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INTRODUCTION 
 
Hydrocarbons, such as oil, grease, and diesel, rank high among 
scheduled industrial wastes, second only to heavy metals [1]. 
Diesel and hydrocarbon compounds are hazardous to humans and 
other organisms, irritating mucous membranes, skin, eyes, and 
respiratory tract. Diesel pollution has been a significant 
environmental issue due to its widespread use and potential for 
causing severe ecological damage. Several notable diesel 
pollution incidents highlight the global impact of this problem. 
Diesel pollution in Antarctica, primarily from research stations 
and tourist vessels, poses significant risks to the pristine 
environment. Diesel spills can have long-lasting effects due to 
the continent's extreme cold, which slows down the natural 
degradation of pollutants. Studies have shown that diesel 
pollution adversely affects penguin populations and other 

wildlife in the region [2]. The explosion of the Deepwater 
Horizon drilling rig in the Gulf of Mexico resulted in the release 
of approximately 4.9 million barrels of oil, causing extensive 
environmental damage to marine and coastal ecosystems.  
 

In 2001, a significant environmental disaster occurred in the 
Straits of Malacca when the Indonesian tanker MV Endah Lestari 
capsized, weighing 533 tons and carrying 18 tons of diesel and 
600 tons of phenol. This accident resulted in the contamination 
of the coastal waters of Indonesia and Malaysia. The spill had a 
devastating impact on the local marine environment, killing 
thousands of fish and other marine organisms, including those 
raised in 85 offshore cages used for aquaculture. The toxic nature 
of diesel and phenol exacerbated the environmental damage, 
posing serious threats to both marine life and coastal ecosystems 
[3] 
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 ABSTRACT 
Mathematical modeling of microbial growth via nonlinear regression is essential for determining 
key parameters such as the maximum specific growth rate, which are foundational for secondary 
modeling. Models such as modified Gompertz, modified Logistic, modified Richards, Buchanan-
3-phase, Baranyi-Roberts, modified Schnute, von Bertalanffy, Morgan-Mercer-Flodin (MMF), 
and Huang elucidate the impact of substrates on bacterial growth and biotransformation 
processes, vital for biotechnological applications like wastewater treatment and bioremediation. 
A previously isolated diesel-degrading Pseudomonas sp. strain Neni-4 growth on diesel was 
modeled using the aforementioned primary models. Experimental data showed that diesel 
concentrations from 0.25 to 3.5% (v/v) are toxic, slowing bacterial growth and increasing lag 
periods from 3 to 15 hours. Among the primary models tested, the Baranyi-Roberts model 
provided the best fit, evidenced by a high adjusted coefficient of determination, low RMSE and 
AICc values, and favorable accuracy (AF) and bias factors (BF). The reliability of the Baranyi-
Roberts model underscores its suitability for modeling bacterial growth under toxic conditions, 
offering valuable insights for optimizing biotechnological processes involving bacterial 
adaptation and growth under stress conditions. 

KEYWORDS 
 
Diesel-degrading bacterium 
Primary models 
modified Gompertz 
Baranyi-Roberts 
Pseudomonas sp. 

 

 
JOURNAL OF ENVIRONMENTAL MICROBIOLOGY 

AND TOXICOLOGY 
 

Website: http://journal.hibiscuspublisher.com/index.php/JEMAT/index 
 

JEMAT VOL 11 NO 2 2023 
Plastics-polluted river  

https://doi.org/10.54987/jebat.v5i2
mailto:rusnam_ms@yahoo.com


JEMAT 2023, Vol 11, No 2, 35-44 
https://doi.org/10.54987/jemat.v11i2.890   

- 36 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

This disaster underscored the risks associated with offshore 
drilling operations and led to widespread calls for stricter 
regulations and safety measures in the oil industry. One of the 
most devastating oil spills in history occurred when the Exxon 
Valdez tanker struck a reef in Prince William Sound, Alaska, 
releasing 10.8 million gallons of crude oil. This spill resulted in 
massive environmental damage, killing thousands of seabirds, 
otters, and other wildlife. The incident significantly changed U.S. 
oil spill prevention and response policies.  
 

