions of Moringa oleifera and Arachis hypogaea.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Moringa oleifera</th>
<th>Arachis hypogaea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moisture (%)</td>
<td>8.94±0.08 a</td>
<td>4.81±0.09 ab</td>
</tr>
<tr>
<td>Ash (%)</td>
<td>9.04±0.08 b</td>
<td>1.57±0.24 b</td>
</tr>
<tr>
<td>Crude Fibre (%)</td>
<td>9.14±0.08 c</td>
<td>2.50±0.20 b</td>
</tr>
<tr>
<td>Crude Fat (%)</td>
<td>2.11±0.18 a</td>
<td>37.30±0.40 ab</td>
</tr>
<tr>
<td>Protein (%)</td>
<td>23.88±0.18 a</td>
<td>21.10±0.7 b</td>
</tr>
<tr>
<td>Carbohydrates (%)</td>
<td>46.75±0.20 b</td>
<td>32.21±0.50 b</td>
</tr>
<tr>
<td>Energy (KcA/l)</td>
<td>301.51±0.36 a</td>
<td>610.24±0.67 b</td>
</tr>
</tbody>
</table>

Table 2. Minerals and Vitamins contents (mg/100g) of Moringa oleifera and Arachis hypogaea.

<table>
<thead>
<tr>
<th>Contents</th>
<th>Moringa oleifera</th>
<th>Arachis hypogaea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>8.60±0.37 a</td>
<td>6.58±0.45 ab</td>
</tr>
<tr>
<td>Magnesium</td>
<td>3.99±0.22 a</td>
<td>2.49±0.05 b</td>
</tr>
<tr>
<td>Potassium</td>
<td>6.56±0.28 c</td>
<td>5.74±0.38 c</td>
</tr>
<tr>
<td>Iron</td>
<td>0.75±0.21 d</td>
<td>0.96±0.14 c</td>
</tr>
<tr>
<td>Calcium</td>
<td>0.64±0.14 d</td>
<td>0.47±0.13 c</td>
</tr>
<tr>
<td>Copper</td>
<td>0.30±0.03 e</td>
<td>0.72±0.15 c</td>
</tr>
<tr>
<td>Vitamin A</td>
<td>73.21±0.38 bc</td>
<td>11.01±0.09 bc</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>52.82±0.19 c</td>
<td>16.05±0.65 c</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>16.94±0.18 c</td>
<td>15.00±0.99 c</td>
</tr>
</tbody>
</table>

All data expressed in triplicate as mean ± SEM, values with a different superscript in the same row are significantly different at p<0.05.
carbohydrates add to the bulk of the diets, they play a pivotal role as they provide energy to cells such as brain, muscles, and blood. There is also a significant difference \((p<0.05)\) in the caloric value of *Arachis hypogaea* and *M. oleifera*.

The results of the mineral composition of *M. oleifera* and *A. hypogaea* were presented in table 2. The result revealed that the amount of sodium \((mg/100g)\) in *M. oleifera* and *A. hypogaea* differ significantly at \(p<0.05\). Sodium is an important source of electrolytes within the body. There is also a significant difference \((p<0.05)\) in the amount of Magnesium in *M. oleifera* and *A. hypogaea*. Atasie et al. [26] reported a value for *A. hypogaea* similar to the present study. Magnesium is required in over 300 enzymes that use ATP and contribute to DNA and RNA synthesis during cell proliferation. The amount of Potassium \((mg/100g)\) in *M. oleifera* and *A. hypogaea* showed no significant difference \((p<0.05)\). Potassium is very important in the regulation of water, electrolyte and acid-base balance in the body as well as responsible for nerve and functioning of the muscles. The amount of Fe in the two samples showed significant difference \((p<0.05)\). Eshun et al. [27] reported a high amount of Fe for *A. hypogaea* than the present study. Iron plays an important role in immune function, cognitive development, temperature regulation, and energy metabolism. There is also no significant difference \((p<0.05)\) in the amount of calcium in the two samples. Eshun et al. [27] reported higher amount of calcium for *A. hypogaea* than the present study. Calcium is very essential in blood clotting, muscles contraction and certain enzymes in metabolic processes. The amount of copper in *M. oleifera* and *A. hypogaea* showed no significant difference \((p<0.05)\). Copper accelerate wound healing by increasing blood flow to the affected area and movement of oxygen around the body.

