Emerging Soluble Protein Markers in Colorectal Cancer

Nor Adzimah Johdi1* and Rahman Jamal1

1UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia

*Corresponding author:
Dr. Nor Adzimah Johdi
UKM Medical Molecular Biology Institute,
Universiti Kebangsaan Malaysia,
Cheras, Kuala Lumpur, Malaysia.
Email: adzimah@ppukm.ukm.edu.my

INTRODUCTION

Colorectal carcinoma (CRC) is one of the commonest cancer worldwide with 746,000 cases (10%) reported in men and 614,000 cases (9.2%) in women worldwide [1]. Almost 55% of the cases occur in more developed regions but the number of incidents in the developing regions is increasing. Genetic (inherited or acquired) is known as the main risk factor in contributing factor to the CRC development and progression. However, other contributors such as evading immune response were also recognized as risk factors for cancer progression [2]. The immune system is believed to play a significant protective role in tumorigenesis [4–6]. One of the components of the immune system is the soluble proteins such as cytokines, chemokines and growth factors that support the network of immune function.

Cytokines, chemokines and growth factors are a group of small soluble proteins that have an important role in regulating the immune response. Under normal condition, their concentration in our biological fluids (serum or plasma) and tissues are usually below detectable range or very low. However, a significant increase in their concentration has been reported in many diseases including cancer [3, 4]. This suggests pathways activation which is related to inflammatory response or disease development. Although it has been previously underestimated, these proteins are suitable as a biomarker tool in the pathogenesis of diseases. In cancer, these proteins can be produced by the cancer cells themselves to support their own survival. Indeed, these soluble proteins have the potential as a screening tool, diagnosis classification between stages of cancer or surveillance for therapy [5].

In this review, we will discuss the findings from recent studies investigating the role of these soluble proteins in CRC through analysis of their expression patterns, the use of selective inhibitors and signaling pathways involved. This review might be useful for the development of a biomarker panel that is specific to CRC. The panel will be useful to support the standard clinical Immunoscore technique. In addition, the soluble proteins could be used as targets for drug design and allow discrimination of sera derived from CRC and chronic inflammation in early diagnosis.

Interleukin-6 (IL-6)

IL-6 is one of the well-studied cytokines in diseases including cancer. IL-6 directly promotes tumor cell proliferation, differentiation and survival through STAT3 activation and these contribute significantly to the pathogenesis of CRC (6-8). It is also involved in controlling the balance between pro-inflammatory T cell subsets such as Th1 or Th17 cells and immunosuppressive regulatory T cells. IL-6 can activate targets cells via two signaling pathways which are “classic signaling” [9, 10] or “trans-signaling” pathways [Fig. 1] [11, 12]. This will then lead to further activation of several other intracellular signaling pathways such as JAK/STAT [13, 14], ERK/MAPK [15, 16] and PI3K/AKT [17] signaling pathways. CRC cells, unlike the normal intestinal epithelial cells, do not express the
IL-6 receptor (IL-6R). Thus, it is believed that the tumor-promoting effects of IL-6 in CRC depend on trans-signaling, a signal via soluble forms of its receptor (sIL-6R) [11, 12]. This is supported by a study in murine CRC model where the proliferation of tumor cells and activation of STAT3 were due to secretion of IL-6 by lamina propria T cells and macrophages [18]. In intestinal epithelial cells, IL-6 supports the expression of one of the receptors for the pro-angiogenic vascular endothelial growth factor, VEGFR2 [18]. This enables autocrine/paracrine VEGF signaling in intestinal tumor cells and thus promotes tumor growth through STAT3 activation.

Few studies suggest that SOCS-1 protein works as a tumor suppressor of metastasis in human. This is due to the overexpression of SOCS-1 protein in human SW620 CRC cells reduced the morphological transformation, invasion and metastasis of these cells without affecting its proliferation, anchorage-independent growth or tumorigenesis [28]. SOCS-1 protein controls the metastatic progression in CRC by preventing the mesenchymal-epithelial transition (MET), including E-cadherin expression, enhancement of p53 tumor suppressor activity and blocking inflammation [29-32]. The SOCS1 gene is frequently silenced in cancers due to hypermethylation of its promoter resulting in significant suppression of SOCS-1 expression in tumors and correlation with lymph node metastasis and Tumor Node Metastasis (TNM) staging [33,34]. Reduced expression of SOCS-1, therefore, leads to development, progression, metastasis and poor overall survival rate among CRC patients.

