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INTRODUCTION 
 
 
Congo Red, a diazo dye, was first synthesized in 1883 by Paul 
Böttiger, and it quickly became one of the most prominent dyes 
used in the textile industry due to its bright red color and affinity 
for cellulose fibers. The chemical structure of Congo Red con-
sists of two azo groups (-N=N-) and a biphenyl group, making it 
a complex and highly stable molecule. Despite its industrial ad-
vantages, Congo Red has garnered significant attention for its en-
vironmental and health impacts [1–5]. The widespread use of 
Congo Red in the textile industry has led to its release into the 

environment, primarily through wastewater discharge. Textile ef-
fluents containing Congo Red are often inadequately treated be-
fore being released into water bodies, leading to significant pol-
lution. The presence of Congo Red in water bodies can cause se-
vere environmental problems, including inhibiting photosynthe-
sis in aquatic plants by blocking sunlight penetration and altering 
the aquatic ecosystem [6–8]. 
 

Congo Red's high solubility in water and resistance to pho-
tolytic and chemical degradation make it persistent in the envi-
ronment. Its bright color is visually unappealing, and even at low 
concentrations, it can significantly affect the aesthetic quality of 
water bodies. Furthermore, the adsorption of Congo Red onto 
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 ABSTRACT 
The toxicity and persistence of Congo Red pollution make it a major threat to both the environ-
ment and human health. Biodegradation, which involves the breakdown of pollutants by microbes 
like bacteria, fungi, and algae, is an attractive and long-term solution to the problem of Congo 
Red pollution. Optimization techniques such as Response Surface Methodology can further im-
prove biodegradation processes' efficiency, but initial screening is often needed. Using a two-
level factorial design, this study successfully screened five parameters (temperature, pH, incuba-
tion time, concentration of Congo Red, and sucrose) that affect Congo red's decolorization by 
Serratia marcescens strain Neni-1. Additionally, it identified three significant parameters that 
contribute to optimized decolorization of Congo Red: pH, incubation time, and the concentration 
of Congo Red. Various diagnostic plots were used to analyze the important contributing factors 
or parameters, including ANOVA, Pareto's chart, and perturbations plot. The two-level factorial 
conclusion was supported by diagnostic plots such as half-normal, residual vs runs, Cook's dis-
tance, Box-Cox, leverage vs runs, DFBETAS, and DFFITS. Consistent with trends in the pub-
lished literature, this study found that the majority of Congo Red-degrading microorganisms 
thrive in nearly neutral environments. In future works, RSM can be used to further optimize the 
parameters that contributed to the decolorization of this bacterium on Congo Red.  
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sediment and its subsequent release can lead to long-term con-
tamination [9]. The toxicity of Congo Red is well-documented, 
posing risks to both aquatic life and human health. The dye is 
known to cause various toxic effects, including mutagenicity and 
carcinogenicity. Studies have shown that Congo Red can induce 
chromosomal aberrations and DNA damage in human lympho-
cytes, highlighting its genotoxic potential [6–8]. 
 

In aquatic environments, Congo Red is toxic to a wide range 
of organisms, including fish, algae, and microorganisms. The dye 
can cause respiratory distress in fish by impairing gill function 
and disrupting the oxygen-carrying capacity of the blood [7]. In 
addition to direct toxicity, the breakdown products of Congo Red, 
formed under anaerobic conditions, are often more toxic than the 
parent compound. For example, aromatic amines released during 
the reductive cleavage of azo bonds are known carcinogens. 
Given the environmental persistence and toxicity of Congo Red, 
its removal from wastewater is critical. Traditional wastewater 
treatment methods, including physical and chemical processes, 
often fall short in effectively degrading azo dyes like Congo Red. 
These methods can be costly and may produce secondary pollu-
tants. As a result, there is growing interest in biological treatment 
methods, particularly biodegradation, as a sustainable and effec-
tive solution for Congo Red removal  [6–8]. 
 

Biodegradation involves the use of microorganisms to break 
down complex organic pollutants into simpler, non-toxic com-
pounds. This process can occur under aerobic or anaerobic con-
ditions, with different microorganisms exhibiting varying degra-
dation capabilities. Aerobic biodegradation of Congo Red typi-
cally involves bacteria, fungi, and algae. One of the most studied 
bacteria for Congo Red degradation is Pseudomonas sp. This 
bacterial species can utilize Congo Red as a carbon and energy 
source, breaking it down into simpler compounds through enzy-
matic actions  [6–8]. Anaerobic degradation of Congo Red often 
involves a consortium of microorganisms, including bacteria and 
archaea, that work synergistically to reduce azo bonds. This pro-
cess typically results in the formation of aromatic amines, which 
can then be further degraded under aerobic conditions. Anaero-
bic-aerobic sequential treatment systems have been developed to 
enhance the complete mineralization of Congo Red [7]. 
 

