




# JOURNAL OF BIOCHEMISTRY, MICROBIOLOGY AND BIOTECHNOLOGY

Website: <http://journal.hibiscuspublisher.com/index.php/JOBIMB/index>



## Probiotics and Postbiotics from Southeast Asian Traditional Fermented Foods Highlight Functional Potential in Malaysia

Sakina Shahabudin<sup>1</sup>, Mohd Faizulnazrie Masri<sup>1</sup>, and Nina Suhait Azmi<sup>1\*</sup>

<sup>1</sup>Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuh Persiaran Tun Khalil Yaakob, 26300 Kuantan, Pahang, Malaysia.

\*Corresponding author:

Nina Suhait Azmi,

Faculty of Industrial Sciences and Technology,  
Universiti Malaysia Pahang Al-Sultan Abdullah,  
Lebuh Persiaran Tun Khalil Yaakob,  
26300 Kuantan,  
Pahang,  
Malaysia.

Email: [nina@umpsa.edu.my](mailto:nina@umpsa.edu.my)

### History

Received: 20<sup>th</sup> Oct 2025  
Received in revised form: 21<sup>st</sup> Nov 2025  
Accepted: 10<sup>th</sup> Dec 2025

### Keywords

Fermented foods  
Probiotics  
Postbiotics  
Malaysia  
Lactic acid bacteria

### SDG Keywords

SDG 2 Zero Hunger  
SDG 3 Good Health and Well-Being  
SDG 12 Responsible Consumption and Production

### Abstract

Fermented foods are essential in Southeast Asia's culinary and cultural landscapes, providing nutrition, preservation, and microbial diversity. Beyond their traditional significance, these foods include beneficial probiotics and metabolic by-products, known as postbiotics, that improve food functionality and human health. This review compiles recent research on the probiotic diversity and postbiotic potential of fermented foods from Southeast Asia, with a focus on traditional Malaysian variations such as *budu*, *tempoyak*, *belacan*, *cincalok*, *tapai*, *pekasam*, and pickled *maman*. It covers the most common microbial species, fermentation substrates, and bioactive metabolites in the fermented foods, while also highlighting recently discovered postbiotic components such as exopolysaccharides, peptides, and short-chain fatty acids. Despite these advantages, Malaysian traditional fermented foods have received minimal research, particularly in metabolomic characterization and clinical validation. Omics tools integration, safety assessment, and the valuation of local probiotic strains for functional food innovation will be beneficial in the next steps for fermentation science in Malaysia.

### INTRODUCTION

One of the earliest biotechnology developments in human history, fermentation offers a sustainable means of food preservation, flavor enhancement, and nutritional enrichment. Southeast Asian food systems have a long history of fermentation, which is impacted by raw ingredients, cultural preferences, and environmental conditions. The tropical climate of the region fosters spontaneous fermentation processes dominated by *Bacillus* species, yeasts, and lactic acid bacteria (LAB). They enhance the sensory quality of food, as well as supporting gastrointestinal health, immunological modulation, and metabolic balance [1]. Recently, the probiotic and postbiotic potential of traditional fermented foods, which extends beyond flavor and preservation to health-promoting functionality, has gained scientific attention. Probiotics are living bacteria that provide health benefits when given in sufficient doses [2]. They are naturally present in many fermented foods from Southeast Asia. On the other hand, postbiotics are gaining more attention as more stable and safer substitutes for living probiotics. Postbiotics are non-living microbial metabolites or cell components that provide physiological advantages [3].

With its diverse cuisine and thriving wildlife, Malaysia is a microcosm of the ample variety of Southeast Asia's fermented foods. Regional delicacies such as *tempoyak* (fermented durian), *budu* (fermented anchovy sauce), and *tapai* (fermented glutinous rice) are usually eaten by local communities in daily life or during festivities like weddings.

These fermented foods are found to contain complex microbial populations that support fermentation and generate health-promoting compounds [4–6]. However, most people are not aware about their health benefits, because little is known about the microbiological and functional constituents of the microorganisms. This review discusses the latest research on the probiotics and postbiotics associated with Southeast Asian fermented food products, focusing on Malaysian traditional fermented foods. Additionally, this study proposes research directions for the identification of bioactive components and understudied microbial strains.

## Background of fermented foods in Southeast Asia

### Diversity of Southeast Asian fermented foods

Southeast Asia boasts a wide variety of fermented foods that have been long consumed since centuries ago. Common substrates in this region include fish (*budu*, *cincalok*), legumes (*tempeh*, *taucu*), fruits (*tempoyak*, pickled mango), cereals (*tapai*, *basi* rice wine), and vegetables (pickled *maman*, *asam rebus*) [1]. Microorganisms such as yeasts, LAB, and other bacterial species undergo metabolic activity during the fermentation process. They ferment carbohydrates and other substrates to generate metabolites including alcohols, organic acids, gases, and bioactive components. Simultaneously, these microorganisms help to inhibit spoilage bacteria in the foods, while altering the textures, flavors, and chemical qualities of the foods. This shows fermentation process fosters the production of beneficial metabolites, and improves nutritional value, safety, and sensory qualities in the food products [7].

