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INTRODUCTION 

 

Plants as a result of stresses, produce disorganized cell masses, 

for example, tumors or callus upon pathogen infections or 

injury. The phrase “callus” emanates from the Latin word 

callum, meaning hard, and in medicine, it means dermal tissue 

thickening [1,2]. These days, unorganized cell masses are 

jointly known as callus, and the same word is utilized more 

generally. Callus can be made from just one differentiated cell, 

and many callus cells really are totipotent, which means they 

are able to bring about whole plant regeneration [3–5]. Under 

particular circumstances, callus cultures can go through a 

process in which embryos are produced by adult somatic cells 

or a process more commonly known as somatic embryogenesis 

[3]. An immediate use of callus is micropropagation where 

stock plant materials are multiplied to produce progeny plants in 

large numbers using modern methods of plant tissue culture. 

Micropropagation is used to multiply plants that have been bred 

through conventional plant breeding methods or genetically 

modified, plants from a seedless stock plant and plants that are 

not easily vegetatively produced. Other uses of callus include 

the production of medicinally important compounds, bioactive 

plant metabolites or vaccines and useful proteins in 

biadiognostics or other applications [6–12].  

 

Callus growth, like bacterial growth, is a linked process that 

displays unique phases where the specific growth rate, which 

initially has a value of zero producing a lag time (λ) then 

accelerates in a certain time period to a maximal value. The 

growth curves also include a final phase where an asymptote 

(A) is achieved where the rate gets to zero. Eventually, callus 

growth reaches a stage where the cells started to die and 

entering the death phase. The overall profile of the growth rate 

appears sigmoidal curve [13]. One of the most important 

parameters of the growth curve is µmax (or µm). In biological 

systems, this value is used to develop secondary models such as 

the effects of product, pH, temperature, substrate on the growth 

rate of the organism. The  µmax    or µm is usually given by the 

slope of the line at the exponential phase [14]. The most popular 

method for estimating this value is through conversion of the 

exponential phase of a linearized form usually via transforming 

the y values into logarithm or natural logarithm and then 
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 ABSTRACT 

One of the most important preliminary investigation of callus attributes is the growth 

characteristics. Most often than not, callus growth curve is sigmoidal in characteristics. In this 

work, we model callus growth from the seedling of Jatropha curcas L. according to the 

modified Gompertz model from published literature to acquire essential growth constants. 

These growth constants can be obtained with better precision using model such as the modified 

Gompertz. Parameters obtained from the fitting exercise were maximum callus growth rate 

(µm), lag time (λ) and maximal callus production (Ymax) of 0.193 d-1, 2.91 days and 0.38 g 

callus/25 mL culture, respectively. Growth parameter constants extracted from the modelling 

exercise will be helpful for additional secondary modelling implicating the consequence of 

media conditions as well as other factors on the growth of callus from this plant. 
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determining the slope of this curve using linear regression. A 

better method, but often neglected, is to model all of the set of 

data with non-linear regression growth model and then getting 

the values of µmax, λ, and A from the model [15]. 

 
The modified Gompertz model is one of the classical growth 

models that include model such as the Verhulst [13,16]. The 

Gompertz function, named in 1844-1845 by Pierre François 

Verhulstis, is based on an exponential relationship between 

specific growth rate and population density (Eqn X). The initial 

stage of growth is approximately exponential; then, as 

saturation begins, the growth slows, and at maturity, growth 

stops. Gibson et al. [17] were the first to use the Gompertz 

equation to fit microbial growth curves and the equation was 

successfully used to describe the exponential and stationary 

phases of the microbial growth curves that are sigmoidal. 

However, the model was not adequate to describe the lag phase. 

The model was modified by Gibson et al. [17] to incorporate the 

lag phase, and have been successfully used in modelling many 

microbial growth curves to the point where its dominance in 

mathematically modelling bacterial growth and product 

formation curves  have been acknowledged [13,15,18].  

 

The asymmetrical sigmoidal shape of the modified 

Gompertz represents and may offer greater flexibility than the 

logistic. Sigmoidal models such as the logistic and Gompertz 

differ chiefly at the point of inflection between the lower and 

the upper asymptotes with the logistics and Gompertz models 

having the distance of 1/2 and 1/e between the lower and the 

upper asymptotes, respectively [18]. In an essence, other growth 

models provide flexible slope function and variable point of 

inflection between the lower and upper asymptotes. These 

functions are either special or simpler cases of a parent growth 

model. For instance, the Richard model incorporates the 

logistics, Gompertz or von Bertalanffy growth models 

[13,17,18]. The model has its drawbacks and is not perfect with 

several main issues. Firstly, in the static version, y(t=0) is not 

equal to yo. Secondly, an inflection point is the intrinsic 

property of the sigmoidal curve causing the model to have a 

systematic problem in describing the exponential phase 

(Baranyi et al., 1993). Finally, the model tends to over-estimates 

its parameter values [19–21]. Despite this, the modified 

Gompertz model has been extensively used to model the growth 

of bacteria and bacterial secondary products production such as 

biohydrogen, methane, lactic acid, biofuel and bacterioricin to 

name a few  [22–26] including callus growth [27–29]. 