Experiment planning in fundamental research is often done 
with a "intuitive" mindset. The "one factor at a time" (OFAT) 
approach has long been used in biological experiments. Here, we 
isolate the item under study and examine its output while holding 
all other variables and factors constant. Due to component inter-
actions, erroneous interpretation can be produced. The complex-
ity of the process necessitates controlling numerous input factors 
for best results. There may be a lot of interesting data coming in, 
but the experiment's results may carry large background noise. In 
such a case, statistically based experimental design allows for the 
optimization of data point selection to maximize the amount of 
relevant information obtained, potentially leading to much more 
intriguing data.  

 
One well-known screening method for finding important 

components early in the experimentation phase, when thorough 
knowledge of the system is usually lacking, is the Plackett-Bur-
man (PB) experimental design, named after its developers- stat-
isticians J.P. Burman and Robin L. Plackett, which created it to 
find important variables with as few experiments as possible. 
Two-factor interactions can easily confuse major effects when 
utilizing a Plackett-Burman design. Such designs are appropriate 
in situations where there is little chance of a two-way exchange 
of information. Despite its usefulness in two-level multi-factor 

experiments involving more than four factors, the Plackett-Bur-
man design (PB) does not confirm whether the effect of one fac-
tor depends on another. Additionally, insufficient data has been 
collected to determine the nature of these effects due to its small 
size. In the screening step, the two-level factorial design outper-
forms the PB method because it considers the interplay between 
the distinct components. By calculating the interconnections be-
tween important cultural factors, this method yields a more pre-
cise estimate of the ideal condition. Using a two-level factorial 
design has been beneficial for many screening processes in the 
literature [10–16]. Here we describe the use of a two-level facto-
rial design to screen for significant factors that influence the de-
colorization of Serratia marcescens strain Neni-1 on Congo Red. 

 
MATERIALS AND METHODS 
 
Growth and maintenance of Congo Red-degrading bacte-
rium 
Serratia marcescens strain Neni-1 was previously isolated as a 
Mo-reducer [17]. From an overnight pure culture of Serratia mar-
cescens strain Neni-1 in nutrient broth, 0.1 mL was added into 45 
mL of Congo Red enrichment medium in a 100 mL volumetric 
flask and the culture was incubated at 25 ℃ on an incubator 
shaker (Certomat R, USA) at 150 rpm for 48 h. The ingredients 
of the decolorization media (% w/v) were as follows: Glucose 
(1%), (NH4)2.SO4 (0.3%), MgSO4.7H2O (0.05%), yeast extract 
(0.05%), NaCl (0.5%), Na2HPO4 (0.705% or 50 mM). The media 
was adjusted to pH 7.0. Under neutral to basic conditions (pH > 
5), Congo Red turns red and to study the effects of pH, the pH 
was varied from pH 5.8 to 7.8 taking into account the pKa of 
phosphate buffer. Decolorization was monitored 490 nm to cover 
maximum absorption values for specific dyes as this wavelength 
is available in the BioRad 680 microplate reader.  
 

About 180 µL of the deolorization media containing the in-
gredients and conditions, including various Congo Red concen-
trations to be studied, was sterically pipetted into each well of a 
sterile microplate. Then 20 µL of the bacterium from a 48 h cul-
ture of the bacterium grown in the media above was then added 
to each well to initiate Mo-blue production. A sterile sealing tape 
that allows gas exchange (Corning® microplate) was used to seal 
the tape. The microplate was incubated statically at room temper-
ature. At defined times absorbance was taken. The lambda max-
imum for Congo red is 498 nm [18]. Furthermore, these prede-
termined wavelengths are used because, typically, water soluble 
dyes have shallow maximum absorption spectra and a discrep-
ancy of 20 nm from that peak does not result in a significant drop 
in absorbance. A percentage of decolorization was determined by 
subtracting the initial absorbance values from the final measure-
ments taken after 48 hours of incubation. 
 