More recently, The Japanese bulk carrier MV Wakashio ran 
aground off the coast of Mauritius, spilling approximately 1,000 
tonnes of oil into the Indian Ocean. The spill had severe impacts 
on the island's coral reefs, mangroves, and marine biodiversity, 
highlighting the vulnerability of small island nations to maritime 
pollution. A case of continuing hydrocarbon pollution is seen in 
the Niger Delta, where it has experienced chronic oil pollution 
for decades due to leaks and spills from pipelines and 
infrastructure operated by multinational oil companies. This has 
caused long-term environmental degradation, affecting local 
communities' livelihoods and health. Efforts to clean up the 
pollution and hold companies accountable continue to face 
significant challenges [4–8]. These incidents underscore the 
importance of stringent regulations and effective response 
mechanisms to mitigate the environmental impact of diesel spills. 
Continued research and international cooperation are essential to 
address the challenges posed by diesel pollution and protect 
vulnerable ecosystems worldwide. 
 

Diesel, a pollutant generated in various industrial processes, 
is composed of complex hydrocarbons, primarily with an 
aromatic benzene ring structure. Due to artificial contamination, 
it accumulates in soil, rivers, and groundwater, causing toxicity 
to both animals and plants and posing significant environmental 
concerns. Diesel's persistence in the environment is due to its 
hydrophobic nature and resistance to natural degradation 
processes. Various physicochemical methods are employed to 
remove diesel from wastewater, including chemical oxidation, 
which involves the use of strong oxidizing agents to break down 
diesel into less harmful substances. However, it can be expensive 
and may produce secondary pollutants. Another method is 
solvent extraction. This technique uses solvents to dissolve and 
extract diesel from contaminated water. While effective, it 
requires the safe disposal of the used solvents, which can be 
environmentally hazardous. Another method is adsorption by 
activated carbon.  

 
Activated carbon is highly effective in adsorbing diesel 

from wastewater due to its large surface area and porosity. 
However, the regeneration and disposal of spent carbon can be 
challenging. Biological treatment, specifically using diesel-
utilizing microorganisms, offers a more economical and efficient 
alternative. These microorganisms metabolize diesel, breaking it 
down into less harmful compounds through natural biochemical 
processes. Biological treatment avoids the risk of secondary 
contamination and is sustainable, leveraging the innate 
capabilities of bacteria and fungi to detoxify diesel pollutants [9–
14]. Primary models effectively capture the nature of growth 
curves covering the lag, log (exponential), and stationary phases. 
This detailed comprehension is vital for predicting how bacteria 
respond to changes in their environment and nutrient availability. 
It is crucial to establish growth under controlled noninhibitory 
conditions before studying the effects of inhibitors. This sets a 
baseline for comparison in modeling efforts.  

 
 

Once primary models outline growth under certain 
conditions, secondary models can forecast how inhibitors impact 
growth patterns. These secondary models consider factors like 
substrate inhibition, which's key for optimizing bioprocesses. 
When combined primary and secondary models create a 
framework that improves our ability to foresee and manage 
behavior across diverse biotechnological settings. Primary 
models play a role in kinetics by providing essential parameters 
and insights into bacterial growth under controlled 
circumstances.  

 
Parameters such as growth rate (μm) lag phase duration and 

peak population density derived from primary models are crucial 
for secondary modeling focused on substrate inhibition 
dynamics. This knowledge is vital for optimizing bioprocesses 
spanning areas such as wastewater treatment, bioremediation and 
fermentation processes. The synergy between secondary models 
establishes a foundation for comprehending and steering 
microbial growth within industrial contexts and environmental 
scenarios. They allow for forecasts and fine tuning of operations, 
guaranteeing biotechnological activities' optimal performance 
and success [15–23]. This research aims to develop models that 
predict the development of Pseudomonas sp. strain Neni-4 on 
diesel. The models used include modified Gompertz, modified 
Logistic, modified Richards, Baranyi-Roberts, and modified 
Schnute models. The objective is to determine the most suitable 
model for the growth curve to gain a comprehensive insight into 
bacterial growth in these settings and enhance the precision of 
forecasts for improving biotechnological procedures related to 
diesel degradation. 
 
