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INTRODUCTION 

 

Ficus deltoidea (or commonly known as mistletoe fig) is an 

important component of medicinal herb repertoire in Asia [1]. 

The herbs can be processed into herbal tea. In Malaysia, it is 

locally known as ‘Emas Cotek’ or ‘sempit-sempit’, and based 

on anecdotal evidences are beneficial for the women 

reproductive system, improving blood circulation and for 

rejuvenation [2]. Its juice on the other hand has been touted as a 

remedy for gout, hypertension and diabetes as well as reducing 

cholesterol and toxins in the body [3]. Several studies have been 

carried out to characterize important secondary metabolites 

using callus and cell suspension from this plant [4–9].  

 

Generally speaking, cell suspension growth, is a connected 

process that demonstrates unique stages where the specific 

growth rate, which in the beginning has a value of zero 

producing a lag time (λ) then accelerates in a certain time 

period to a maximal value. The final phase of the growth curve 

includes a final phase where the rate gets to zero, and an 

asymptote (A) is reached. Eventually, cells growth reaches a 

stage where the cells started to die and entering the death phase.  

 

The overall profile of the growth rate appears sigmoidal 

curve [10]. One of the most important parameters of the growth 

curve is µmax (or µm). In biological systems, this value is used to 

develop secondary models such as the effects of product, pH, 

temperature, substrate on growth rate of the organism. The  µmax   

 or µm is usually given by the slope of the line at the exponential 

phase [11]. The most popular method in estimating this value is 

through conversion of the exponential phase to a linearized 

form usually via transforming the y values into logarithm or 

natural logarithm and then determining the slope of this curve 

using linear regression. A better method, but often neglected, is 
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 ABSTRACT 

The mistletoe fig (Ficus deltoidea) is frequently found in several areas of the world, and 

primarily functions as houseplant or an ornamental shrub. The plant is discovered indigenous 

generally in Asia tropical region for example Indonesia, Philippines, Malaysia, and Thailand. 

Scientific studies on the effect of plant growth regulators on cells production from this plant are 

vital as optimization of cells production may result in effective production of secondary 

products characterization and output. The growth of cell suspension cultures from this plant 

shows sigmoidal property. In this work, we model the effect of the plant growth regulator 2,4-

dichlorophenoxyacetic acid (2,4-D) on the growth kinetics of the cells from this plant according 

to the modified Gompertz model. The coefficient of determination showed good agreement 

between experimental and predicted data with values ranging from 0.97-0.98. The results 

showed that 2,4-D at 2 mg/L was optimal for achieving the highest cells growth rate. It is 

anticipated that the growth parameter constants extracted from the modelling exercise will be 

helpful in the future for additional secondary modelling on the effect of media conditions as 

well as other factors on cells growth. 
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to model all of the set of data with nonlinear regression growth 

model and then getting the values of µmax, λ, and A from the 

model [12]. The modified Gompertz model is one of the 

classical growth models that include model such as the Verhulst 

[10,13]. The Gompertz function, was named in 1844 by Pierre 

François Verhulstis, is founded on an exponential connection 

between specific growth rate and population density. The initial 

stage of growth is roughly exponential; then, as saturation 

commences, the growth slows down, and at maturity, growth 

ceases.  

 

Gibson et al. [14] were the first person to use the Gompertz 

equation to suit microbial growth curves, and the equation was 

used successfully to explain the exponential and stationary 

phases of the microbial growth curves which is sigmoidal. 

Nevertheless, the model was not satisfactory to explain the lag 

phase. The model was altered to feature the lag phase, and have 

been proven to work in modelling many microbial growth 

curves so much that its popularity in mathematically modelling 

bacterial growth and product formation curves  have been 

recognized [10,12,15].  

 

It is anticipated that modelling of the growth curves will 

yield important growth parameters that can be used for further 

optimisation works for cells such as determination of specific 

growth rate, lag period and maximum cells production. In this 

study, the effect of the plant growth regulator, 2,4-D on the 

growth of the cell suspension cultures from the leaf explants of 

Ficus deltoidea was successfully modelled according to the 

modified Gompertz model. 

 
MATERIALS AND METHODS 

 

Data acquisition 

Data were obtained from our previously published work where 

cell suspension culture was initiated from the female leaf 

explants [3] from Figure 4 and then replotted (Fig. 1).  
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Fig. 1. Effect 1 (�), 2 (�) and 3 (�) mg/L of 2,4-D on growth of cell 

suspension of Ficus deltoidea. 

 

 

 

Fitting of the data 

To find out regardless of whether there is a statistically 

substantial distinction between models with many amount of 

parameters, according to the quality of fit, data was statistically 

examined by the coefficient of determination (R2). 

 

The modified Gompertz model (Eqn. 1) is expressed as 

follows: 
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A= Callus growth lower asymptote; 

µm= maximum specific callus growth rate; 

λ=lag time 
ymax= Callus upper asymptote; 

e = exponent (2.718281828) 

t = sampling time 

 

 

RESULTS AND DISCUSSION 

 

Plants because of stresses, generate unorganized cell masses, for 

instance tumors or callus upon pathogen infections or injury. 