Screening of significant parameters using two level factorial 
design 
The primary objective of utilizing the two-level factorial design 
was to determine the relative significance of various factors that 
had an impact, even amid complex interconnections. We con-
ducted a 2-factorial design using a total of five components. The 
code -1 denoted the lesser value, whereas the code 1 represented 
the bigger value. The result observed or response was the decol-
orization percentage. The tests were executed in accordance with 
the order outlined in Table 1. The experiment was conducted 
twice, and the findings of both trials are presented here, along 
with their respective means. The data were analyzed using De-
sign Expert 7.0, a software developed by Stat-Ease, Inc. (trial 
version) to identify the parameters that have a much greater im-
pact than others. 
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Table 1. Coded and actual range of values for Two-Level Factorial De-
sign. 
 
Factor Name Units Min-

imum 
Max-
imum 

Coded Low Coded High Mean Std. 
Dev. 

A pH 
 

5.80 7.80 -1 ↔ 5.80 +1 ↔ 7.80 6.80 1.03 
B Temperature  °C 20.0 40.0 -1 ↔ 20.00 +1 ↔ 40.0 30.0 10.33 

C Congo Red g/L 0.10 1.0 -1 ↔ 0.10 +1 ↔ 1.00 0.55 0.4648 
D Sucrose g/L 1.0 10.0 -1 ↔ 1.00 +1 ↔ 10.0 5.5 4.65 
E Incubation 

time 
Days 1 4 -1 ↔ 1.00 +1 ↔ 4 2.5 1.55 

 
Statistical Analysis 
The values represent the mean plus or minus the standard devia-
tion. Experiments were carried out three times. The comparison 
between groups was conducted using either one-way analysis of 
variance with post hoc analysis using Tukey's test or Student's t-
test. A p-value less than 0.05 was deemed significant. Values will 
be reduced to three decimal points where necessary. 
 
RESULTS 
 
A basic method used in experimental design, two-level factorial 
designs allow for the simultaneous examination of numerous 
components' impacts. They shine in industrial experiments where 
understanding the interplay of several components is crucial for 
process optimization. Each factor in a two-level factorial design 
has two levels, typically denoted as +1 and -1, that reflect the 
high and low settings of the factor, respectively [19]. Power anal-
ysis is an essential element in experimental design, as it assesses 
the test's capacity to detect a specific effect size with a defined 
level of confidence.  
 

The ideal power of a test, defined as the likelihood of cor-
rectly rejecting the null hypothesis when the alternative hypoth-
esis is true, should be 80% or higher. This means there is an 80% 
chance of discovering a true effect if it exists. Power analysis is 
used in two-level factorial designs to determine the probability of 
detecting significant main effects and interactions between fac-
tors. This is especially useful when considering a specific signal-
to-noise ratio (SNR), which measures the strength of the effect 
compared to the variability in the data [20]. The alpha level (α) 
is a key component that influences power. It is usually set at 5% 
and represents a Type I error probability, which occurs when a 
genuine null hypothesis is incorrectly rejected. Reducing alpha 
levels decreases the probability of Type I error but can also di-
minish statistical power [19]. 

 
The signal-to-noise ratio (SNR), defined as the ratio of the 

effect amplitude to the error term's standard deviation, indicates 
a more distinct signal in the presence of noise, enhancing the 
test's power [20]. Increasing the sample size of an experiment of-
ten enhances its statistical power by yielding more data and re-
ducing the standard error of the estimations. The power of a study 
is influenced by the magnitude of the effect under investigation, 
as larger effects are more readily detectable (Montgomery, 
2017). The number of components and their levels in a factorial 
design directly impact the number of experimental runs. Increas-
ing the number of factors or levels leads to a higher level of com-
plexity and requires a larger sample size to ensure sufficient sta-
tistical power [20].  

 
A design is deemed appropriately powered to detect the re-

quired effect sizes if the computed power is 80% or above. If the 
sample size is smaller, it may be essential to increase it or reeval-
uate the parameters of the experimental design (Cohen, 1988). 
Power analysis for regular two-level factorial designs ensures 

that experiments have the ability to detect significant effects, 
while also balancing the risks of Type I and Type II errors. This 
analysis provides a strong framework for drawing reliable con-
clusions from experimental data [19,20]. The results of this in-
vestigation showed a power of above 80%, with a specific value 
of 94.9%, indicating that the study had sufficient power (Table 
2). 
 