Several fermentation methods can be used to make fermented food products, as shown in **Table 1**. Lactic acid fermentation is commonly involved in fermentations of dairy, vegetables, and cereals, and carried out by LAB species like *Lactobacillus*, *Leuconostoc*, and *Pediococcus*. Yeasts, such as *Saccharomyces* spp., mediate the alcoholic fermentation of wines, beers, and rice wines. Spontaneous fermentation uses native microbial populations available from raw materials and the environment, while controlled fermentation uses starter cultures to get consistent results in the food production. Traditional fermented foods are often the result of spontaneous fermentation, which produces a variety of microbial consortia that can be sources of useful microorganisms [8,9].

Fermentation is a low-cost preservation approach that enhances food safety and digestibility in many rural Malaysian and Indonesian homes. Most of the time, fermented foods come from homemade preparation, and usually involves cheap and locally accessible materials. These raw ingredients are easy to obtain and abundance in number, due to the tropical weather in Southeast Asia. Foods that have undergone biochemical modification during fermentation produce antimicrobial metabolites, boost vitamin B content, and eliminate antinutritional compounds [10]. *Tempoyak* fermentation, for example, improves durian pulp digestibility via LAB-mediated acidification [4], whereas *budu* fermentation produces amino acids and peptides that bring about its *umami* flavor [5].

**Table 1.** Common fermentation methods and substrates used in the fermented food production and key microorganisms involved in the processes.

| Fermentation type        | Key microorganisms                                                                           | Common substrates                  | Example of foods                                   | Primary metabolites                     | Source  |
|--------------------------|----------------------------------------------------------------------------------------------|------------------------------------|----------------------------------------------------|-----------------------------------------|---------|
| Lactic acid fermentation | <i>Lactobacillus plantarum</i> , <i>Leuconostoc mesenteroides</i> , <i>Weissella confusa</i> | Vegetables, cereals, dairy, fruits | Kimchi, sauerkraut, <i>tapai</i> , <i>tempoyak</i> | Lactic acid, carbon dioxide, peptides   | [7]     |
| Alcoholic fermentation   | <i>Saccharomyces cerevisiae</i> , <i>Candida tropicalis</i>                                  | Fruits, cereals, roots             | <i>Tapai ubi</i> , palm wine, beer                 | Ethanol, carbon dioxide, esters         | [11]    |
| Alkaline fermentation    | <i>Bacillus subtilis</i> , <i>B. licheniformis</i> , <i>B. amyloliquefaciens</i>             | Legumes, fish, shrimp              | <i>Budu</i> , <i>belacan</i> , natto               | Ammonia, peptides, amino acids          | [12,13] |
| Acetic acid fermentation | <i>Acetobacter aceti</i> , <i>Gluconobacter oxydans</i>                                      | Fruit juices, alcohol              | Vinegar, kombucha                                  | Acetic acid                             | [14]    |
| Mixed fermentation       | LAB and yeast symbiosis                                                                      | Fruits, starches                   | <i>Tempoyak</i> , kefir, sourdough                 | Organic acids, vitamins, carbon dioxide | [1]     |

### Microbial Ecology of Fermented Foods in Southeast Asia

The microbial ecology of Southeast Asian fermented foods is dominated by LAB, yeasts, and *Bacillus* spp., which usually interact and cooperate with one another during fermentation. The predominant bacteria found in acidic and plant-based fermented foods such as *tempoyak* and *tapai* include *Lactiplantibacillus plantarum*, *Weissella confusa*, *Leuconostoc mesenteroides*, and *Pediococcus pentosaceus* [1,7]. *Bacillus subtilis*, *B. licheniformis*, and *B. amyloliquefaciens* drive the alkaline fermentations seen in *budu* and *belacan* [12]. Yeasts, particularly *Saccharomyces cerevisiae* and *Candida* spp., aid in the yield of flavor compounds and ethanol in *tapai* and *pekasam* [11]. This consortium-driven metabolism generates acidification, proteolysis, flavor enhancement, and bioactive metabolite synthesis, laying the groundwork for probiotic and postbiotic potential.

### Malaysian Fermented Foods

Malaysia's traditional fermented dishes represent a unique fusion of multicultural culinary traditions. For example, the Malay community is known for fish- and vegetable-based fermented foods such as *budu*, *pekasam*, and *tempoyak*, while Chinese and Indian communities have introduced soy-based and dairy fermentations with different microbial compositions and flavor profiles. Indigenous groups, particularly those in Sabah and Sarawak, continue to use regional ingredients like sago, bamboo shoots, and rice wine in their traditional fermentation processes, which frequently involve spontaneous fermentations. *Tempoyak* (fermented durian pulp) is made through spontaneous lactic acid fermentation by *L. plantarum*, *W. paramesenteroides*, and *L. fermentum*, which yields lactic acid and exopolysaccharides with probiotic potential [1].

