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INTRODUCTION 
 
Water, a colorless, odorless liquid composed of hydrogen and 
oxygen, dissolves many different compounds. All forms of life, 
including the production of food and progress, depend on water 
[1]. Sustainable development in each human group is dependent 
on a steady supply of water. SDG 6 calls for all countries to 
ensure their citizens have ready access to clean water by 2030 
[1]. Unfortunately, over a billion people across the globe cannot 
access potable water [2]. Previous studies have revealed that 
close to a million people in developing countries die yearly due 
to consumption of polluted water, with a higher percentage 
recorded among children. These estimated values are expected to 
rise in the coming years due to increasing natural disasters and 
continuous anthropogenic activities of humans [2,3].  
Urbanization and industrialization are reported as being the 
major contributors to water contamination [4,5]. Due to industrial 

operations that have brought pollutants into the environment over 
the years, pollution of the drinking water sources is now creating 
a severe concern across the nation in a developing country like 
Nigeria. Human health and ecosystems are negatively impacted 
by the untreated discharge of about 80% of global industrial and 
municipal wastewater. This percentage is higher in developing 
countries because of inadequate sanitation and wastewater 
treatment [5]. The populace is susceptible to water-related 
diseases, including cholera, typhoid, hepatitis A, diarrhea, and 
dysentery, as a result of inadequate sanitation systems and water 
pollution [6]. 

 
Heavy metal contamination can adversely impact the 

physical, chemical, and biological properties of water, posing a 
significant concern to consumers. Heavy metals typically enter 
the environment as a result of industrial processes, agricultural 
practices, and various human activities that negatively impact the 
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 Abstract 
Despite the free access to and consumption of quality drinking water, which is essential for human 
well-being, both natural occurrences and anthropogenic activities worldwide have significantly 
compromised the quality of drinking water, thereby reducing its availability and safety. This study 
examined the pollution levels in drinking water and the associated health risks in selected 
communities of Ondo State, Nigeria. One hundred water samples were obtained from drinking water 
sources in ten selected riverine communities in Ondo South. The evaluation of physicochemical 
parameters, toxic metals, and microbial load was conducted in accordance with APHA, USEPA 
IRIS, and WHO guidelines. The results indicated that concentrations of toxic metals and 
physicochemical parameters exceeded the permissible limits set by WHO and USEPA IRIS. Gram 
staining and IMViC tests verified the presence of fecal coliforms, indicating fecal contamination 
against the WHO standards. Chronic Daily Intake (CDI) ranks as follows: Babies > Children > 
Adults, whereas the cancer risk hierarchy is As > Cd > Cr. The Hazard Quotient is in the order Pb 
> As > Cr > Cd, significantly surpassing the permissible limit of less than 1. The analysis concludes 
that drinking water in the study areas presents a risk for diseases such as diarrhea, cholera, and 
cancer. The elevated water pollution in these study areas results from the presence of chemicals, 
specifically heavy metals, and microbial contaminants originating from household waste.  
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ecosystem [7,8]. Heavy metals promote a variety of enzymatic 
and metabolic processes in living things when they are present in 
drinking water below safe limits. However, when their 
concentrations are beyond the maximum contamination levels, 
they become hazardous. According to reports, toxic metals like 
lead and mercury can cause significant harm to the body by 
building complexes with metabolic enzymes and interfering with 
their physiological pathways [9-11].   
 

Since the discovery of oil in the 1960s, Nigeria has relied 
heavily on the proceeds from the export of crude oil and 
processed products to earn foreign currency. Despite its huge 
impact on the national economy, oil spills occur often during the 
extraction and transportation process, causing water pollution 
and consequently affecting edible water bodies and agricultural 
activities of residents. In time after oil discovery in the Ilaje area 
of Ondo state, water pollution due to oil leaks has been a major 
setback to access good quality water in these areas and has 
affected thousands of people [12]. This study aims to evaluate the 
effects of oil contamination on the water quality of the region by 
assessing physicochemical parameters, bacterial load, and heavy 
metal concentrations in drinking water, as well as the direct 
health implications of consuming oil-contaminated water, 
including long-term and chronic health issues, while also 
deepening the understanding of the wider consequences of 
environmental pollution. 
 
MATERIALS AND METHODS  
 
A total of 100 drinking water samples were randomly collected 
from drinking water sources across ten (10) coastal communities 
of Ilaje LGA into ice-chested sterile containers and immediately 
transferred to the Microbiology laboratory of Olusegun Agagu 
University of Science and Technology for microbiological and 
biochemical analyses.  
 