On contrary, SOCSJ mRNA expression was significantly up-regulated only in CRC tumor stage II relative to normal tissues with no correlation between SOCSJ expression and overall survival [35]. The overexpression of SOCS-1 in CRC cells correlates with the cell growth enhancement, anchorage-independent growth and resistance to death stimuli. The knockdown experiment of SOCS-1 showed a reduction in these oncogenic features while overexpression of the gene promotes tumorigenesis [35]. This suggests that SOCS-1 may have a prooncogenic role in CRC cells rather than a tumor suppressor function. Overall, there are limited numbers of studies on the functional role of SOCS1 in CRC and whether it works as a tumor suppressor or as an oncogene, is still an area of debate.

Interleukin 8 (IL8) or chemokine ligand 8 (CXC8L)
One of the most significantly upregulated chemokines in CRC is interleukin 8 or CXCL8 and it has a significant value in CRC diagnostics [36]. IL-8 has multi-roles such as in tumor growth, invasion, proliferation, angiogenesis and migration through binding to the cell surface receptors, CXCR1/2 [37, 38]. Measurement of CRC patients-derived serum showed a significant increase in concentration (42.55 pg/ml) compared to CRC polyps and normal-derived serum (7.65 pg/ml and 13.84 pg/ml respectively) [39]. The expression of IL-8 has been associated with poor chemotherapeutic response [40, 41], thus a potential use of IL-8 as a clinical marker for chemoresistance. In the in vitro studies on 5-Fluorouracil chemoresistant subline colorectal cells, HCT 116 (HCT116/5FU) showed upregulation of IL-8 at the mRNA and protein level compared to parental HCT 116 cells [38]. The mRNA expression levels of IL-8 after 5-Fluorouracil (5-FU) treatment in both HCT116/FU and HCT116 cells were 4-fold and 3.7 fold higher respectively compared to the untreated cells. This indicates that 5-FU stimulated the expression of IL-8 and plays an important role in tumor growth and invasion. In addition, the IL-8 level was also significantly increased in doxorubicin (Dox)-resistant HCT-116 and SW480 CRC cell lines as compared with their
corresponding parental cells [42]. Targeted inhibition of IL-8 via siRNAs or its inhibitor (tumoreparixin) leads to increase Dox sensitivity in these cells and decrease the mRNA and protein expression of multidrug resistance 1 (MDR1, encoded by ABCB1) [42]. In the tumor microenvironment, hypoxia is a known condition involving the direct binding and transcriptional up-regulation of HIF-1α. However, hypoxia-induced IL-8 expression in CRC is mediated through down-regulation of dual specificity phosphatase-2 (DUSP2) expression and involved intermediate transcription factor (C/EBPα) [43]. This alternative pathway for hypoxia-induced in a tumor instead of the standard and binding of HIF-1α shows the complexity within the tumor microenvironment.

Transforming growth factor beta (TGF-β)

The role of TGF-β role in cancer progression can be both as a promoter and suppressor of metastasis. Generally, the TGF-β pathway is the most commonly mutated pathway in cancer and associated with the processes of angiogenesis, metastasis and epithelial-mesenchymal transition (EMT). Molecular chaperone Hsp90 is believed to play a role in regulating the TGF-β pathway. When both TGF-β1 and Hsp90β are present, they are able to stimulate anchorage-independent growth, reduce adhesion and stimulate migration in the colorectal cell line [44]. This occurs via an alternate TGF-β1 pathway which is mediated by αvβ6 as opposed to the canonical TGF-β1 pathway [44, 45]. TGFβ can also affect inflammation through the extent and composition of inflammatory cells present in tumors [46, 47]. This, however, is poorly understood and contradicting, although the colon tumors display intratumoral inflammation. An increase in inflammatory burden is often associated with epithelial loss of TGFβ signaling; however, overexpression of TGFβ1 is associated with increased inflammation [47]. Furthermore, epithelial truncation of TGFβ2 can lead to lethal inflammatory disease and invasive colon cancer as seen in mutant APC models of murine tumorigenesis which was mediated by IL-8 and TGFβ1 [47]. Thus, treating colon cancer patients with TGFβ inhibitors may not be a wise approach as it may result in a worse outcome by enhancing inflammatory responses. On the other hand, overexpression TGFβ1 could be controlled with lithium by inhibiting Smad3 phosphorylation via GSK3β inactivation [48]. Lithium could also inhibit lymphatic endothelial cell migration, which is increased upon TGFβ1 induce protein expression in tumor cells. Lithium was shown to prevent metastasis to the lungs, liver, and lymph nodes by inhibiting TGFBIp-induced tumor lymphangiogenesis [48].