The word “callus” hails from the Latin word callum, which 

means hard, and in medicine it means dermal tissue thickening 

[16,17]. These days, unorganized cell masses are jointly known 

as callus, and the same word is utilized more generally. Callus 

can be made from just one differentiated cell, and many callus 

cells really are totipotent, which means they are able to bring 

about whole plant regeneration [18,19]. Callus, particularly 

friable callus is an important initial source in establishing a fine 

cell suspension culture. 

 

The cells production from this plant was weakly sigmoidal 

in shape with a near absence of a lag phase (Fig. 1). The cells 

production over time profile was fitted to the modified 

Gompertz model. The coefficient of determination showed good 

agreement between experimental and predicted data with values 

ranging from 0.97-0.98 (Fig. 2).  

 

 

 

0.4

0.9

1.4

1.9

0 3 6 9 12

Days

L
n

 P
C

V
 (

m
L

)

 
Fig. 2. The effect of 1 (�), 2 (�) and 3 (�) mg/L of 2,4-D on the 

production of cell suspension culture of Ficus deltoidea fitted to the 

modified Gompertz model.  

 

 

Parameters obtained from the fitting exercise were 

maximum cell growth rate (µm), lag time (λ) and maximal cell 

production (Ymax). The results showed that 2,4-D at 2 mg/L was 
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optimal for giving the highest cell growth rate (Table 1); a 

similar conclusion reached in the original study based on visual 

observation [2]. Another observation was the absence of lag 

period. 
 

Table 1. Callus production coefficients from the effect of plant growth 
regulator, 2,4-D on growth of cell suspension of Ficus deltoidea fitted 

to the modified Gompertz model. Values include 95% confidence 

interval. 

 

 
Constants 2,4-D (mg/L) 

 1.0 2.0 3.0 

Asymptote (PCV 

(mL)) 

4.99 

(0.10-241.77) 

4.48 

(0.64-31.50) 

6.82 

(2.66-17.50) 

µm (d-1) 0.13 

(-1.07-1.31) 

0.18 

(-0.47-0.83) 

0.14 

(0.08-0.20) 

lag (days) -7.99 

(wide) 

-1.65 

(wide) 

-1.57 

(wide) 

 

 

Literature search showed that cell growth has not been 

modelled properly using any primary growth models. The study 

carried out here attempts to optimize cell suspension culture 

using mathematical model. Other growth models that are 

available including Baranyi-Roberts [20,21] and Logistic, 

modified Gompertz [22–24,24,25,25–27], Richards, Schnute 

[10,28], Von Bertalanffy [29,30], Buchanan three-phase [31–

37] and more recently the Huang model [38].  

 

The use of other growth models need to be statistically 

weighed in against the modified Gompertz model in the future 

[24,39], and this is currently being carried out. Despite this, the 

modified Gompertz model is the most popular model as it is the 

simplest (having three parameters) and allows comparison with 

published results to be carried out. It is anticipated that many 

more works on plant secondary products utilizing plant’s callus 

and tissue culture [5,6,16–18,40–45] can benefit from this work. 

 

Compared to the logistic model, which have been used to 

model plant or plant’s callus growth [46–48], the asymmetrical 

sigmoidal shape of the modified Gompertz offers greater 

flexibility than the logistic. Sigmoidal models such as the 

logistic and Gompertz differ chiefly at the point of inflection 

between the lower and the upper asymptotes with the logistics 

and Gompertz models having the distance of 1/2 and 1/e 

between the lower and the upper asymptotes, respectively [15]. 

In an essence, other growth models provide flexible slope 

function and variable point of inflection between the lower and 

upper asymptotes. These functions are either special or simpler 

cases of a parent growth model. For instance the Richard model 

incorporates the logistics, Gompertz or von Bertalanffy growth 

models [10,14,15].  

 

The model has its drawbacks and is not perfect with several 

main issues. Firstly, in the static version, y(t=0) is not equal to yo. 

Secondly, an inflection point is the intrinsic property of the 

sigmoidal curve causing the model to have a systematic 

problem in describing the exponential phase (Baranyi et al., 

1993). Finally, the model tend to over-estimates its parameter 

values [49–51]. Despite this, the modified Gompertz model has 

been extensively used to model the growth of bacteria and 

bacterial secondary products production such as biohydrogen, 

methane, lactic acid, biofuel and bacterioricin to name a few  

[52–56] including callus growth [24,57,58]. 

 

Parameters extracted from the fitting exercise will be later 

employed for further secondary modelling. These mechanistic 

models are targeted to achieve a better knowledge of the 

chemical, physical, and biological processes governing callus 

and cells growth. In comparison to empirical model, 

mechanistic models for example the modified Gompertz tend to 

be more powerful since they tell you about the actual 

mechanism or processes that drives the alteration in growth 

rates observed [59]. 

 

CONCLUSION 

 

In conclusion, the effect of the plant growth regulator, 2,4-D on 

the cell suspension growth profile has been successfully 

modelled using the modified Gompertz model. Parameters 

obtained from the fitting exercise were maximum callus growth 

rate (µm), lag time (λ) and maximal callus production (Ymax) of 

0.193 d-1, 2.91 days and 0.38 g cells/25 mL culture, 

respectively. The use of the modified Gompertz growth model 

to obtain useful growth constants is novel for this plant.  
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