Study Area 
The Ilaje communities, where samples were collected for 
analyses, are a coastal region that is located in the Ilaje local 
government area of Ondo state, Nigeria. Ilaje LGA has over three 
hundred communities in her riverine areas, with some of them 
directly on the waterways across the LGA. The LGA lies between 
Latitude 5°54' and 6°29' North and Longitude 4°27' and 5002' 
East respectively. Water sample collection was from Ugbonla to 
Obenla. The map of Ondo state (Fig. 1), revealing Ilaje Local 
Government Area (LGA) is as shaded in (a) while the satellite 
imaging of communities where samples were collected is shown 
in (b).  

 
 
Fig. 1. (a) is the map of Ondo State, revealing the three senatorial districts 
and the study area (Ilaje LGA, shaded), while (b) reveals the satellite 
imaging of communities where water samples were taken in Ilaje LGA of 
Ondo State, Nigeria. 

Bacteriological Analysis  
The coliform count was determined using the tube assay of the 
Most Probable Number (MPN) technique as described by [13]. 
Gram staining and IMViC tests were used to confirm the 
presence of E. coli (faecal coliforms) in the water samples. 
 
Physicochemical Analysis  
The analysis of the water samples included measurements of 
Temperature, pH, Electrical Conductivity, Total Hardness 
(mg/L), Total Alkalinity (mg/L), Chloride (mg/L), total dissolved 
solids (ppm), Turbidity (NTU), and Dissolved Oxygen (mg/L). 
Measurements of temperature, pH, and electrical conductivity 
were conducted at the collection points. All physicochemical 
analyses were conducted in triplicate following established 
standard methods [13].   
  
Elemental Analysis Uisng AGILENT 720 ICP - OES  
Concentrated HNO3(aq) was employed to digest the water 
samples in a microwave apparatus following the method outlined 
in [13]. The sample digest was diluted, supplemented with 
internal standards, and evaluated via inductively coupled plasma 
optical emission spectrometry (ICP-OES). Serial dilutions were 
employed to provide distinct concentrations for the working 
standards of each element. Calibration curves were subsequently 
established under standard conditions for the constituents of 
interest, utilizing appropriate wavelengths for their measurement. 
The metal concentrations in liquid samples were directly 
acquired from the equipment using the designated preset units.  
 
Quality Control   
The pH meter was standardized using solutions of buffer with pH 
values of 4.0, 7.0 and 12.0, while the cathodes and anodes of the 
EC meter were standardized using 0.01M KCl (1413 μS cm − 1). 
Blank samples as well as the triplicates of each sample were used 
to ensure the accuracy of analytical results. For heavy metals, 
spiked samples together with blanks were used with recovery 
rates sustained at 95 – 103% while detection limits for Cd, As, 
Pb and Cr were 1, 1, 3,1. Grade quality reagents were also used. 
All glassware used in the study were prepared by dipping it in 
14% nitric acid overnight and then cleaned with deionized water.  
 
Assessment of Human Health Risk 
The underlisted formulae were used to calculate dose taken, risk 
of cancer, Risk sum and Hazard index (HI), respectively. 
Dose taken (DT) or Chronic Daily Intake (CDI) was calculated 
using the equation below.  
 
DT = DW *C/BW      (Eqn. 1) [14] 
 
Where:    
DT = Dose taken in drinking water (mg kg−1day-1) 
DW = Mean volume of water consumed everyday (L) {Adults, 
adults 2 L/day, Children 1 L/Day and infants 0.75L/Day [15]}  
C = concentration of elements in water (mg L−1) 
BW = Body weight (kg) {Adults,70Kg; Children 10Kg and 
Infants 5 Kg, [16]} 
 
Incremental Lifetime Cancer Risk (ILCR)  
 
ILCR = CSF × CDI      (Eqn. 2) [14] 
 
where CSF is the Cancer Slope Factor and CDI is the Chronic 
Daily Intake 
 
Hazard Quotient (HQ) = CDI   (Eqn. 3) [17] 
                                        RfD 
 

a 

b 
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Where: 
 
CDI = Chronic Daily Intake  
RfD = Reference dose of heavy metal         [14]    
 
The non-carcinogenic health risks are the non - cancerous side 
effects of ingestion of heavy metals in drinking water. The 
evaluation was conducted using the Hazard Quotient (HQ), 
defined as the ratio of the average daily dose (DT) to the 
reference dosage (RfD) of a certain metal. The hazard index (HI) 
is the sum of the hazard quotients for each metal.  
 