MATERIALS AND METHODS 
 
Growth medium for the diesel-degrading bacterium 
A previously isolated phenol-degrading bacterium [24] was 
shown to grow on 1% (v/v) diesel as a carbon source. The growth 
characterization is published elsewhere. An aliquot of 0.1 mL 
from a freshly cultured overnight suspension of the bacterium in 
nutrient broth was transferred to 100 mL of  medium contained 
within a 250 mL volumetric flask. The growth medium used was 
Minimal Salt Medium (MSM), which included diesel at various 
concentrations as the only carbon source and (mg/L) 0.50 
NH₄NO₃, 0.50  KH₂PO₄, 0.50 MgSO₄･7H₂O, 0.10 CaCl₂, 0.50 
K₂HPO₄, 0.20 NaCl and 0.01 MnSO₄･7H₂O, 0.01 FeSO₄･7H₂O 
[4]. The pH of this medium was adjusted to pH 7.0. This culture 
was then incubated at 25 °C on a shaking incubator (Certomat R, 
USA) set to 150 rpm, continuing for a period of 48 h. One mL 
sample from the bacterial culture was serially diluted using sterile 
tap water for subsequent enumeration of colony-forming units 
per milliliter (CFU/mL) [25]. 
 
Nonlinear curve fitting of the bacterial growth data 
In this investigation, we used CurveExpert Professional (Version 
1.6) software to analyze bacterial growth on diesel. This program 
use the Marquardt method to minimize the sum of squares of the 
disparities between anticipated and measured values. The 
Marquardt algorithm is an iterative technique that modifies 
parameters to minimize the discrepancy between projected and 
actual data, guaranteeing an ideal alignment with the growth 
curve. Using this strategy, we wanted to determine the best 
accurate main model for characterizing bacterial growth under 
these conditions (Table 1).  
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Table 1. Mathematical modeling of diesel growth by Pseudomonas sp. 
strain Neni-4. 
 
Model p Equation 
 
Modified Logistic 
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Note: 
A= Microorganism growth upper asymptote; 
N0= Microorganism growth lower asymptote; 
um= maximum specific microorganism growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = sampling time 
α,β,k,δ = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
For the Baranyi-Roberts model, the lag time (𝜆𝜆) (h-1) or (d-1) can be calculated as h0=µm 

For modified Schnute, A =µ/α 
 
Statistical analysis 
The study included extensive error function studies, including 
Root-mean-square error (RMSE), Ross's bias factor (BF), 
accuracy factor (AF), and adjusted coefficient of determination 
(adjR2)  [26]. The rootmean-square error or RMSE was 
calculated according to Eq. 1; 
 
 
The RMSE was calculated as follows,  
 

     (Eqn. 1) 
where  
 
n  number of experimental data  
Pdi   predicted values by the model  
Obi  experimental data 
p   parameters number of the model 
 

Generally, models with fewer parameters tend to have lesser 
RMSE values [27]. Determining R2, also known as the coefficient 
of determination, because it does not take into account the 

number of parameters of models, an alternative approach is to use 
an adjusted form of R2 that has been modified to account for the 
large number of model parameters (Eqns. 2 and 3) of which it is 
used to work out the quality of nonlinear models according to the 
formula below. 
 

    (Eqn. 2) 
 

   (Eqn. 3) 
where  
 

is the total variance of the y-variable and RMS is the 
Residual Mean Square  
 

The Akaike Information Criterion (AIC) is a method for 
model selection that focuses on minimizing AIC values to choose 
the best model. Although a lower AIC value is often preferred, in 
some cases, an AICc value of -10 is more advantageous than -1. 
The AIC includes a penalty for increasing model complexity, 
discouraging overly complicated models. When dealing with a 
small number of parameters, researchers often use the corrected 
AIC (AICc), which provides more precise model comparisons by 
adjusting for small sample sizes [28]. AICc is calculated using 
the following equation (Eqn. 4); 
 

 (Eqn. 4) 
 