*Budu* and *cincalok* are fish-based fermented foods that contain proteolytic *Bacillus* and halotolerant LAB. They also produce peptides with antioxidant and antihypertensive qualities [13]. *Tapai* (fermented glutinous rice or cassava) is produced through a combination of *S. cerevisiae* and LAB fermentation, resulting in alcohol, organic acids, and beneficial esters [15]. Even though some studies have suggested probiotic potential of these microbes [12,13,15,16], little is known about their metabolite and postbiotic composition.

### 3Probiotics in traditional fermented foods of Southeast Asia and Malaysia

#### Probiotic concept and relevance in traditional fermented foods

Probiotics are defined as "live microorganisms that, when administered in adequate amounts, confer health benefits on the host" [2]. Traditional fermented foods in Southeast Asia are naturally rich in LABs, *Bacillus* spp., and yeasts, many of which match functional probiotic criteria. These microbes tolerate gastrointestinal conditions, attach to the intestinal mucosa, and have antimicrobial and immunomodulatory properties [7]. Malaysia's traditional fermented foods offer a wide range of variations, from acidic fruit-based fermented foods (e.g., *tempoyak*) to alkaline fish sauces (e.g., *budu*, *belacan*). These fermented foods serve as a living microbial reservoir for isolating novel probiotic strains that are suited to tropical, acidic, and high-salinity conditions. Studies have reported antioxidant, antibacterial, anti-inflammatory, and cholesterol-lowering qualities attributed to these probiotics [1,13]. Therefore, they are ideal in advancing for next-generation functional food in Malaysia [16].

#### Probiotic microorganisms identified from Southeast Asian fermented foods

In Southeast Asian fermented foods, the most commonly isolated lactic acid bacteria (LAB) are *Lactiplantibacillus plantarum*, *Weissella confusa*, *Pediococcus pentosaceus*, and *Leuconostoc mesenteroides*. They produce lactic acid, accumulate organic acids, and reduce pH, which create unfavorable growth environments for spoilage microbes. This shows that the LAB species help to extend the food's shelf life and ensure food safety [17]. **Table 2** summarizes the probiotics found in selected Malaysian traditional fermented foods.

**Table 2.** Ingredients used to make selected Malaysian traditional fermented foods and the common probiotic species in the food products.

| Fermented food                                     | Main ingredients                                                | Predominant microbial species                                                                   | Functional role                                                     | Source      |
|----------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------|
| <i>Tempoyak</i>                                    | Durian pulp, salt                                               | <i>L. plantarum</i> ,<br><i>W. confusa</i> ,<br><i>L. mesenteroides</i><br><i>B. subtilis</i> , | Lactic acid fermentation                                            | [1,4]       |
| <i>Budu</i>                                        | Anchovies, salt, palm sugar                                     | <i>Pediococcus acidilactici</i> ,<br><i>B. licheniformis</i>                                    | Proteolysis; peptide bioactivity                                    | [1,5,12,13] |
| <i>Cincalok</i>                                    | Small shrimp, rice, salt                                        | <i>Weissella koreensis</i> ,<br><i>Tetragenococcus halophilus</i>                               | Salt-tolerant LAB; antimicrobial peptide production                 | [1,12]      |
| <i>Belacan</i>                                     | Shrimp, salt                                                    | <i>B. amyloliquefaciens</i> ,<br><i>Staphylococcus epidermidis</i>                              | Protease production                                                 | [1,12,13]   |
| <i>Tapai ubi</i> (fermented cassava)               | Cassava, starter culture (yeast inoculum)                       | <i>S. cerevisiae</i> ,<br><i>Lactobacillus fermentum</i> ,<br><i>C. tropicalis</i>              | Mixed fermentation; alcohol & organic acid production               | [1,18]      |
| <i>Tapai pulut</i> (fermented glutinous rice)      | Glutinous rice, starter culture ( <i>ragi</i> )                 | <i>S. cerevisiae</i> ,<br><i>L. plantarum</i> ,<br><i>P. pentosaceus</i>                        | Co-fermentation; growth of probiotic LAB                            | [1,18]      |
| <i>Pekasam</i>                                     | Fish, rice, salt                                                | <i>Lactobacillus sakei</i> ,<br><i>L. plantarum</i> ,<br><i>L. mesenteroides</i>                | Acid production; pathogen inhibition                                | [1,12,13]   |
| <i>Taucu</i>                                       | Soybeans, brine                                                 | <i>Aspergillus oryzae</i> ,<br><i>B. subtilis</i>                                               | Proteolytic activity; amino acid enrichment                         | [19]        |
| <i>Pickled maman</i>                               | Wild spider flower, salt, rice water                            | <i>L. plantarum</i> ,<br><i>L. mesenteroides</i> ,<br><i>Lactiplantibacillus pentosus</i>       | LAB-dominant fermentation                                           | [15,20]     |
| Fermented bamboo shoots (fermented <i>rebung</i> ) | Bamboo shoots, salt                                             | <i>Lactobacillus brevis</i> ,<br><i>L. plantarum</i>                                            | Lactic acid formation                                               | [21]        |
| <i>Tempeh</i>                                      | Soybeans, <i>tempeh</i> starter ( <i>Rhizopus oligosporus</i> ) | <i>Rhizopus</i> spp.,<br><i>L. plantarum</i>                                                    | Mycofermentation; protease & probiotic LAB synergy                  | [22]        |
| Nata de coco (coconut gel)                         | Coconut water, sugar, acetic acid                               | <i>Komagataeibacter xylinus</i>                                                                 | Bacterial cellulose production; beneficial fiber; prebiotic synergy | [7]         |