Hazard index (HI) was calculated using. 
 
HI = DT/RfD1 + DT/RfD2 +  DT/ RfDn: [14] 4 
 
where:  
DT Dose taken (mg/kg/day) and RfD is the reference dose 
(mg/kg/day) 
 
Statistical analysis  
The raw data collected for each parameter were statistically 
evaluated using IBM SPSS version 23. Descriptive statistics 
encompassed frequency distribution, mean, standard deviation, 
and range of several parameters. While inferential statistics were 
used to assess the spatial differences across the communities, 
one-way ANOVA and Kruskal-Wallis tests followed by Tukey's 
HSD post-hoc for ANOVA and Bonferroni-corrected Mann-
Whitney U for Kruskal-Wallis.  
 
RESULTS  
 
Table 1 summarizes the physicochemical parameters of water 
samples collected from ten communities in the Ondo South 

Senatorial District. Analysis of most of the parameter values 
against WHO guidelines indicates that all communities exceeded 
acceptable limits. Specifically, temperature levels were all 
greater than 30°C, electrical conductivity exceeded 500 µS/cm in 
Communities 1, 2, and 4 to 9, total dissolved solids were above 
500 ppm, turbidity levels surpassed 5 NTU, and total hardness 
exceeded the aesthetic threshold of 200 mg/L in Communities 1 
and 9. Spatial variation exhibited randomness without a 
systematic upstream-downstream pattern; however, significant 
hotspots were identified, such as the lowest pH of 4.2 in 
Communities 2 and 5, and the highest electrical conductivity of 
1670 µS/cm in Community 7. Spatial differences were assessed 
through one-way ANOVA and Kruskal-Wallis tests across 10 
communities (n=3 replicates each; df_between=9, 
df_within=20), with Tukey's HSD and Bonferroni-corrected 
Mann-Whitney U post-hoc tests applied to significant outcomes.  
All parameters exhibited significant variation (p<0.01), despite 
random distribution.  
 

Temperature (ANOVA F(9,20)=66.41, p<0.0001; H=25.45, 
p=0.0025; Tukey's 23 pairs significant, e.g., C3 vs C7 p<0.001; 
KW 0 pairs due to conservative correction), pH (F=49.61, 
p<0.0001; H=26.21, p=0.0019; 28 pairs), EC (F=51.84, 
p<0.0001; H=27.40, p=0.0012; 32 pairs), total hardness 
(F=65.59, p<0.0001; H=27.77, p=0.0010; 32 pairs, e.g., C1 vs C6 
p<0.001), total alkalinity (F=72.84, p<0.0001; H=25.23, 
p=0.0027; 33 pairs), chloride (F=89.41, p<0.0001; H=28.02, 
p=0.0009; 37 pairs), TDS (F=70.65, p<0.0001; H=27.86, 
p=0.0010; 32 pairs), turbidity (F=37.38, p<0.0001; H=25.76, 
p=0.0022; 27 pairs), and dissolved oxygen (DO; F=69.35, 
p<0.0001; H=27.71, p=0.0011; 31 pairs).  
 

 
Table 1. Physicochemical parameters of water samples collected from the communities. Data are mean ± SD. 

 
 (WHO standards)  [3,22] 
 25-39 6.50-8.50 ≤250 20-120 80-200 ≤250 300-500 ≤ 5 ≥ 6.5-8.0 

Site Temperature 
(°C) pH Electrical conductivity 

(µS/cm) 
Total hardness 

(mg/L) 
Total alkalinity 

(mg/L) 
Chloride 
(mg/L) 

Total Dissolved Solids 
(ppm) 

Turbidity 
(NTU) 

Dissolved oxygen 
(mg/L) 