Where  
n  number of data points   
p  parameter numbers of the model 
 
Equations 5 and 6, referred to as Accuracy Factor (AF) and Bias 
Factor (BF), are metrics utilized to evaluate the adequacy of 
models frequently employed in forecasting bacterial 
development in food science [29]. The statistics determine a 
perfect connection between experimental and projected results. 
A fail-safe model has a Benefit Factor (BF) beyond 1.0, whereas 
a fail-dangerous model has a BF below 1.0. The AF is 
consistently less than one, with values approaching one as 
projected by the most precise models. 
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RESULTS AND DISCUSSION  
 
The growth of the bacterium on diesel 
Diesel-degrading bacteria are ideal for diesel remediation due to 
their cost-effectiveness and efficiency in breaking down 
hydrocarbons. Biodegradation of diesel by microorganisms has 
been a subject of intense research worldwide, driven by the need 
for environmentally friendly solutions to oil pollution. These 
bacteria utilize diesel as a carbon and energy source, breaking it 
down into less harmful substances. Research focuses on 
identifying effective strains, optimizing conditions for 
biodegradation, and understanding the metabolic pathways 
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involved. This knowledge enhances bioremediation strategies, 
making them more effective for cleaning diesel-contaminated 
environments and mitigating ecological damage. Key factors 
influencing biodegradation include microbial community 
composition, environmental conditions, and nutrient availability. 
Continuous advancements in this field promise to improve the 
sustainability and efficiency of diesel bioremediation efforts 
globally.  
 

Bacteria that could degrade diesel include Pseudomonas 
species [9,30–39], Bacillus spp. [37,38,40–44],  Acinetobacter 
spp. [11,13,31,45–51] and Rhodococcus species [37,52–59]. 
Each of these degraders has its own unique properties, such as 
the ability to tolerate high concentrations of diesel, salt tolerant, 
heavy metals tolerant, and the ability to grow at either extreme 
pHs or temperatures. The existence of many bacteria with diesel-
degrading ability makes bioremediation the ideal method for 
diesel degradation. To date, very few primary models have been 
utilized. The growth of Pseudomonas sp. strain Neni-4 in the 
form of bacterial biomass on various concentrations of diesel was 
first converted to a natural logarithm (Fig. 1) before modeling. 
As the concentrations of diesel were increased, toxicity to growth 
was exhibited by an increase in the lag phase from 3 to 15 hours 
as well as a decline in biomass (Fig. 1). 
 

 
Fig. 1. Growth profile of Pseudomonas sp. strain Neni-4 on various 
concentrations of diesel. 
 

It has been established that bacterial growth-linked 
processes, including growth on diesel, frequently display a 
unique phase in which the specific growth rate commences at a 
value of zero after which it accelerates to a maximal value (µmax) 
in a certain time period, producing a lag time (λ) [60]. The 
sigmoidal shape commonly observed in bacterial growth curves 
is believed to feature a lag period. During this phase, bacterial 
cells adapt their growth mechanisms to new environmental 
conditions after a period of dormancy, particularly during 
storage. This preparatory phase is traditionally called the "lag 
period," when the cells adjust to new conditions before entering 
exponential growth. Baranyi and Roberts [61] described this 
phase as a transient period that links two autonomous growth 
systems. They posited that introducing the lag time or parameter 
in growth models serves primarily for convenience rather than a 
mechanistic explanation. It is hypothesized that individual 
bacterial cells exhibit varying growth rates within the initial 
inoculum.  

 
 
 

These rates, if measurable, would likely display a nonlinear 
distribution, a concept supported by multiple researchers, 
including Baranyi and Roberts [61] and Buchanan et al. [23]. 
Primary modeling of microbial growth or product formation, 
such as in metal detoxification processes, is crucial as it helps in 
determining key growth parameters. The values obtained, 
particularly the maximum specific growth rate (μm), are 
invaluable for subsequent stages in secondary modeling. These 
parameters are crucial as they provide foundational insights 
necessary for accurately modeling microbial behavior under a 
variety of environmental conditions and stresses.  

 
In further analyses, secondary models such as those 

developed by Monod, Haldane, Aiba, and Teissier are frequently 
employed to elucidate the impact of substrates on bacterial 
growth or the transformation rates of xenobiotics. These models 
are instrumental in describing how different concentrations of 
substrates can influence microbial growth kinetics and 
biotransformation processes, which are critical in 
biotechnological applications ranging from wastewater treatment 
to bioremediation and the production of biochemicals [62,63]. 
 