IL-17

Interleukin-17 is a proinflammatory cytokine that contributes to the pathogenesis of inflammatory and auto-immune diseases [49]. It is also highly associated with cancer progression and resistance to anti-VEGF treatment [50]. IL-17 is mainly produced by CD4+ Th helper 17 cells (Th17 cells) [51]. However, it is also secreted by other immune cell types including lymphocytes NKT-17, γδT-17, CD8+ Tc17, polymorphonuclear neutrophils and intestinal Paneth cells [52, 53]. The IL-17 family of cytokines is comprised of IL-17A-F (Table 1), which bind to IL-17 receptors (IL-17R) A–E [52, 54]. While most studies focused on IL-17A, new findings are reported with the other subtypes of IL-17. During spontaneous colorectal tumorigenesis, the expression of IL-17A is increased in CDX2-promoter regulated Cre (CPC)-APC mouse model [55]. IL-17A also promotes the invasion of CRC cells by activating the PI3K/AKT/NF-κB signaling pathway and subsequently upregulating the expression of MMP-2/9 [56]. Thus, IL-17A seems to have a pro-tumorigenic effect. By blocking IL-17A at tumor sites, tumor growth was suppressed through angiogenesis inhibition as well as cytotoxic T lymphocytes activation at tumor sites [57].

Table 1. Interleukin-17 subtypes and their expression level in CRC.

<table>
<thead>
<tr>
<th>Interleukin subtype</th>
<th>Expression in CRC</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>increased</td>
<td>[44, 45]</td>
</tr>
<tr>
<td>B</td>
<td>increased</td>
<td>[47]</td>
</tr>
<tr>
<td>C</td>
<td>various expression</td>
<td>[47]</td>
</tr>
<tr>
<td>D</td>
<td>differentiation grade</td>
<td>no report</td>
</tr>
<tr>
<td>E</td>
<td>unchanged</td>
<td>[47]</td>
</tr>
<tr>
<td>F</td>
<td>decreased</td>
<td>[47]</td>
</tr>
</tbody>
</table>

Looking at the other IL-17 subtypes in CRC samples, IL-17B showed strong expression in the epithelial and stromal compartments, IL-17C showed various expression depending on the grade of differentiation while IL-17E expression remained even [58]. In contrast, decreased in IL-17F expression was seen in CRC compared to healthy controls. As for the receptors for IL-17, the colon epithelial cells were stained positive for IL-17RA, IL-17RB, and IL-17RC in both CRC and healthy controls. The distinct expression patterns for IL-17 suggest a differential role exerted by each member of this cytokine in colon carcinogenesis. This could be the reason for the conflicting results reported in previous studies. Most of the studies focus on the detection of IL-17 in general without taking into account the subclassifications of the IL-17 groups.

CONCLUSION

Taken together, the significant expression level of IL-6, SOC-1, IL-8, TGF-β and IL-17 in CRC patients suggest their involvement in the pathogenesis of cancer. Collectively, these cytokines are the key soluble proteins in promoting tumorigenesis, including resistance to apoptosis, abnormal growth and proliferation, angiogenesis and metastasis. These soluble proteins are useful as a biomarker in broad-spectrum tool for screening, diagnosis classification between stages of disease or surveillance for therapy. Not only it can be used in primary tumors but also within the metastatic niche that is critical for patients’ prognostication.

ACKNOWLEDGEMENT

This review is funded by the Ministry of Education, Malaysia FRGS/1/2017/SKK08/UKM/03/2.

REFERENCES