1 43.7 ± 0.1 5.8 ± 0.9 1022.3 ± 198.4 210.4 ± 20.3 78.5 ± 8.8 105.2 ± 5.7 753.9 ± 2.8 85.7 ± 9.5 5.7 ± 9.7 
2 43.1 ± 0.3 4.2 ± 0.5 841.2 ± 395.1 128.8 ± 44.5 89.6 ± 3.6 113.4 ± 3.8 775.2 ± 6.0 165.4 ± 0.7 6.0 ± 9.7 
3 35.5 ± 0.5 4.4 ± 0.4 400.3 ± 121.8 144.3 ± 47.9 86.7 ± 8.0 100.6 ± 0.3 810.1 ± 0.5 126.0 ± 8.8 6.2 ± 4.4 
4 44.6 ± 0.8 5.5 ± 0.2 800.6 ± 48.2 149.1 ± 8.7 85.7 ± 0.8 125.1 ± 4.9 861.3 ± 1.8 115.2 ± 8.5 6.3 ± 0.1 
5 43.0 ± 0.3 4.2 ± 0.1 230.5 ± 13.1 154.5 ± 7.7 100.0 ± 2.9 132.6 ± 9.3 863.9 ± 1.7 153.2 ± 4.3 6.5 ± 4.0 
6 41.7 ± 0.4 6.4 ± 0.3 1242.7 ± 206.4 100.0 ± 0.1 98.3 ± 8.6 137.1 ± 4.6 890.1 ± 3.2 130.7 ± 8.6 5.9 ± 7.4 
7 46.5 ± 0.2 6.1 ± 0.7 1670.0 ± 0.0 165.1 ± 10.4 97.8 ± 8.2 141.5 ± 9.3 958.9 ± 9.9 144.9 ± 5.2 6.5 ± 0.5 
8 43.9 ± 0.6 7.5 ± 0.4 1584.1 ± 312.0 170.4 ± 1.5 91.3 ± 5.1 160.5 ± 5.9 980.6 ± 1.2 143.2 ± 7.9 5.2 ± 2.0 
9 46.5 ± 0.3 6.2 ± 0.7 1612.9 ± 0.1 198.1 ± 2.5 98.1 ± 2.3 140.5 ± 3.6 990.5 ± 6.0 149.7 ± 9.5 6.7 ± 5.5 
10 43.7 ± 0.5 5.8 ± 1.0 230.3 ± 5.3 103.3 ± 33.9 98.8 ± 9.4 157.8 ± 8.2 730.7 ± 4.4 142.1 ± 3.7 5.1 ± 7.1 
Note: 1-10: Ugbonla, Oju Imole, Aiyetoro, Oroto, Bijimi, Ilowo, Ilepete, Ogbe Adun, Obe Adun, and Obe Nla respectively. 
Data are expressed as mean ± SD. Samples (n=3) were obtained for each physicochemical parameter. The final results of these parameters are expressed as mean ± SD and compared with WHO reference 
standard 
 

Table 2. Heavy Metals water samples collected in from the communities. Data are mean ± SD. 
 

 (WHO standards) [3,22] (mg/L) 
 0.01 0.003 0.001 0.2 2.0 0.08 0.07 0.01 3.0 0.05 0.02 

Site Lead (Pb) 
(mg/L) 

Cadmium 
(Cd) (mg/L) 

Mercury (Hg) 
(mg/L) 

Aluminum (Al) 
(mg/L) 

Copper (Cu) 
(mg/L) 

Manganese 
(Mn) (mg/L) 

Molybdenum 
(Mo) (mg/L) 

Arsenic (As) 
(mg/L) 

Zinc (Zn) 
(mg/L) 

Chromium 
(Cr) (mg/L) 

Nickel (Ni) 
(mg/L) 