Various primary models (Figs. 2 to 10) were utilized to fit 
the growth rate, and most of them show visually acceptable 
fitting. The best model based on statistical analysis was the 
Baranyi-Roberts model with the highest value for the adjusted 
coefficient of determination and the lowest values for RMSE and 
AICc and accuracy and bias factors were in optimal range (Table 
2). Modelling results indicate diesel from 0.5 to 3.5% (v/v) as a 
sole carbon source is toxic, slowing bacterial growth at higher 
concentrations and increasing lag periods ranging from 3 to 15 
hours. The model was found to conform to normality tests and is 
adequate to be used to fit the experimental data. The normality 
tests showed that the model passed the normality tests with p 
>0.05 for all normality tests carried out [64]. The experimental 
data obtained indicates that diesel is toxic and slows down the 
growth rate at higher concentrations. The Baranyi-Roberts model 
fitting the growth of the bacterium at various concentrations of 
diesel (Fig. 11) and its resultant parameters are listed in Table 3.  
 

 
Fig. 2. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the Huang model. 
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Fig. 3. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the Baranyi-Roberts model. 

 
Fig. 4. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the modified Gompertz model. 

 
Fig. 5. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the Buchanan-3-phase model. 

 
Fig. 6. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the modified Richards model. 

 
Fig. 7. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the modified Schnute model. 

 
Fig. 8. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the modified Logistics model. 
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Fig. 9. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% (v/v) 
diesel using the von Bertalanffy model. 

 
Fig. 10. Fitting the growth of Pseudomonas sp. strain Neni-4 on 1% 
(v/v) diesel using the MMF model. 
 
 
Table 2. Error function analysis of the growth models utilized. 
 
Model p RMSE adR2 AF BF AICc 
Huang 4 0.2794 0.966 1.3556 0.8480 -14.91 
Baranyi-Roberts 4 0.0200 1.000 1.0181 0.9991 -88.72 
modified Gompertz 3 0.2342 0.976 1.3089 0.8520 -25.58 
Buchanan-3-phase 3 0.2418 0.975 1.3089 0.8664 -24.69 
modified Richards 4 0.2422 0.974 1.3498 0.8310 -18.91 
modified Schnute 4 0.2407 0.975 1.3498 0.8310 -19.09 
modified Logistics 3 0.1749 0.986 1.1565 0.9712 -33.76 
von Bertalanffy 3 0.2898 0.965 1.3631 0.8400 -19.61 
MMF 4 0.067 0.984 1.045 0.997 -55.07 
Note: 
p parameter 
RMSE  Root Mean Square Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
n.a. Not available 
 
 

 
Fig. 11. Curve fitting of the growth rate of Pseudomonas sp. strain 
Neni-4 at various diesel concentrations using the Baranyi-Roberts 
model.  
 
Table 3. Resultant parameters of the specific growth rate of 
Pseudomonas sp. strain Neni-4 using the Baranyi-Roberts model.  
 
 0.25% 0.5% 0.75% 1% 1.25% 1.5% 1.75% 2% 2.5% 3% 3.5% 
Y0  0.136 0.244 0.266 0.303 0.311 0.159 0.14 0.081 0.096 0.088 0.032 
Ymax  0.627 2.164 3.195 3.916 3.063 2.399 1.876 1.292 0.748 0.512 0.312 
µmax (h-1) 0.259 0.295 0.276 0.334 0.297 0.294 0.28 0.261 0.178 0.168 0.159 
 

In microbial kinetics, accurately modeling bacterial growth 
and the inhibitory effects of substrates is essential for optimizing 
bioprocesses, ensuring product safety, and understanding 
microbial ecology. Primary models such as the modified 
Gompertz, modified Logistic, modified Richards, Baranyi-
Roberts, modified Schnute, von Bertalanffy, Morgan-Mercer-
Flodin (MMF), and Huang models play a crucial role in this 
endeavor. These models describe bacterial growth under 
noninhibitory conditions, estimating vital parameters such as the 
specific growth rate (μm), lag phase duration, and maximum 
population density.  

