
Che Engku Noramalina Che-Engku-Chik1, Nor Azah Yusof1,2, Jaafar Abdullah1, Siti Sarah Othman3, Helmi Wasoh1,*

1Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43300 Serdang, Selangor Darul Ehsan, Malaysia.

2Institute of Advanced Technology, Universiti Putra Malaysia, 43300 Serdang, Selangor Darul Ehsan, Malaysia.

3Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, 43300 Serdang, Selangor Darul Ehsan, Malaysia.

*Corresponding author: Helmi Wasoh
Department of Bioprocess Technology,
Faculty of Biotechnology and Biomolecular Science,
Universiti Putra Malaysia,
43300 Serdang,
Selangor Darul Ehsan,
Malaysia
Email: helmi_wmi@upm.edu.my

INTRODUCTION

The Field emission scanning electron microscopy (FE-SEM) is a magnification tool that utilized focused beams of electrons to generate a high resolution, three-dimensional images that provide information on topography and morphology of various surface modified SPCE [1]. Energy Dispersive X-Ray (EDX) spectroscopy is a powerful tool used in an elemental analysis. An x-ray beam from the spectrometer was focused on the working electrode of the modified SPCEs [2]. The excitation of an electron from inner shell of the sample is replaced by electron from outer shell; subsequently, give out a difference in energy between the two shells in the form of characteristics x-rays. The characteristics of the X-rays can be analyzed and the element associated identified [3]. The modified SPCEs show different set of peaks depending on the element present on its surface. Screen printed carbon electrodes (SPCEs) appeared in the 1990s and has attracted a considerable attention for biosensor application. Its production by screen printing technology offer massive benefit attributes over traditional electrode due to their reproducibility in production and repeatability in measurement along with low cost for marketing [4,5]. Fe$_3$O$_4$ have been previously reported in many literatures for their potential in sensor, medical and clinical diagnostic [6–8].

[6–8]. Since Fe$_3$O$_4$ is highly hydrophobic, hydrophilic surface modification can be done by its covalent bond and physical adsorption of biocompatible polymer to its surface [9]. The surface modification of NCC was previously reported by using surfactant. One the study was found to stabilize nanoparticles by surface modification of Cetyl trimethyl ammonium bromide (CTAB) to assist in the DNA sensing capability. The product of nanocomposites compound was drop-casted on screen printed carbon electrode (SPCE). Characterization by field emission scanning electron microscope (FESEM) and energy dispersive X-Ray (EDX) spectroscopy showing that carboxyl functionalized iron oxide (COOH-Fe$_3$O$_4$) can be hybridized with NCC-CTA$^+$ via electrostatic interaction.

KEYWORDS
biosensor
DNA
nanocomposite
nanocellulose crystalline
screen printed carbon electrode

ABSTRACT

A novel DNA biosensing platform was designed by the functionalization of iron oxide (Fe$_3$O$_4$) with the carboxylic group via capping agent, mercaptopropionic acid (MPA) and conjugated with nanocellulose crystalline (NCC) surface modified with surfactant cetyltrimethylammonium bromide (CTAB) to assist in the DNA sensing capability. The product of nanocomposites compound was drop-casted on screen printed carbon electrode (SPCE). Characterization by field emission scanning electron microscope (FESEM) and energy dispersive X-Ray (EDX) spectroscopy showing that carboxyl functionalized iron oxide (COOH-Fe$_3$O$_4$) can be hybridized with NCC-CTA$^+$ via electrostatic interaction.
hybridization work in different affinities for ssDNA and dsDNA. There are four modes of interaction reported, which is interaction involving electrostatic interaction with the negative sugar phosphates structure, interaction of planar aromatic ring systems, preferential binding with guanine bases and groove binding [11].

MATERIALS AND METHODS

Field emission scanning electron microscope (FESEM) The morphological studies of modified SPCEs were carried out using Nova NanoSEM 230. Prior to analysis, modified SPCEs were mounted on sample holder using carbon adhesive and coated with gold ensuring good conducting material for easing the flow of the incident electrons to the samples [1].