Table 2. Regular Two-Level Factorial Design design power. 
 

Name Units 
Delta 
(Sig-
nal) 

Sigma 
(Noise) 

Sig-
nal/Noise 

Power 
for A 

Power 
for B 

Power 
for C 

Power 
for D 

Power 
for E 

Decol-
oriza-
tion % 

% 2 1 2 94.9% 94.9% 94.9% 94.9% 94.9% 

 
 
Two-level factorial design for screening the operational fac-
tors 
The five operational parameters considered for the factor screen-
ing investigation were temperature, incubation period, concentra-
tion of Congo Red, and sucrose concentrations. The study used a 
regular two-level factorial design. The bacterial decolorization 
rate varied between 77 and 97%, covering the whole range of 
values that were considered. The experimental values, projected 
response values, and actual values of the experiment's variables 
are all shown in Table 3, which also illustrates the design plan. 
 

Table 3 displays the results of an analysis of variance 
(ANOVA), the F-test, and the P-value for a selected factor. With 
these checks, we can see whether the model is statistically signif-
icant. The results demonstrated that the model is very significant, 
as indicated by the low P value of less than 0.0001 and the F value 
of 18.22. A low P value for the model makes this very evident. 
You can check the model's reliability by calculating the correla-
tion coefficient (R2: 0.9011, closer to unity) and the adjusted cor-
relation coefficient (Adj R2: 0.8516), which means that 85.16 
percent of the total variance in the response data is accounted for. 
A finding of 12.738, for the adequacy accuracy means that the 
model has a suitable signal to use in exploring the design space. 
In this case, A (pH), C (Congo red concentration), E (incubation 
time), and the interaction AE were significant model terms, as 
confirmed by P-values <0.05. Predicted bacterial decolorization 
as a response can be obtained and expressed in terms of coded 
and actual factors equation by applying the two-factor interactive 
method (Table 4). 
 
Table 3. A two-level factorial analysis using analysis of variance 
(ANOVA). 
 

Source Sum of 
Squares df Mean 

Square F-value p-value  

Model 420.58 5 84.12 18.22 < 0.0001 significant 
A-pH 44.36 1 44.36 9.61 0.0113  

B-Temperature 0.3186 1 0.3186 0.0690 0.7981  

C-Congo Red 86.05 1 86.05 18.63 0.0015  

D-Sucrose 0.0050 1 0.0050 0.0011 0.9743  

E-Incubation 
time 289.84 1 289.84 62.77 < 0.0001  

Residual 46.18 10 4.62    

Cor Total 466.76 15     

Std. Dev. 2.15 R² 0.9011 
Mean 86.60 Adjusted R² 0.8516 
C.V. % 2.48 Predicted R² 0.7467 

  Adeq Precision 12.738
6 
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Table 4. Bacterial decolorization prediction based on equations involving 
coded and actual factors. 
 
Coded Actual  

Decolorization Factor Decoloriza-
tion Factor 

+86.60  +70.61810  
+1.67 A +1.66509 pH 
+0.1411 B +0.014112 Temperature 
-2.32 C -5.15354 Congo Red 
-0.0177 D -0.003941 Sucrose 
+4.26 E +2.83747 Incubation time 

 
 

Table 5 lists the investigated components' estimated coeffi-
cients along with their corresponding standard errors, confidence 
limits, and variance inflation factors (VIF). Of the components 
that were chosen, the only ones with positive coefficients are in-
cubation time and pH; of these, incubation time has a higher pos-
itive value. Accordingly, it appears that both parameters posi-
tively affect the growth of this bacterium on Congo Red, but the 
incubation duration has a stronger positive impact. Conversely, a 
negative value for the coefficient estimate of the Congo Red con-
centration indicates that fed more than the ideal concentration of 
Congo Red hinders the growth of this bacterium. 

 
How much non-orthogonality in the design increases the 

variance of the model's coefficients is measured by the variance 
inflation factor (VIF). The VIF design has a higher standard error 
for a model coefficient than the orthogonal design by a factor 
equal to the square root of the VIF. An optimal VIF is 1, which 
suggests that the coefficient is orthogonal to the other model 
components and has a correlation coefficient of 0. However, 
VIFs over 10 may be suspicious. VIFs larger than 100 show mul-
ticollinearity-related coefficient errors, and VIFs greater than 
1,000 indicate severe collinearity. Variance inflation factor (VIF) 
= 1, indicating multicollinearity in regression analysis [21–23]. 
Based on the result obtained, out of five screened parameters, 
only three forms major influential factors as obtained through 
two-level factor analysis.  
 