#### Functional mechanisms of probiotic strains

The LAB and *Bacillus* species that were isolated from Malaysian fermented foods exhibit a range of functional mechanisms with health-promoting capacity. Organic acids and bacteriocins produced by a number of LAB strains, including *L. plantarum* and *Pediococcus* spp., suppress foodborne pathogens such as *Shigella*, *Salmonella*, and *Escherichia coli* [10]. Furthermore, LAB associated with fruit and vegetable-based fermentations such as *tempoyak* and pickled *maman* have antioxidant properties, as demonstrated by their capability to regulate oxidative stress *in vitro*, and scavenge free radicals [1]. Certain *Lactobacillus* strains contribute to cholesterol reduction by expressing bile salt hydrolase (BSH) activity, which improves cholesterol metabolism [23].

Beyond metabolic effects, LAB derived from fermented food have been reported to regulate immunological responses by increasing cytokine production and mucosal immunity [16]. Similarly, *Bacillus* species improve digestibility in alkaline or high-protein fermented foods such as *budu* and *belacan* by hydrolyzing complicated proteins into easily absorbed peptides [10,24]. Despite the promising findings, majority of the research remain descriptive, with a focus on isolation rather than functional or genomic validation. Few Malaysian fermented foods have undergone *in vivo* probiotic efficacy or safety evaluation, and postbiotic characterization is mainly lacking. By discovering bioactive substances, microbial interactions, pathways specific to traditional fermented foods, and emerging omics technologies (e.g., metabolomics and metagenomics) can help close this gap [7,25].

**Table 3.** Identified postbiotics in Malaysian traditional fermented foods and their functional benefits.

| Fermented food                                     | Key microorganisms                               | Major postbiotic components                                      | Functional benefits                                   | Source      |
|----------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-------------------------------------------------------|-------------|
| <i>Tempoyak</i>                                    | <i>L. plantarum</i> ,<br><i>W. confusa</i>       | Lactic acid, acetic acid, bioactive peptides, exopolysaccharides | Antioxidant, anti-inflammatory, cholesterol reduction | [1,4]       |
| <i>Budu</i>                                        | <i>B. subtilis</i> ,<br><i>P. acidilactici</i>   | Proteolytic peptides, $\gamma$ -glutamyl peptides, amino acids   | Antihypertensive; antioxidant; digestive improvement  | [1,5,12,13] |
| <i>Cincalok</i>                                    | <i>W. koreensis</i> ,<br><i>T. halophilus</i>    | Organic acids, bacteriocins, exopolysaccharides                  | Antimicrobial; supporting gut health                  | [1,12]      |
| <i>Belacan</i>                                     | <i>B. subtilis</i> ,<br><i>amylolyquefaciens</i> | Bioactive peptides, proteases, amino acids                       | Antioxidant; aiding in enzymatic digestion            | [1,12,13]   |
| <i>Tapai ubi</i> (fermented cassava)               | <i>S. cerevisiae</i> ,<br><i>L. fermentum</i>    | Ethanol, lactic acid, SCFAs, esters                              | Antioxidant; metabolic regulation                     | [1,18]      |
| <i>Tapai pulut</i> (fermented glutinous rice)      | <i>S. cerevisiae</i> ,<br><i>L. plantarum</i>    | Ethanol, peptides, aromatic esters                               | Modulation of gut microbiota; sensory enhancement     | [1,18]      |
| <i>Pekasam</i>                                     | <i>L. sakei</i> ,<br><i>L. plantarum</i>         | SCFAs, peptides, ethanol                                         | Antimicrobial; immune improvement                     | [1,12,13]   |
| <i>Taucu</i>                                       | <i>A. oryzae</i> ,<br><i>T. halophilus</i>       | Amino acids, peptides, glutamic acid derivatives                 | Antioxidative potential; <i>umami</i> enhancement     | [19]        |
| <i>Pickled maman</i>                               | <i>L. plantarum</i> ,<br><i>L. mesenteroides</i> | Lactic acid, exopolysaccharides, phenolic metabolites            | Antioxidant; prebiotic synergy                        | [15,20]     |
| Fermented bamboo shoots (fermented <i>rebung</i> ) | <i>L. brevis</i> ,<br><i>L. citreum</i>          | Organic acids, phenolic metabolites                              | Anti-inflammatory; gut balance                        | [21]        |
| <i>Tempeh</i>                                      | <i>R. oligosporus</i> ,<br><i>L. plantarum</i>   | Isoflavone aglycones, peptides                                   | Antioxidant; cholesterol reduction                    | [22]        |
| Nata de coco                                       | <i>K. xylinus</i>                                | Bacterial cellulose, acetic acid                                 | Prebiotic fiber; gut barrier support                  | [7]         |