The results of the vitamin analysis in the samples (table 2) showed that the amount of vitamin A \((mg/100g)\) in *M. oleifera* and *A. hypogaea* differ significantly at \(p<0.05\). Vitamin A plays an important role in bone growth, tooth development, reproduction, cell division, gene expression and regulation of the immune system. There is also a significant difference \((p<0.05)\) in the amount of vitamin C in the samples. Vitamin C aids in wound healing, bone, and tooth growth, improving immune system function, increasing absorption and utilization of iron and acts as an antioxidant. The amounts of vitamin E in the samples showed no significant difference \((p<0.05)\) in *M. oleifera* and *A. hypogaea*. Vitamin E benefits the body by acting as an antioxidant and protecting vitamins A and C, red blood cells and essential fatty acids from destruction.

The result of the amino acid composition showed that the *M. oleifera* and *A. hypogaea* contained both the essential and non-essential amino acids; some were at higher concentrations while some at lower concentrations. *M. oleifera* contained highest amounts of glutamic acid, aspartic acid, leucine, while *A. hypogaea* contained a high amount of glutamic acid, aspartic acid, leucine. Other amino acids like tryptophan, cysteines were present at low concentration in *M. oleifera*. The amino acid plays a central role both as building blocks of protein and as intermediates in metabolism. The result of the phytochemical analysis is presented in table 4. Phytochemicals possess many properties that makes them vital to both plants and animals. Their examination in the samples revealed that they are a rich source of phytochemicals. The amount of saponin in *A. hypogaea* and *M. oleifera* showed a significant difference \((p<0.05)\). Saponins are effective in maintaining liver function, lowering blood cholesterol, preventing peptic ulcer, osteoporosis as well as platelet aggregation. There is also a significant difference \((p<0.05)\) in the amount of tannins in the samples. Tannins have
shown potential antiviral, antibacterial and antiparasitic effects. It was also reported that certain tannins are able to inhibit HIV replication selectivity and is also used as diuretic. The amounts of glycosides in *A. hypogaea* and *M. oleifera* significantly differ at p<0.05. A significant difference (p<0.05) was found in the amount of alkaloids in *M. oleifera* and *A. hypogaea*. Alkaloids have antimicrobial properties due to their ability to intercalate with DNA of the microorganisms. There is also a significant difference (p<0.05) in the amount of steroids in *Arachis hypogaea* and *M. oleifera*. Steroids increase protein synthesis, promoting the growth of muscles and bones. A significant difference (p<0.05) was found in the amount of flavonoids in *A. hypogaea* and *M. oleifera*.

Flavonoids have protective effects including anti-inflammatory, anti-oxidant, anti-viral, and anti-carcinogenic properties. Preliminary research indicates that flavonoids may modify allergens, viruses, and carcinogens, and so may be biological "response modifiers". There is a significant difference (p<0.05) in the amount of oxalates in the two samples. Oxalate function as chelating agents and may chelate many toxic metals such as mercury and lead. A significant difference (p<0.05) was found in the amount of phtyate in *M. oleifera* and *A. hypogaea*. Phytates are known to pose to leguminous seeds and also associated with increased cooking time in legumes.

CONCLUSION

In conclusion, *M. oleifera* leaves and *A. hypogaea* are multipurpose plants that could contribute immensely towards meeting the daily human nutritional requirement due to their significant amount of minerals, essential vitamins, proteins, lipids, essential and non-essential amino acids and a lot of phytochemicals required for proper functioning of the body system and when consumed in required amount may prevents or tackle the incidence severe acute malnourish in children under five especially in Northern parts of Nigeria as they are available and affordable all over the country.

ACKNOWLEDGEMENT

I acknowledge the support given to me by my supervisor and the Department of Biochemistry, Gombe State University-Nigeria to carry out this research work.

CONFLICTS OF INTERESTS

The authors declared that there is no conflict of interest regarding the publication of this paper.

REFERENCES