Table 5. Coefficient estimate obtained during ANOVA for two-level fac-
torial design. 
 
 

Factor Coefficient 
Estimate df Standard 

Error 
95% CI 

Low 
95% CI 

High VIF 

Intercept 86.60 1 0.5372 85.40 87.80  

A-pH 1.67 1 0.5372 0.4681 2.86 1.0000 
B-Tempera-
ture 0.1411 1 0.5372 -1.06 1.34 1.0000 

C-Congo 
Red -2.32 1 0.5372 -3.52 -1.12 1.0000 

D-Sucrose -0.0177 1 0.5372 -1.21 1.18 1.0000 
E-Incubation 
time 4.26 1 0.5372 3.06 5.45 1.0000 

 
Fig. 1 displays the Pareto charts that were made to examine 

the statistical significance of each response coefficient. The two 
limit lines utilized in the Pareto chart to classify the t-value of the 
effect (2.228) are the Bonferroni limit line (t-value of effect: 
3.827) and the t-limit line. When classifying coefficient im-
portance, there are three separate groups to consider. The signif-
icance level of a coefficient is determined by how quickly its t-
value of effect rises above the Bonferroni threshold. Coefficients 

two and three, with t-values of effect that lie between the Bonfer-
roni line and the t-limit line, are considered to have a high likeli-
hood of being statistically significant; coefficients one and two 
are not to be included in the analysis because they are not statis-
tically significant. The t-values for both of these coefficients fall 
in the middle of the two lines representing the Bonferroni and t-
limit tests. According to a Pareto chart, the variables that have 
the most positive impact are the incubation period and pH, 
whereas the concentration of Congo Red has a significant but 
negative impact. The results obtained using the coefficient esti-
mate are comparable to these. 

 

 
Fig. 1. Pareto chart of operational parameters. 
 

In order for this bacterium to grow on Congo Red, the most 
important factors were the concentration of Congo Red, the pH 
of the medium, and the amount of time it was left to incubate. 
These features have been identified in various OFAT-based 
methods as critical for the high microbial decolorization on 
Congo Red. The concentrations of Congo Red used in this study 
were well within the range that most microorganisms that can de-
grade Congo Red are known to tolerate. The level of harm that 
Congo Red causes to microbes depends on the microbes them-
selves and their environment. The amounts of Congo Red that are 
toxic to different bacteria have been the subject of several studies. 
Studies have shown that Congo Red can inhibit bacterial growth 
and activity at concentrations as low as 10-50 mg/L. For exam-
ple, it has been noted that at these doses, the growth of some spe-
cies of Bacillus and Pseudomonas is hindered [6]. Unlike bacte-
ria, fungi like Phanerochaete chrysosporium can withstand 
larger quantities of Congo Red. Nonetheless, levels beyond 100 
mg/L can still have harmful effects and hinder the growth of 
fungi and enzyme activity [24]. Certain types of algae are partic-
ularly vulnerable to the effects of Congo Red. 
 

Photosynthesis and development in different species of al-
gae can be negatively impacted by concentrations as low as 1-10 
mg/L [8]. Tolerance might vary greatly in mixed microbial cul-
tures because various species interact with each other. According 
to [7], certain consortia can efficiently break down Congo Red 
up to 200 mg/L, but as the concentrations rise, the microbes' ef-
ficiency and health suffer a sharp reduction. In order to examine 
the statistical importance of each response coefficient, a Pareto 
chart was generated (Fig. 1). The Bonferroni limit line (t-value 
of effect: 3.728) and the t-limit line (t-value of effect: 2.201), 
which are two distinct sets of t-values, are shown in the Pareto 
graphic. In general, there are three main contexts in which coef-
ficients are useful. For a coefficient to be considered significant, 
its t-value of effect must be higher than the Bonferroni threshold, 
and the parameters E and C are the two parameters to do so. pH, 
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with t-values of effect that lie between the Bonferroni line and 
the t-limit line, is considered to have a high likelihood of being 
statistically significant; the rests are not to be included in the 
analysis because they are not statistically significant.  
 