### Postbiotics in fermented foods of Southeast Asia and Malaysia

#### Definition of postbiotics

Postbiotics are non-viable microbial cells, components, or metabolic by-products that enhance the host's physiology. According to the International Scientific Association for Probiotics and Prebiotics (ISAPP, 2021), postbiotics are "a preparation of inanimate microorganisms and/or their components that confer a health benefit to the host." [3]. Because of metabolic activity of the probiotic microbes, components such as short-chain fatty acids (SCFAs), exopolysaccharides, bacteriocins, enzymes, peptidoglycans, and cell wall fragments are produced [26]. Given their stability, reproducibility, and safety, postbiotics are drawing more interest in functional food science. This makes postbiotics suitable for use in nutraceutical and therapeutic applications. Postbiotics, unlike probiotics, are non-living, thus reducing the risk of microbial translocation or contamination in immunocompromised people.

#### Postbiotic's mechanisms and health benefits

There are several mechanisms that enable postbiotics produced from fermented foods promote human health. Organic acids, particularly acetic and lactic acids, help in regulating the gut microbiota by decreasing intestinal pH. This highly acidic environment allows beneficial microbes to flourish in the gut, while suppressing growth of pathogenic species [7]. Furthermore, structural components including peptidoglycans and bacterial cell wall fragments exhibit anti-inflammatory and immunomodulatory properties by increasing cytokine production and improving immunoglobulin responses [26].

Peptides and phenolic compounds produced by LAB and *Bacillus* spp. exhibit antioxidant and antihypertensive properties, including the ability to scavenge free radicals and regulate blood pressure [7,24]. Exopolysaccharides and bacterial surface proteins improve intestinal barrier function by reinforcing the gut mucosal layers and protecting epithelial integrity. In addition, fermentation-derived SCFAs participate in overall metabolic homeostasis by regulating glucose, lipid, and bile acid metabolism [7,26,27].

### Identified and potential postbiotics from Malaysian fermented foods

While many Malaysian fermented foods have been investigated for probiotic properties, few have been thoroughly examined for postbiotics. According to current research, LAB, yeast, and *Bacillus* strains generate various types of bioactive metabolites that play a role in the food's sensory and functional qualities. **Table 3** summarizes postbiotic compounds identified or potentially present in traditional Malaysian fermented foods based on recent findings.

#### Synergy between probiotics and postbiotics

Traditional fermented foods frequently include both living microorganisms and their metabolites, resulting in a synergistic "probiotic-postbiotic continuum." [25]. This symbiotic relationship does not only enhance nutrition, but also increases the food product's functional value. For example, *L. plantarum* in *tempoyak* not only survives fermentation but also produces EPS and lactic acid, both of which work postbiotically to support gut integrity [28]. Similarly, *B. subtilis* in *budu* secretes bioactive peptides during fermentation that remain long after microbial death, maintaining functionality in the final food product [29].

Postbiotic science's integration into Malaysian fermented food research is still in its early stages. Studies have shown the presence of bioactive peptides in *budu* and *belacan*, EPS in *tempoyak*, and organic acids in *tapai*, but few have characterized their structures or bioavailability. The systematic quantification and identification of postbiotics in traditional Malaysian fermented foods is currently limited, especially for lesser-known foods such as pickled *maman* and fermented *rebung*. This demonstrates a major research gap in linking microbial diversity to specific bioactive metabolite production.

### Underexplored Malaysian fermented foods, challenges, and future directions

#### Underexplored traditional Malaysian fermented foods

Aside from the well-known *budu*, *tempoyak*, and *belacan*, Malaysia has a diverse range of ethnic and regional fermented dishes. Several underexplored fermented foods show promise for

probiotic and postbiotic properties, however they are rarely discussed in the scientific literature.

#### **Pickled *maman* (*Cleome gynandra*)**

Pickled *maman* is a traditional dish often found in Negeri Sembilan and the East Coast of Malaysia. Pickled *maman* has shown antimicrobial activity against pathogenic microorganisms [30, 31]. Preliminary research has identified phenol and flavonoid synthesis in this dish, indicating possible antioxidant and gut-protective benefits [32]. However, detailed omics studies that identify the entire microbiome or postbiotic profile are still absent.

#### **Fermented *rebung* (bamboo shoots)**

Fermented *rebung*, which is commonly produced in rural communities, contains a wide range of LAB, including *Lactobacillus brevis* and *Leuconostoc citreum*. Despite its popularity, there is little published research identifying its probiotic species or discovering bioactive peptides and phenolics [9].

#### **Fermented cassava leaves**

Similar to other fermented vegetables, the presence of LAB strains in fermented cassava leaves indicates possible probiotic effects [33]. Nevertheless, no previous research has identified postbiotic metabolites nor characterized the probiotic functionality in these leaves.

#### **Fermented *petai* beans**

*Petai* (*Parkia speciosa*) beans have not been investigated as a fermented product. *Petai* seeds and pods contain bioactive compounds with antioxidant and antibacterial properties [34], however these are derived from raw plant extracts rather than fermentation. These phytochemicals may provide health benefits when consumed, but they do not represent postbiotic products of microbial fermentation.