 

Modelling of the growth curves can yield important 

parameters that can be used for further optimisation works for 

callus such as determination of specific growth rate, lag period 

and maximum callus formation. In this study, the callus cultures 

from the seedling of Jatropha curcas L. was modelled 

according to the modified Gompertz model. 

 

MATERIALS AND METHODS 

 

Acquisition of Data 

In order to process the data, graphs were scanned and 

electronically processed using WebPlotDigitizer 2.5 [30]. The 

software helps to digitize scanned plots into a table of data with 

good enough precision [31]. Data were acquired from a 

published work where callus cultures initiation was carried out 

from the leaf and hypocotyl explants of the seedling of Jatropha 

curcas L. [32] from Figure 1 and then replotted (Fig. 1).  

 

 

 

Fitting of the data 

To find out regardless of whether there is a statistically 

substantial distinction between models with many numbers of 

parameters, according to the quality of fit, data was statistically 

examined by the coefficient of determination (R2). 

 

The modified Gompertz model (Eqn. 1) is expressed as 

follows: 
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A= Callus growth lower asymptote; 

µm= maximum specific callus growth rate; 

λ=lag time 

ymax= Callus upper asymptote; 
e = exponent (2.718281828) 

t = sampling time 
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Fig. 1. Refitting of the callus growth curve of Jatropha curcas L. 

 

RESULTS AND DISCUSSION 

 

The callus production from this plant was sigmoidal in shape 

with a lag phase (Fig.1). The callus production over time profile 

was fitted to the modified Gompertz model. The resultant fitting 

shows visually acceptable fitting with an adjusted coefficient of 

determination (R2) of 0.99 indicating good fitting (Fig. 2). 

Parameters obtained from the fitting exercise were maximum 

callus growth rate (µm), lag time (λ) and maximal callus 

production (Ymax) of 0.193 d-1, 2.91 days and 0.38 g callus/25 

mL culture, respectively (Table 1). 

 
Table 1. Callus production coefficients of Jatropha curcas L. fitted to 

the modified Gompertz model.  

 

 
Constants Values (95% confidence 

interval) 

Asymptote (callus g/25 mL culture) 0.38 (0.37 to 0.40) 

µm (h-1) 0.193 (0.178 to 0.208) 

lag (days) 2.91 (2.267 to 3.554) 
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Fig 2. Callus production of Jatropha curcas L. fitted to the modified 

Gompertz model.  

 

The study carried out here attempt to optimize callus 

formation using mathematical model as callus growth has not 

been modelled properly using any primary growth models. 

Other growth models that are available including Baranyi-

Roberts [31,33] and Logistic, modified Gompertz [28,28,34–

36,36–38], Richards, Schnute [13,39], Von Bertalanffy [40,41], 

Buchanan three-phase [42–48] and more recently the Huang 

model [49]. The use of other growth models need to be 

statistically weighed in against the modified Gompertz model in 

the future [28,50], and this is currently being carried out. 

Despite this, the modified Gompertz model is the most popular 

model as it is the simplest (having three parameters) and allows 

comparison with published results to be carried out. It is 

anticipated that many more works on plant secondary products 

utilizing plant’s callus and tissue culture [1–3,7,8,51–56] can 

benefit from this work. 

 

Parameters obtained from the fitting exercise would be later 

used for further secondary modelling. These mechanistic 

models are aimed to reach a better understanding of the 

chemical, physical, and biological processes. Compared to 

empirical model, mechanistic models including the modified 

Gompertz are more powerful since they tell you about the 

underlying mechanism or processes that drive the change in 

growth rates observed [57]. 

 

CONCLUSION 

 

In conclusion, the callus growth profile has been successfully 

modelled using the modified Gompertz model. Parameters 

obtained from the fitting exercise were maximum callus growth 

rate (µm), lag time (λ) and maximal callus production (Ymax) of 

0.193 d-1, 2.91 days and 0.38 g callus/25 mL culture, 

respectively. The use of the modified Gompertz growth model 

to obtain useful growth constants is novel for this plant.  
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