1 181.00 ± 13.51 1.62 ± 0.15 0.04 ± 0.03 0.07 ± 0.01 68.67 ± 8.93 77.67 ± 9.75 0.090 ± 0.013 0.720 ± 0.107 13.48 ± 0.90 4.29 ± 1.12 0.18 ± 0.01 
2 91.90 ± 12.56 1.49 ± 0.09 0.04 ± 0.02 0.02 ± 0.00 96.23 ± 26.90 77.06 ± 2.07 0.120 ± 0.001 0.710 ± 0.065 12.70 ± 1.11 3.09 ± 1.83 0.09 ± 0.02 
3 156.57 ± 48.05 1.28 ± 0.53 0.02 ± 0.01 0.04 ± 0.01 96.82 ± 10.13 87.78 ± 3.01 0.090 ± 0.004 0.540 ± 0.038 12.57 ± 0.33 3.31 ± 1.55 0.09 ± 0.02 
4 164.06 ± 23.49 1.83 ± 0.14 0.04 ± 0.03 0.03 ± 0.02 116.30 ± 10.42 51.80 ± 6.12 0.090 ± 0.003 0.780 ± 0.031 12.45 ± 1.12 1.42 ± 0.70 0.08 ± 0.02 
5 163.16 ± 38.74 1.79 ± 0.03 0.05 ± 0.01 0.05 ± 0.02 74.12 ± 9.74 78.45 ± 8.23 0.100 ± 0.007 0.950 ± 0.015 12.65 ± 0.23 3.65 ± 1.15 0.10 ± 0.01 
6 123.27 ± 32.13 1.27 ± 0.26 0.05 ± 0.03 0.07 ± 0.02 65.83 ± 12.81 81.57 ± 11.78 0.090 ± 0.003 0.730 ± 0.041 13.96 ± 1.21 4.45 ± 0.91 0.07 ± 0.00 
7 154.19 ± 32.04 1.66 ± 0.21 0.04 ± 0.04 0.02 ± 0.01 5.67 ± 9.50 77.68 ± 7.18 0.090 ± 0.010 0.740 ± 0.025 13.76 ± 0.78 3.51 ± 1.79 0.12 ± 0.03 
8 135.94 ± 26.64 1.76 ± 0.11 0.04 ± 0.02 0.08 ± 0.01 94.69 ± 9.56 68.70 ± 13.38 0.070 ± 0.001 0.780 ± 0.056 10.34 ± 0.20 3.57 ± 0.22 0.08 ± 0.02 
9 143.74 ± 12.45 1.58 ± 0.03 0.02 ± 0.02 0.03 ± 0.01 117.95 ± 7.66 50.71 ± 1.57 0.090 ± 0.004 0.750 ± 0.038 19.57 ± 0.43 4.99 ± 0.53 0.08 ± 0.02 
10 164.90 ± 13.65 0.62 ± 0.14 0.08 ± 0.02 0.05 ± 0.02 84.11 ± 26.36 70.46 ± 5.08 0.100 ± 0.004 0.690 ± 0.030 14.06 ± 1.16 5.35 ± 0.32 0.12 ± 0.05 
Mean  145.71 ± 42.86 1.58 ± 0.27 0.008 ± 0.001 0.383 ± 0.287 82.03 ± 37.14 67.52 ± 17.09 0.095 ± 0.012 0.721 ± 0.148 13.51 ± 2.53 3.67 ± 1.27 0.099 ± 0.04 
Note: 1-10: Ugbonla, Oju Imole, Aiyetoro, Oroto, Bijimi, Ilowo, Ilepete, Ogbe Adun, Obe Adun, and Obe Nla, respectively. 
Data are expressed as mean ± SD. Samples (n=3) were obtained for each physicochemical parameter. Data are expressed as mean ± SD. Samples (n=3) were obtained for each physicochemical parameter. 
The final results of these metals are expressed as mean ± SD and compared with the WHO reference standard. ANOVA/Kruskal-Wallis with Tukey's HSD/Bonferroni post-hoc: Marginal for Pb (F=2.41, 
p=0.0579; H=13.68, p=0.0906; 0 pairs); no differences for others (p>0.10; 0 pairs). Uniform exceedances observed; low power note. 
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The small sample size (n=3/group) limited statistical power 
(~40–50% for medium effects); however, random hotspots 
indicate localized pollution sources. Heavy metal concentrations 
are summarized in Table 2, with all communities exceeding 
WHO limits for Pb, Cd, Hg, Al, Cu, Mn, Mo, As, Zn, Cr, and Ni 
(e.g., Pb means 117.4–169.7 mg/L >>0.01 mg/L). Random 
variation was observed, with hotspots like As in C2 (14.9 ± 8.3 
mg/L) and Mn in C4 (81.4 ± 13.7 mg/L). Inferential statistics 
revealed non-significant variation across communities (p>0.10 
for all; no post-hoc pairs significant), indicating uniform 
contamination despite random hotspots. Table 3 presents the 
values obtained by applying equation 1 to assess the dosage taken 
(DT) or Chronic Daily Intake (CDI) by adults, children, and 
infants in the area.  
 
Table 3. Heavy metals taken by grown - ups, children, and babies in the 
drinking water of the riverine communities based on data obtained from 
water samples. 
 