 
Understanding these parameters is crucial for advancing to 

more complex secondary modeling, incorporating inhibitory 
effects using models like Haldane, Andrews, Yano, and Aiba. 
Primary models are instrumental in determining key growth 
parameters, fundamental in microbiology and biochemical 
engineering, as they define the replication speed of bacteria under 
specific conditions. This detailed understanding helps predict 
how bacteria respond to various environmental changes and 
nutrient availability, which is vital for wastewater treatment and 
bioremediation applications. Despite the importance of primary 
models, there is a notable gap in studies focusing on diesel 
biodegradation by microorganisms.  

 
Few studies have utilized primary models to determine the 

specific growth rate needed for secondary models, such as 
Haldane, Teissier, and Aiba. This gap suggests an opportunity for 
future research to leverage primary models more extensively in 
the context of diesel biodegradation, improving the accuracy and 
efficiency of bioprocess optimization. By establishing bacterial 
growth under controlled, noninhibitory conditions through 
primary models, researchers can create a robust baseline for 
comparative analysis in secondary modeling.  
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These secondary models are then used to predict how 
various inhibitors affect growth kinetics, offering valuable 
insights for biotechnological applications. Together, primary and 
secondary models form an integrated framework that enhances 
our ability to predict and manipulate microbial behavior in 
diverse industrial and environmental settings [61,65–71]. The 
Baranyi-Roberts model initially suggested that a first-order 
differential equation (Eqn. 7) explains how the cell population (x) 
changes over time [72]; 
 

( ) ( )xxt
dt
dx µα=     (Eqn. 7) 

 
The following relationship for the production or growth rate is 
assumed (Eqn. 8) 









−=

max
max 1

x
xµµ     (Eqn. 8) 

 
The generic form of the model can be rewritten as 

( ) ( ) ( ) ( )tft
dt
dx

tx
t αµµ max

1
==    (Eqn. 9) 

 
The α(t) function in the model posits that development in 

the lag phase is hindered by a bottleneck intracellular substance 
denoted as P(t). The inhibitory mechanism resembles the 
Michaelis-Menten kinetics. The quotient q0 denotes the 
inoculum's physiological condition. The substance P(t) and its 
Michaelis-Menten constant increase exponentially from an initial 
value q0 at a constant and defined pace. The α(t) increases 
monotonously with the limits 0 ≤α≤1 and limt→∞ α(t)=1 as 
follows (Eqn 10); 
 

( ) ( )
( )

( )
( ) t

p eq
q

tq
tq

KtP
tPt

max
0

0

1 µα −+
=

+
=

+
=  (Eqn. 10) 

 
 

The end-of-growth or end-of product formation inhibition is 
represented by the f(t) function (Eqn. 11). It decreases 
monotonically with f(0) = 1 and limt→∞ f(t) = 0. The f(t) function 
is described by a logistic inhibition function in most dynamics 
models as follows; 
 

( ) 







−=

max

1
x

xtf      (Eqn. 11) 

 
The differential equation was solved satisfactorily under 

specific fixed circumstances, such as constant temperatures 
(isothermal conditions). The penalty of the solution is due to its 
six parameters (Eqn. 12) [73]; 
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(Eqn. 12) 
 
Where; 
A represents the initial cell concentration (or product 
concentration), ymax is the asymptomatic cell concentration (or 
product concentration) in ln (c.f.u./mL or other growth units) or 
ln product concentration, the curvature parameter is m, and this 
characterizes the transition from the exponential phase. The 

initial physiological state of the cells is represented by ho, a 
dimensionless parameter and the curvature parameter to 
characterize the transition to the exponential phase is represented 
by v. The lag time λ(h) equals ho/µmax. The maximum specific 
growth rate (1/h) is represented as µmax  or µm. The curvature 
parameters are suggested as follows; v= µmax or µm and m=1 
decreasing the number of parameters by two and resulting in the 
model having only four parameters; µmax; h0; A and ymax (Eqn. 13). 
Baranyi and Roberts suggested that h0 may be regarded as a 
suitability indicator of the microorganism population towards the 
true environment [73]. When the experimental method is 
standardized, this suitability indicator may well be more or less 
constant which can be equal to the assumption that the lag time λ 
and the maximum specific growth rate µmax are inversely 
proportional. 
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The Baranyi-Roberts model is more mechanistic than the 