#### **Pickled garlics**

Pickled garlic has been shown to contain LAB commonly associated with probiotic activity. *L. sakei* that is isolated from sweet pickled garlic exhibited antioxidative and potential antimicrobial effects *in vitro* [35]. Multiple *Lactobacillus* and *Pediococcus* spp. from traditional pickled garlic showed acid and bile tolerance, which is characteristic of probiotic candidates [36]. However, there is insufficient information on direct postbiotic profiling.

#### **Pickled chillies**

Pickled chillies have been shown to contain dominant LAB such as *Lactiplantibacillus* and *Weissella* [37]. Metabolomic profiling of pickled chillies has found fermentation-associated metabolites such as lactic acid and 3-phenyllactic acid that may operate as postbiotic compounds [38]. The scarcity of data highlights the urgent need to explore the microbiome-metabolome correlation in these lesser-known fermented foods, which may uncover new species of probiotic bacteria with industrial potential.

#### **Challenges in investigating probiotics and postbiotics in Malaysian fermented foods**

Several challenges hamper the growth of postbiotic and probiotic research in Malaysian fermented foods. Insufficient financing is a major issue in scientific research. To obtain high-resolution identification of microbial metabolites, omics tools are useful. However, comprehensive multi-omics investigations (e.g., metagenomics, metabolomics) can be expensive, depending on the project scale [39]. The handling and preparation of fermented foods lacks standardization. Due to the many variations in

traditional preparation methods, reproducibility and microbial consistency can be greatly affected. Aside from that, safety assessments have been scarce, with only a few studies evaluating potential biogenic amine accumulation, antibiotic resistance genes, or isolate cytotoxicity [40,41]. Postbiotic characterization can be challenging to carry out because of the complex combination of multiple components [41]. Lastly, there is a lack of collaboration between academia and industry. It is difficult to convert lab results into functional foods that are sold commercially due to gaps in technological transfer.

#### **Future directions**

In future studies on fermented foods in Southeast Asia and Malaysia, integration of omics technology should be useful in mapping microbial-metabolite interactions in greater depth, but this approach should be supported with more research funds [39]. By using native microbial strains (such as *L. plantarum* from *tempoyak*) as starter cultures, production of fermented foods can be standardized while maintaining local authenticity [1]. Development of standardized starter cultures derived from local LAB strains could also help to guarantee reproducibility and food safety. Research on the stability of postbiotic formulations will open the door for commercial use in functional foods.

#### **CONCLUSION**

Fermented foods from Southeast Asia, particularly those from Malaysia, offer a vast range of beneficial microorganisms and biochemical substances that improve their functional potential for human health. Studies have identified probiotics derived from LAB and *Bacillus* spp., and the associated postbiotics (i.e., exopolysaccharides, SCFAs, peptides, and phenolic compounds). These discoveries reveal new possibilities for health and industrial applications. Despite growing interest, challenges remain in standardizing fermentation processes, characterizing microbial metabolites, and assuring safety of food product. For further studies on these traditional fermented foods, researchers should focus on developing standardized starting cultures from local probiotic strains, assess clinical efficacy, and utilize omics techniques for comprehensive microbial-metabolite mapping. To transform Malaysian traditional fermented foods into nutraceutical products, more collaborative efforts should be fostered among academia, industry, and local communities. Additionally, policy and regulatory frameworks to define probiotic and postbiotic labeling standards in Malaysia and ASEAN should be established. With the leverage of Malaysia's rich biodiversity and culinary heritage, these research initiatives have potential to make Malaysia a regional leader in functional fermentation science.

#### **ACKNOWLEDGMENTS**

This study is thankful for grant supports from Universiti Malaysia Pahang Al-Sultan Abdullah (RDU180304 and PGRS190352).

#### **CONFLICT OF INTEREST**

No conflict of interest.

#### **DECLARATION OF GENERATIVE AI AND AI-ASSISTED TECHNOLOGIES**

While preparing this manuscript, we utilized AI-based tools such as ChatGPT, Consensus, and Quillbot to assist in tasks related to data collection, analysis, and manuscript editing. These tools were employed as supplementary aids and did not contribute to

the interpretation of data or the drawing of scientific conclusions. The final interpretation, conclusions, and overall scholarly content, including the articulation of arguments, are the authors' sole responsibility. The authors have reviewed and edited the content after using these tools and assume full responsibility for the integrity and accuracy of the published work.