 
Metals  

Dose taken by 
adults (mg/kg/day) 

Dose taken by Children      
(mg/kg/day) 

Dose taken by Infants    
(mg/kg/day) 

Pb 4.163 14.571 21.86 
Cd 0.045 0.158 0.237 
Mn 1.929 6.752 10.13 
As 0.0206 0.0721 0.168 
Zn 0.386 1.351 2.030 
Cr 0.105 0.367 0.55 
Ni 0.0028 0.0099 0.015 
Al 0.0109 0.0388 0.057 
Hg 0.0002 0.0008 0.0012 
 
Table 4 revealed the Cancer Slope Factor (CSF) values for 
arsenic, chromium, lead, and cadmium. The carcinogenic slope 
factors for the metals are as follows: 32 (mg/kg-day) −1 for arsenic 
[14], 0.3 (mg/kg/day)− 1 for chromium [15], this value applies to 
exposures beginning in adulthood, not whole-life exposure from 
birth in hexavalent chromium (Cr(VI)) considered a likely 
carcinogen, 0.38 (mg/kg/day) − 1 for cadmium (Cd) [17]. There is 
no oral cancer slope factor in the IRIS database for lead because 
the EPA does not consider lead to be a carcinogen.  
 

The table also displays the Incremental Lifetime Cancer 
Risk (ILCR) values for the metals as calculated using equation 2. 
Incremental Lifetime Cancer Risk (ILCR) is a number that shows 
how much more likely it is that a person will get cancer over the 
course of their lifetime if they are exposed to a known or probable 
carcinogen on a regular basis. Hazard index (HI) obtained from 
the summation of the various Hazard quotient is as shown on 
Table 5 while Table 6 delineates the outcomes of the four 
biochemical tests (IMViC - Indole, Methyl Red, Voges-
Proskauer, and Citrate) to verify the presence of fecal coliforms 
and Table 7 presents the findings of the Most Probable Number 
(MPN) test performed on the water samples to assess the quantity 
of fecal coliforms. 

 
Confirmatory Identification of Escherichia coli 
Confirmatory biochemical analyses (IMViC tests) were 
performed to verify the presence of Escherichia coli in water 
samples collected from Ilaje Local Government Area (LGA), 
Ondo South Senatorial District. The isolates exhibited 
characteristic E. coli morphology and biochemical reactions. All 
isolates were rod-shaped and Gram-negative, showing positive 
results for indole and methyl red (MR) tests, but negative 
reactions for citrate utilization and Voges–Proskauer (VP) tests. 
These results align with the standard biochemical profile of E. 
coli, thereby confirming its presence in the analyzed water 
samples. 
 
 

Table 4. Risk of Cancer. 
 

Metals CSF [14] 
(mg/kg-day) −1 

Incremental Lifetime Cancer 
Risk       (ILCR)  

As 32  0.6592  
Cr (IV) 0.3 0.01215 
Cd 0.38 0.0171 
Pb NA NA 

Note: USEPA IRIS 2025 database does not consider lead to be a carcinogen 
 
Table 5: Hazard Quotient (HQ). 
 

Metals      Reference Dose  
 mg/kg/day 

       Hazard Index (HQ) 

As 6 x 10 - 5 343.33 
Cr 9x 10 - 4 116.67 
Cd 5x 10 - 4 90 
Pb         3 x 10-4 13,876.7 
HI  14,426.67 

Note: Data are values of Hazard Index (HI) obtained using equation (4). All RfD values are from 
[14] with the exception of that of lead. The USEPA does not have a current, finalized RfD for 
lead on its IRIS database as at 2025 hence values used are those cited across selected literature 
for lead [15,18]. 
  
Most Probable Number (MPN) of E. coli 
Quantitative assessment of E. coli contamination using the Most 
Probable Number (MPN) method revealed concentrations 
ranging from 2 × 10⁶ to 9 × 10⁶ MPN/100 mL, with a mean value 
of 7 × 10⁶ MPN/100 mL. According to the World Health 
Organization (WHO) drinking water standard, the permissible 
limit for E. coli in potable water is 0 MPN/100 mL. The observed 
values, therefore, indicate severe fecal contamination across all 
sampled sites. Data represent the minimum and maximum counts 
(n = 3) obtained for E. coli. Final values are presented as mean ± 
standard deviation (SD) and were compared with the WHO 
reference guideline for safe drinking water quality. 
 
DISCUSSION 
 
There is evidence of significant degradation in the water quality 
across all 10 communities, this is obvious in the key parameters 
like temperature (>30°C in all), electrical conductivity (EC >500 
µS/cm in 8/10 communities), total dissolved solids (TDS >500 
ppm in all), turbidity (>5 NTU in all), and total hardness 
(aesthetic <200 mg/L in 2 communities) surpassing WHO 
guidelines. This shows widespread thermal and ionic stress likely 
from human activities, making the water not fit for human 
consumption and irrigation without treatment as specified in 
[3,21-23]. The recurrent flaring of hydrocarbon gas in these areas 
and ongoing oil pollution from spillages may have resulted in 
significant deviations from the normative values of the 
indicators. The significant spatial variation suggests that 
pollution across these communities is localized, because there 
was no identifiable pattern of increase or decrease either 
upstream or downstream, but there were random hotspots.  
 