The important contributing parameters in the decolorization 
of this bacterium on Congo Red were the incubation time and pH 
giving positive effects and Congo Red concentration, which gave 
a negative effect. These are factors that have been identified in 
several OFAT-based approaches as being important in contrib-
uting high decolorization of microorganisms on Congo Red [25–
33]. This investigation was conducted out using Congo Red con-
centrations that fell well within the range that previous research 
has shown to be tolerated by the majority of bacteria capable of 
Congo Red degradation.  
 

The perturbation plot (Fig. 2) offers valuable insights into 
the impact of different factors on the decolorization of Congo 
Red by bacteria. The plot demonstrates that both pH and incuba-
tion time significantly influence the decolorization process. pH 
shows a prominent slope, while incubation time also has a sub-
stantial effect. In contrast, the plot shows that temperature, 
Congo Red concentration, and sucrose concentration have rela-
tively stable or unchanging values. This suggests that although 
changes in pH and incubation time significantly impact the bac-
terium's ability to remove color, the process remains relatively 
consistent when it comes to different temperatures, dye concen-
trations, and sucrose levels.  

 
Therefore, it is crucial to optimize the pH and prolong the 

incubation time to improve decolorization efficiency. However, 
controlling temperature, Congo Red concentration, and sucrose 
concentration within the specified range is not as crucial. This 
comprehension allows for modifications in industrial procedures 
to attain enhanced outcomes in the decolorization of Congo Red. 
The perturbation plot clearly shows an interaction between the 
incubation period and pH, which would be ignored by the Plack-
ett-Burman screening method [34–37]. 
 
 

 
 
Fig. 2. Operating parameters obtained through a standard two-factor de-
sign and shown in a perturbation plot. 
 

To confirm the assumption of normality, we created and an-
alyzed a half-normal probability plot of the residuals (Fig. 3).  

 
 
 

This plot aims to ascertain if the disparities between the an-
ticipated and observed values conform to a normal distribution. 
Assessing the alignment of the residuals with a line, which rep-
resents the expected distribution pattern, is essential for this eval-
uation. The majority of data points in the plot are in close prox-
imity to this line, suggesting that the residuals generally conform 
to a normal distribution. Nevertheless, there is one remarkable 
anomaly, namely Run 6, situated on the left side, which diverges 
considerably from this pattern. This discrepancy indicates that 
the residual linked to Run 6 deviates significantly from what 
would be anticipated assuming normality. 
 
 

 
 
Fig. 3. For the two-level factorial optimization experiments, diagnostics 
were plotted using a normal plot of residuals. 
 

Fig. 4 shows a good match between the model's predicted 
values and the actual experimental results. For determining 
which power law transformation is most suitable given the value 
of lambda, the Box-Cox plot (Fig. 5) provides useful infor-
mation. Avoid further transforming the observed response to fit 
the model; the 95% confidence interval already has a value of 1, 
which is the value that was designed into the model.  
 
 

 
 
 
Fig. 4. Diagnostic's plot for the two-level factorial optimization studies, 
showing the relationship between predicted and actual results. 

-1.000 -0.500 0.000 0.500 1.000

82

84

86

88

90

92

A

A

B B

C

C

D D

E

E

Perturbation

Deviation from Reference Point (Coded Units)

D
ec

ol
or

iz
at

io
n 

(%
)

Factor Coding: Actual

Decolorization (%)

Actual Factors
A = 6.8
B = 30
C = 0.55
D = 5.5
E = 2.5

Externally Studentized Residuals

N
or

m
al

 %
 P

ro
ba

bi
lit

y

Normal Plot of Residuals

-2.00 -1.00 0.00 1.00 2.00

1

5
10

20
30

50

70
80

90
95

99

Decolorization

Color points by value of
Decolorization:
76.5476 96.7296

Actual

Pr
ed

ic
te

d

Predicted vs. Actual

75

80

85

90

95

100

75 80 85 90 95 100

Decolorization

Color points by value of
Decolorization:
76.5476 96.7296

Std # 3 Run # 6
X: 89.2826
Y: 91.3884

https://doi.org/10.54987/jebat.v5i2


JEMAT 2023, Vol 11, No 2, 64-71 
https://doi.org/10.54987/jemat.v11i2.894   

- 69 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

 
 
Fig. 5. Diagnostic's plot in the form of Box-Cox plot for the two-level 
factorial optimization studies. 
 