modified Gompertz model, as its parameters can be assigned 
biological meaning. Although the Baranyi-Roberts model 
requires fitting four parameters, it offers a more detailed and 
mechanistic understanding of bacterial growth. This model was 
chosen to fit the growth profile of the bacterium due to its 
mechanistic properties, which provide a more accurate 
representation of the biological processes involved. To increase 
the statistical significance of a four-parameter mechanistic model 
over a three-parameter non-mechanistic model, it is 
recommended to increase the number of data sets obtained. This 
approach enhances the robustness and reliability of the model, 
allowing for more precise parameter estimation and better 
insights into microbial growth dynamics [74]. 
 

The Baranyi and Roberts model has been successfully used 
to model microbial growth curves including Brochothrix 
thermosphacta, Escherichia coli O157:H7, Bacillus spp., 
Listeria monocytogenes, Clostridium spp., Salmonella 
Typhimurium, Staphylococcus spp. and Yersinia enterocolitica  
[73,75–78]. The Baranyi-Roberts model is preferred for several 
reasons. Firstly, it exhibits excellent fitting capabilities, 
providing a highly accurate representation of bacterial growth 
data. Secondly, the model is appropriate for dynamic 
environmental situations, making it versatile and robust under 
varying conditions. Thirdly, the majority of the model's 
parameters have biological meaning, allowing for a more 
mechanistic understanding of the growth processes. This 
biological relevance enhances the model's interpretability and 
usefulness in predicting and optimizing microbial growth in 
biotechnological applications [78,79]. The Baranyi-Roberts 
model has represented algal growth well in many studies [80,81]. 
 

Experts advise using a three-parameter model instead of a 
four-parameter model when it adequately describes the data, 
citing its simplicity and user-friendliness. The solution is more 
stable due to reduced parameter correlation. Furthermore, three-
parameter models offer increased degrees of freedom, which are 
essential for analyzing growth or generation curves with a limited 
amount of data points. All three parameters must have a 
biological interpretation to ensure the model's relevance and 
accuracy in biological situations. Parameters obtained from 
model fitting exercises are significant coefficients that are 
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utilized in subsequent modeling endeavors. Mechanistic models 
play a vital role in fundamental research by deepening our 
comprehension of the underlying physical, chemical, and 
biological mechanisms that drive observable development 
patterns. Mechanistic models are more effective when conditions 
remain constant because they offer a deeper understanding of the 
fundamental mechanisms that influence observable patterns. This 
foundation closely imitates biological processes, making these 
models successful and dependable for predicting outcomes 
beyond the first observed conditions [82]. 
 
CONCLUSION 
 
In conclusion, the study of bacterial growth on diesel reveals a 
unique phase where the specific growth rate starts at zero and 
gradually accelerates to a maximum value, indicating a distinct 
lag period. This phase, a preparatory adjustment period for 
bacterial cells, is critical for understanding how bacteria adapt to 
new environmental conditions. Primary modeling of microbial 
growth is essential for determining key growth parameters like 
the maximum specific growth rate, providing foundational 
insights for secondary modeling. Such insights are crucial for 
biotechnological applications, from wastewater treatment to 
bioremediation and biochemical production. The experimental 
data, supported by various primary models, indicates that diesel 
is toxic and inhibits bacterial growth at higher concentrations. 
Among the models tested, the Baranyi-Roberts model 
demonstrated the best fit based on statistical analysis, normality 
tests, and key parameters such as the adjusted coefficient of 
determination, RMSE, AICc, accuracy, and bias factors. The 
model's conformity to normality tests and adequacy in fitting 
experimental data highlight its reliability in modeling bacterial 
growth under toxic conditions. Thus, the study provides valuable 
insights into microbial growth kinetics, which is crucial for 
optimizing biotechnological processes involving bacterial 
adaptation and growth under stress conditions. 
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