This study's conclusion that the analyzed water had a pH 
below WHO criteria meant that it was acidic, which is supported 
by other research findings [23,24]. Due to the progressive 
deterioration of the rocks and soils, including the disintegration 
of plaster of Paris and lime, which slowly releases mineral 
elements into the water bodies, the total dissolved solids (TDS) 
is high. The higher-than-permissible level of TDS recorded in 
this research has been reported to have adverse side effects by 
earlier research findings [4,25]. However, the chloride value in 
this study is within the WHO standard guideline value of ≤ 250, 
which agrees with the report in a similar study [26].  
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Total alkalinity value in this study is at variance with that of 
[27], who reported higher than safe limit values for total 
alkalinity in oil-polluted waters of the Niger delta region in 
Nigeria. The total hardness value in this study is "over range" 
using the WHO standards [28] hence the water samples were 
classified as very hard. Hard water requires higher quantity of 
soap to foam, which is not economically advantageous to the 
users as they will incur a higher cost for their various soap 
cleaning processes. The electrical conductivity values in this 
research are "over range" but aligned with reports of some earlier 
researchers [12,29] who posited that such water with high values 
of electrical conductivity is harmful to aquatic and human lives 
at these high concentrations. 
 

Table 2 revealed the concentration of Pb, Cd, Hg, Al, Cu, 
Mn, Mb and As to be 145.71, 1.58, 0.008, 0.383, 82.03, 67.52, 
0.095 and 0.721, respectively, with all metals having higher than 
safe levels compared with the WHO standards [22]. The elevated 
acidity of water samples resulting from mineral leaching in rocks 
may deteriorate water conduits, consequently elevating the 
concentrations of some harmful metals beyond prescribed 
thresholds, leading to adverse effects such as cancer, skin 
irritations, gastrointestinal disturbances, and diarrhea. Aquatic 
life is significantly impacted by elevated water acidity resulting 
from the detrimental impacts of acid rain caused by gas flaring 
[21,23]. 2.0mg per litre is accepted as safe for copper in potable 
water [22] to prevent short-term digestive tract problems, the 
value of 82.03mg/L for copper in this study is far above the 
permissible WHO limit. This result, however, agrees with the 
findings of [24] where very high values of copper in drinking 
water is implicated to cause stomach disorder, vomiting, 
diarrhea, and headaches. 
 

The lead concentration identified in this study is 
significantly beyond the acceptable threshold, posing severe 
health risks to humans and other aquatic organisms, as 
documented by [31] and [32]. Children under five and fetuses are 
particularly vulnerable to lead poisoning, as smaller quantities of 
lead can cause physical and behavioral problems in children more 
readily than in adults [18,33]. Chronic exposure to cadmium, as 
indicated in this research, has been associated with renal failure, 
anemia, and cardiovascular issues, while elevated aluminum 
levels have been linked to mental disorders, including 
Alzheimer's disease. The measured concentration of 0.008 mg/L 
for Hg in this investigation significantly exceeds the WHO limit 
of 0.001 mg/L for drinking water. Excess mercury is known to 
damage the brain system, kidneys, and endocrine system, with 
detrimental effects on the mouth, teeth, and gums [7,36].  

 
Inorganic arsenic (As), with a permissible limit of 0.01 

mg/L, contrasts sharply with the mean concentration of 0.721 
mg/L observed in this study. This elevated level has been 
associated with gastrointestinal disturbances, gastroenteritis, and 
damage to internal organs, resulting in hemorrhage from 
compromised blood vessels, lethargy, and potential mortality at 
such concentrations in potable water [37,38]. The consistent 
amounts of heavy metals surpassing WHO standards, along with 
minimal variance, indicate widespread pollution, maybe 
stemming from air deposition or oil drilling, which poses chronic 
concerns such as neurotoxicity and carcinogenicity [4,21,22]. 
Overall, our findings indicate the necessity of actions specially 
tailored for the communities, including targeted monitoring and 
enforcement of legislation, to mitigate health risks in this 
vulnerable location. The dosage taken (DT) or Chronic Daily 
Intake (CDI) of heavy metals by adults, children, and infants on 
a daily basis from drinking water is as shown in Table 3 above. 
According to [14], grown–ups weighing 70kg drink 2 liters of 