Fig. 6 displays a graph showing the relationship between 
leverages and runs. The graph illustrates that all the numerical 
values obtained are within the standard range of 0 to 1. This range 
indicates that no specific design point excessively affects the 
model's accuracy. If a data point is flawed, a high leverage value 
greater than one is considered problematic because it would sig-
nificantly impact the model. The leverage plot demonstrates that 
no data points surpass the average leverage, suggesting the ab-
sence of any problematic data. In addition, Cook's distances can 
be used to quantify response outliers, similar to those observed 
in an experimental trial (Fig. 7).  

 
A higher value of Cook's distance, which is always positive, 

indicates a more influential observation. Researchers commonly 
employ a threshold of three times the average value of Cook's D 
to ascertain the significance of an observation. In this instance, 
there are no outliers identified, as all Cook's distance values fall 
within the acceptable threshold of 1. Finally, Fig. 8 illustrates the 
residuals plotted against the run data. The lack of discernible se-
rial correlation in this plot indicates that the data is random, 
thereby bolstering the assumption of randomness in the dataset 
[38–42]. 
 

 
Fig. 6. The two-level factorial optimization studies' diagnostic plot based 
on leverage versus runs. 
 
 

 
 
Fig. 7. The two-level factorial optimization studies' diagnostic plot based 
on Cook's distance versus runs. 
 
 

 
 
Fig. 8. The diagnostic plot for the two-level factorial optimization studies 
is shown as residuals vs runs. 
 

It is crucial to acknowledge and consider significant obser-
vations that have a strong impact to uphold a study's credibility 
and reliability. To prevent coefficient estimations and model in-
terpretations from being skewed, it is necessary to eliminate out-
liers or data entry errors that lead to excessive influence 
measures. Integrating these essential data points during the pro-
cess of model fitting can result in erroneous conclusions. In the 
past, the process of identifying outliers involved using histo-
grams and scatterplots, which were performed prior to conduct-
ing linear regression analysis. Nevertheless, these approaches 
were based on personal opinions and did not measure the influ-
ence of specific extreme values on the ultimate outcomes. In or-
der to tackle this issue, quantitative measurements such as DFFIT 
and DFBETA were created. The DFFITS algorithm assesses the 
influence of each example on the predicted value. DFFITS values 
have the ability to be either positive or negative, unlike Cook's 
distances which are limited to being positive only. A DFFITS 
value of 0 indicates that the data point is exactly on the regression 
line.  
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The possibility arises from the concept of leverage, which 
elucidates the connection between an observed value, its antici-
pated value, and an unobserved value. DFFITS is a mathematical 
measure that is calculated by multiplying the externally studen-
tized residual (ti) by the leverage. High leverage points have a 
positive impact on the DFFITS value, whereas low leverage 
points have a negative impact on it. This facilitates a more intri-
cate comprehension of how individual data points impact the 
model, allowing for more accurate identification and manage-
ment of influential observations [37,43,44]. The plots show the 
DFBETAS values (Fig. 9) were within the size-adjusted thresh-
old acceptable range while the DFFITS values were within the 
cut-off values (Fig. 10).  
 

 
 
Fig. 9. The diagnostic plot for the two-level factorial optimization studies 
is shown as DFBETAS, which stands for intercept versus runs. 
 

 
 
Fig. 10. The diagnostic plot for the two-level factorial optimization stud-
ies is presented as DFFITS vs runs. 
 
CONCLUSION 
 
The five independent factors influencing the decolorization of 
Serratia marcescens strain Neni-1 on Congo Red were screened 
using a two-level factorial design. The concentration of sucrose, 
pH, temperature, incubation time, and Congo Red are all relevant 
variables. This bacterium successfully decolorized Congo Red 
using a two-factor factorial design, which successfully identified 
the concentration of Congo Red, pH, and incubation time as crit-
ical significant parameters. These parameters can be further op-
timized in future works using RSM. Analytical tools such as anal-
ysis of variance (ANOVA), pertubation plot, Pareto chart and 

other diagnostic plots were used to examine the significant con-
tributing factors or parameters. Box-Cox, DFBETAS, DFFITS, 
Cook's distance, half-normal, and other diagnostic plots all cor-
roborated the two-level factorial conclusion. Many microorgan-
isms that degrade Congo Red have an incubation time ranging 
from two to five days for optimized decolorization and are inhib-
ited by high concentrations of Congo red, so this is a predicted 
result. A longer incubation time allows for more decolorization. 
The results obtained in this study align with the trends in the pub-
lished literature regarding the optimal growth conditions for most 
microorganisms that degrade Congo Red. 
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