## REFERENCES

- Tharmabalan S, Rusli SA, Lo R, Saidin NFB, Basar Z. From tradition to Table: an introduction to the culture and nutritional significance of Malaysian fermented foods products. *J Ethn Foods.* 2025;12(1):45–62. <https://doi.org/10.1186/s42779-025-00278-2>
- Food and Agriculture Organization of the United Nations, World Health Organization. Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Geneva: World Health Organization; 2001.
- Salminen S, Collado MC, Endo A, Hill C, Lebeer S, Quigley EMM, et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. *Nat Rev Gastroenterol Hepatol.* 2021;18:649–667.
- Anggadhania L, Setiarto RHB, Yusuf D, Anshory L, Royyani MF. Exploring tempoyak, fermented durian paste, a traditional Indonesian indigenous fermented food: typical of Malay tribe. *J Ethn Foods.* 2023;10:42. <https://doi.org/10.1186/s42779-023-00206-2>
- Md Zoqratt MZH, Gan HM. The inconsistent microbiota of Budu, the Malaysian fermented anchovy sauce, revealed through 16S amplicon sequencing. *PeerJ.* 2021;9:e12345. <https://doi.org/10.7717/peerj.12345>
- Hussin M, Anzian A, Liew CXQ, Muhialdin BJ, Mohsin AZ, Fang CM, et al. Potentially probiotic fermented glutinous rice (*Oryza sativa* L.) with *Lactiplantibacillus plantarum* improved immune system response in BALB/cByJ mice. *Fermentation.* 2022;8(11):612. <https://doi.org/10.3390/fermentation8110612>
- Terpou A, Dahiya D, Nigam PS. Evolving dynamics of fermented food microbiota and the gut microenvironment: strategic pathways to enhance human health. *Foods.* 2025;14(13):2361. <https://doi.org/10.3390/foods14132361>
- Xing Y, Huang M, Olovo CV, Mgbechidinma CL, Yang Y, Liu J, et al. Traditional fermented foods: challenges, sources, and health benefits of fatty acids. *Fermentation.* 2023;9(2):110. <https://doi.org/10.3390/fermentation9020110>
- Iram P, Samuel K, Tonga NG, Ajibola OO, Kelvin E. The Bidayuh ethnic's fermented foods: a review as potential sources of probiotics. *Int Postgrad Semin Agric For.* 2025;8(2):88–105.
- Mohd Kamalul Abrar NH, Md Jaffri J. The health benefits of fermented food: a narrative review. *Malays J Sci.* 2023;42(1):78–91. <https://doi.org/10.22452/mjs.vol42no1.8>
- Tamang JP, Watanabe K, Holzapfel WH. Diversity of microorganisms in global fermented foods and beverages. *Front Microbiol.* 2016;7:377. <https://doi.org/10.3389/fmicb.2016.00377>
- Narzary Y, Das S, Goyal AK, Lam SS, Sarma H, Sharma D. Fermented fish products in South and Southeast Asian cuisine: indigenous technology, nutrient composition, and cultural significance. *J Ethn Foods.* 2021;8(1):33. <https://doi.org/10.1186/s42779-021-00109-0>
- Cha YJ, Yu D. Health benefits and functions of salt-fermented fish. *J Ethn Foods.* 2024;11:34. <https://doi.org/10.1186/s42779-024-00251-5>
- Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. Physiology of acetic acid bacteria and their role in vinegar and fermented beverages. *Compr Rev Food Sci Food Saf.* 2019;18(3):587–625. <https://doi.org/10.1111/1541-4337.12440>
- Yusmarini, Johan VS, Fitriani S, Rahmayuni, Artanti VF, Pato U. Characteristics of probiotic tapai made by addition of *Lactobacillus plantarum* 1. *Int J Agric Technol.* 2019;15(1):195–206.
- Sampsell K, Marcolla CS, Tapping S, Fan Y, Sánchez-Lafuente CL, Willing BP, et al. Current research in fermented foods: bridging tradition and science. *Adv Nutr.* 2025;16(12):100554. <https://doi.org/10.1016/j.advnut.2025.100554>
- Shah AM, Tarfeen N, Mohamed H, Song Y. Fermented foods: their health-promoting components and potential effects on gut microbiota. *Fermentation.* 2023;9(2):118. <https://doi.org/10.3390/fermentation9020118>
- Tamang JP, Cotter PD, Endo A, Han NS, Kort R, Liu SQ, et al. Fermented foods in a global age: East meets West. *Compr Rev Food Sci Food Saf.* 2020;19:1–34. <https://doi.org/10.1111/1541-4337.12520>
- Pauzi RY, Astuti DI. Exploring microbial succession in Indonesian fermented soybean paste (tauco) through a culture-dependent approach. *Microbiol Biotechnol Lett.* 2025;53:57–67. <https://doi.org/10.48022/mbl.2411.11002>
- Amatachaya A, Siramolpiwat S, Kraisorn M, Yasiri A. Gamma-aminobutyric acid producing *Lactiplantibacillus pentosus* isolated from fermented spider plant. *J Pure Appl Microbiol.* 2023;17(1):354–361. <https://doi.org/10.22207/JPAM.17.1.25>