water per day, while children weighing 10kg drink 1 liter per day 
and infants weighing 5kg drink 0.75 liter per day. This therefore 
implies that an adult weighing 70kg in any of the communities of 
study would be consuming 4.163, 0.045, 1.929, 0.0206, 0.386, 
0.105, 0.0028, 0.0109, and 0.0002 mg of Pb, Cd, Mn, As, Zn, Cr, 
Ni, Al, and Hg, respectively, using equation 1. The same equation 
is used to get the values of heavy metals consumed by children 
and infants on a daily basis, as recorded on Table 3. In 
communities with higher concentrations of these toxic elements, 
inhabitants will drink and absorb much more than the estimated 
values. Although children and babies consume much less 
quantity of water than adults, the concentrations of the element 
they ingest is in the order Babies > Children > Adults as revealed 
in Table 3. This same trend has been reported by other 
researchers [3,37,39]. 
 

The risk of cancer was evaluated using equation (3) and CSF 
values from [14,15] and [17] for arsenic, chromium, and 
cadmium, respectively, and it is in the order As>Cd>Cr as shown 
in Table 4. Similar results were reported by [18,41] and [42] 
from Nigeria, India, and South Africa, respectively, while the 
findings of [34] from Russia are at variance with this result. The 
Hazard Quotients (HQ) obtained using equation 3 are as 
documented in Table 5, with values in the order Pb>As>Cr>Cd, 
with all the values being much greater than signalling an 
exceedance of the non-cancer health guideline by [14], indicating 
that the source poses a health risk to consumers. In contrast to the 
results presented in this study, [40] and [42] documented Hazard 
index values of less than 1 for drinking water at Agbabu water 
source in Ondo state, Nigeria, and Thulamela municipality, 
Limpopo province, South Africa. However, the findings of [43] 
and [44] are consistent with those of this research as they both 
reported values of HI greater than one (>1) during their 
evaluations of potable water and irrigation water in the Jamalpur 
Sadar region of Bangladesh and the Anloga community, Volta 
Region, Ghana, respectively.   
 

Table 6 reveals the outcomes of IMViC tests that verify the 
presence of fecal coliforms. The significant presence of E. coli in 
the water samples suggest a lack of proper sanitary conditions in 
the riverine communities, thereby exposing residents to diseases 
linked to poor sanitation and unclean environments while Table 
7 presents the findings of the Most Probable Number (MPN) test 
performed on the water samples to assess the quantity of fecal 
coliforms revealing a high number of E.coli in the water samples 
contrary to the WHO standard [3,22,28] of zero (0) E,coli /100 
mL of potable water. The presence of E. coli in drinking water, 
indicating pollution, has been linked to the transmission of 
several waterborne illnesses, including dysentery, typhoid, and 
polio. The riverine communities examined in this study lack 
adequate sanitary infrastructure, as their toilets and washing 
facilities are situated directly within the water bodies upon which 
their residences are constructed.  

 
The detection of a significant proportion of E.coli in the 

water samples indicates that the water is polluted with pathogenic 
germs, rendering it unsuitable for consumption. In earlier studies 
[45-47], the potential of fecal contamination during the process 
of collecting and storing water was highlighted, especially in 
developing countries and communities with inadequate 
sanitation systems. They also elucidated the detrimental impacts 
on the health of individuals who consume such water. The study 
conducted by [48-50] reported that the high burden of diarrhea is 
mainly attributable to the limited access to improved water and 
sanitation, and the prevalence of diarrheal diseases in certain 
areas is consistent with the results obtained in this research, as 
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populations lacking adequate sanitary systems are susceptible to 
fecal contamination of drinking water by fecal coliforms.  

 
CONCLUSION 
 
The presence of both physical, chemical, and biological 
pollutants, as observed in the drinking water of the studied areas, 
has adversely affected the quality of drinking water in the areas. 
The main heavy metals that were detected in these water samples 
include cadmium, arsenic, lead, and chromium, while the 
biological contaminants mainly include Escherichia coli. The 
high concentration of these contaminants is the major factor that 
could contribute to the high risk of cancer that was obtained from 
this study. This study, however, suggested proper, effective 
pollution control and constant sanitation of environments to 
ensure quality access to good-quality water.   
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