Energy dispersive X-ray (EDX) spectroscopy Nova NanoSEM 230 was used in combination with EDX Spectrometers. The same procedure as FE-SEM was used [2].

RESULTS AND DISCUSSION

FESEM image reveals the images of prepared Fe3O4, COOH-Fe3O4, NCC/CTAB, and COOH-Fe3O4/NCC/CTAB through drop casting on screen printed carbon electrode (SPCE). Fig. 1 shows the image of FESEM for (A) bare SPCE (B) SPCE/Fe3O4, (C) SPCE/COOH-Fe3O4, (D) SPCE/NCC, (E) SPCE/NCC/CTAB, and (F) COOH-Fe3O4/NCC/CTAB

Fig. 1A shows the image of bare SPCE with a globular shape as previously reported by [12,13] and Fig. 1B shows a quite spherical shape of Fe3O4 close to the FESEM image reported elsewhere [14]. Fe3O4 functionalized COOH (Fig. 1C) shows a changing morphology with a cylindrical shape compared to unfunctionalized Fe3O4 as observed from the previous study [15–17]. These results proved that the deposition of Fe3O4 capped with MPA (COOH-Fe3O4) can be obtained for SPCE modification.

Fig. 1D shows the image of SPCE/NCC with a rod-like nanocrystal which is in a good agreement with the image previously reported [18,19]. On the other hand, Fig. 1E shows the image of randomly oriented whisker NCC-CTA+. This similar image had also been reported by [20,21]. Fig. 1F concluded that the compound of COOH-Fe3O4/NCC-CTA+ can be deposited on working surface of SPCE. This image indicates that the deposition of COOH-Fe3O4/NCC-CTA+ on SPCE surface was succeed and supported by the EDX spectra result (Fig. 2) which confirm the present of Fe, S, C, Br and O.

![Fig. 1. FESEM of (A) bare SPCE (B) SPCE/Fe3O4 (C) SPCE/COOH-Fe3O4, (D) SPCE/NCC, (E) SPCE/NCC-CTA+, and (F) COOH-Fe3O4/NCC-CTA+](image)

![Fig. 2. The EDX spectra of SPCE/COOH-Fe3O4/NCC-CTA+](image)

The physical characterization of FESEM and EDX proved the morphology changing and element contents present indicates the successful of nanocomposites (COOH-Fe3O4/NCC-CTA+) material deposition on SPCE.

CONFLICT OF INTEREST

The author declares that there is no conflict of interest.

ACKNOWLEDGEMENT

The authors are grateful for the financial support provided by Ministry of Education of Malaysia through Universiti Putra Malaysia under Science fund [grant number 5450782] and Inisiatif Putra Berkumpulan (IPB) [grant number 9412700] grants.

REFERENCES

<table>
<thead>
<tr>
<th>Element</th>
<th>Weight%</th>
<th>Atomic%</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>37.16</td>
<td>50.63</td>
</tr>
<tr>
<td>K</td>
<td>15.05</td>
<td>43.89</td>
</tr>
<tr>
<td>Br</td>
<td>1.21</td>
<td>5.85</td>
</tr>
<tr>
<td>S</td>
<td>2.00</td>
<td>1.21</td>
</tr>
<tr>
<td>Fe</td>
<td>29.58</td>
<td>9.36</td>
</tr>
<tr>
<td>Total</td>
<td>100.00</td>
<td></td>
</tr>
</tbody>
</table>

Totals

Weight%

Atomic%

15. Hosseini F, Seyedsadjadi M, Farhadyar N, Fe 3 O 4 Nanoparticles Modified with APTES as the Carrier for (+) - (S) -2- (6- methoxynaphthalen-2-yl) Propanoic Acid (Naproxen) and (RS) 2- (3-benzoylphenyl) -proionic Acid (Ketoprofen) Drug. Orient J Chem. 2014;30:1609–18.