- Olkfrianti Y, Herison C, Fahrurrozi, Budiyanto. Identification of lactic acid bacteria isolated from ethnic fermented bamboo shoot Lemea. *Food Res.* 2023;7(Suppl 1):145–150. [https://doi.org/10.26656/fr.2017.7\(S1\).29](https://doi.org/10.26656/fr.2017.7(S1).29)
- Teoh SQ, Chin NL, Chong CW, Mat Ripen A, How S, Lim JJL. Health benefits and processing of tempeh with outlines on its functional microbes. *Future Foods.* 2024;9:100330. <https://doi.org/10.1016/j.fufo.2024.100330>
- Hernández-Gómez JG, López-Bonilla A, Trejo-Tapia G, Ávila-Reyes SV, Jiménez-Aparicio AR, Hernández-Sánchez H. In vitro bile salt hydrolase activity screening of probiotic microorganisms. *Foods.* 2021;10(3):674. <https://doi.org/10.3390/foods10030674>
- Lestari SD, Hussain N, Meor Hussin AS, Mustafa S, Sew YS. *Bacillus* multi-strain from Malaysian fish sauces demonstrating enzymatic and glutamic acid production activities. *Appl Food Biotechnol.* 2024;11(1):e26.
- Calvanese CM, Villani F, Ercolini D, De Filippis F. Postbiotics versus probiotics: possible new allies for human health. *Food Res Int.* 2025;217:116869. <https://doi.org/10.1016/j.foodres.2025.116869>
- Hamdi A, Lloyd C, Eri R, Van TTH. Postbiotics: a promising approach to combat age-related diseases. *Life (Basel).* 2025;15(8):1190. <https://doi.org/10.3390/life15081190>
- Eraghieh Farahani H, Pourhabibagher M, Asgharzadeh S, Bahador A. Postbiotics: novel modulators of gut health and metabolism. *Probiotics Antimicrob Proteins.* 2025. <https://doi.org/10.1007/s12602-025-10832-8>
- Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P. Probiotic properties of exopolysaccharide-producing *Lactobacillus* strains from tempoyak. *Molecules.* 2018;23(2):398. <https://doi.org/10.3390/molecules23020398>
- Peres Fabbri L, Cavallero A, Vidotto F, Gabriele M. Bioactive peptides from fermented foods. *Foods.* 2024;13(21):3369. <https://doi.org/10.3390/foods13213369>
- Shahabudin S, Masri MF, Lani MN, Azmi NS. Antifungal activity of lactic acid bacteria from Malaysian fermented foods. *Malays J Biochem Mol Biol.* 2022;1:8–15.
- Abdul Rahman S, Abdul Kahar A, Mansor A, Murni DL, Hussin A, Sharifudin SA, et al. Identification of indigenous microbes with antimicrobial activity from fermented vegetables. *Sci Heritage J.* 2017;1(1):01–03. <http://doi.org/10.26480/gws.01.2017.01.03>
- Irakoze ML, Wafula EN, Owaga EE. Effect of lactic acid fermentation on phytochemicals and antioxidant capacity of African vegetables. *Bacteria.* 2023;2(1):48–59. <https://doi.org/10.3390/bacteria201004>
- Ajibola OO, Thomas R, Bakare BF. Fermented indigenous vegetables and fruits from Malaysia as probiotics sources. *Food Sci Hum Wellness.* 2023;12:1493–1509. <http://doi.org/10.1016/j.fshw.2023.02.011>
- Chhikara N, Devi HR, Jaglan S, Sharma P, Gupta P, Panghal A. Bioactive compounds and health benefits of *Parkia speciosa*. *Agric Food Secur.* 2018;7:45. <https://doi.org/10.1186/s40066-018-0197-x>
- Li H, Chen C, Li Y, Li Z, Li C, Luan C. Antioxidant effects and probiotic properties of *Lactilactobacillus sakei*. *Foods.* 2023;12(23):4276. <https://doi.org/10.3390/foods12234276>
- Khadang Nikfarjam A, Mahdian E, Ahmadzadeh Ghavidel R, Karazhyan R. Probiotic potential of *Lactobacillus* strains from pickled garlic. *J BioSci Biotechnol.* 2021;10(1):41–51.

37. Xu J, Zeng Z, Zheng X, Chu Z, Peng S, Yang D, et al. Mining characteristic microbes in pickled chili peppers. *NPJ Sci Food*. 2025;9:77. <https://doi.org/10.1038/s41538-025-00442-7>
38. Xu J, Kong J, Zheng X, Chu Z, Osei PO, Peng W, et al. Novel metabolites linked to *Lactiplantibacillus plantarum* in chili fermentation. *J Future Foods*. 2025. <https://doi.org/10.1016/j.jfutfo.2025.02.011>
39. Shi H, An F, Lin H, Li M, Wu J, Wu R. Advances in fermented foods revealed by multi-omics. *Front Microbiol*. 2022;13:1044820. <https://doi.org/10.3389/fmicb.2022.1044820>
40. Abbaspour N. Fermentation's role in shaping plant-based foods. *Appl Food Res*. 2024;4(2):100468. <https://doi.org/10.1016/j.afres.2024.100468>
41. Thorakkattu P, Khanashyam AC, Shah K, Babu KS, Mundanat AS, Deliephan A, et al. Postbiotics: current trends in food and pharmaceutical industries. *Foods*. 2022;11(19):3094. <https://doi.org/10.3390/foods11193094>