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INTRODUCTION 
 
Langkawi was designated as a UNESCO geopark in July 2007, 
signifying a significant step in the island's transformation from a 
peaceful Malaysian destination to an internationally renowned 
tourist hotspot. The recognition from the United Nations 
Educational, Scientific and Cultural Organization has led to 
significant growth in coastal development and tourism sectors, 

increasing its attractiveness to global tourists. The rise in tourism 
has led to notable environmental issues, as seen in the increasing 
reports of pollution in Langkawi, with one of its rivers classified 
as a class IV (polluted). The Department of Environment 
reported in 2017 that Sg Ulu Melaka was classified as Class IV 
due to contamination, continuing a trend of increasing pollution 
occurrences in Langkawi [1]. The existence of heavy metals, 
including cadmium (Cd), cobalt (Co), lead (Pb), and zinc (Zn), 
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 ABSTRACT 
Enzyme-based assay in near-real-time biomonitoring provides high sensitivity to bioavailable 
contaminants, leading to quick results that support prompt action. It is essential to use this method 
to reduce pollution in drinking, agriculture and marine waters and protect the health of both 
humans and animals. This work applies a previously discovered enzyme test in biomonitoring to 
identify contaminants, particularly zinc, in marine water samples from the Langkawi Island, an 
island that harbors the UNESCO's Geoforest Park status. We used the achromopeptidase dye 
binding assay, specifically designed for detecting mercury zinc at levels below one part per 
million, to identify trace amounts of these metal successfully. The test demonstrated a sensitive, 
quick, and cost-efficient monitoring method with little inhibition (<10%) during a 6-hour field 
trial for three consecutive days, suggesting low pollution levels and confirmed by instrumental 
analysis. This method allows for the prompt identification of environmental pollutants, which 
helps take appropriate actions and safeguard ecotourism locations by offering data-driven 
information for policy development. Enzyme tests are simple and visually appealing, making 
them effective instructional tools that help raise environmental awareness and support 
conservation initiatives. Our research highlights the need to use enzyme tests for broad 
environmental evaluation, harmonizing local monitoring methods with global standards, and 
promoting international cooperation in environmental conservation. This work enhances our 
comprehension of ecological well-being in marine and brackish waterways and underscores the 
significance of ongoing monitoring to protect natural environments. 
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probably originating from boat emissions and construction-
related activities, present a significant threat to the natural 
balance of the region [2–7]. Chronic toxicity results from 
prolonged exposure to zinc at levels above dietary 
recommendations. Unlike acute toxicity, the effects of chronic 
exposure manifest over an extended period and can be subtle 
initially. Chronic ingestion of excessive zinc can interfere with 
the absorption of copper and iron, leading to deficiencies of these 
critical nutrients. Symptoms of chronic zinc toxicity include 
lethargy, neurological disorders such as neuropathy, immune 
system dysfunction, and alterations in cholesterol and lipid 
metabolism. Long-term exposure to high levels of zinc can also 
lead to copper deficiency, which in turn may cause anemia and 
weakening of bones. Additionally, there is evidence to suggest 
that excessive zinc intake might be linked to an increased risk of 
prostate cancer [8–10]. 
 

Biomonitoring through enzyme assays emerges as a 
powerful approach in environmental management, providing a 
sensitive, cost-effective, and rapid means for detecting 
pollutants, which greatly benefits both public awareness and 
authoritative action. These assays are adept at identifying low 
concentrations of contaminants like heavy metals and organic 
compounds, facilitating authorities' early implementation of 
remedial measures. Their cost efficiency and the minimal 
requirement for sophisticated equipment enable widespread and 
frequent environmental assessments, contributing to a detailed 
understanding of ecological health across vast areas [11–14].  

 
The swift processing of enzyme assays ensures timely 

interventions critical for preventing environmental degradation 
and safeguarding public health. Additionally, some enzyme 
assays' simplicity and visual appeal serve as excellent resources 
for educational initiatives to enhance environmental 
consciousness in the community, thereby promoting active 
conservation efforts. The accurate data generated from these 
assays support evidence-based policymaking, enabling 
authorities to establish precise pollutant thresholds, assess the 
effectiveness of environmental protections, and make necessary 
adjustments. Moreover, enzyme activity indicators offer early 
warnings of ecological distress, allowing for interventions before 
visible damage occurs, thereby preventing long-term ecological 
damage [15–18].  

 
By aligning local monitoring practices with international 

standards through enzyme assays, authorities can effectively 
foster global collaboration in environmental protection, 
addressing transboundary challenges. In essence, enzyme assays 
for biomonitoring equip both the public and decision-makers 
with essential tools and knowledge for more effective 
environmental stewardship and public health protection. We 
have developed several near-real-time monitoring of pollution, 
especially heavy metals, using enzymes from microorganisms 
and plants and utilize these assays to monitor various potential 
and polluted sites in Malaysia including an UNESCO site in the 
river Malacca [19–25]. Of the heavy metals often reported at 
levels above the Maximum Permissibility Limit in Langkawi 
waters and sediment is zinc [26–30], which have led to a higher 
concentration of the metal in fish near the area [31]. In this study, 
we explore the feasibility of using the achromopeptidase dye 
binding assay we previously developed for zinc biomonitoring in 
Kuah's Jetty waters in Langkawi with a Limit of Detection value 
of 0.124 mg/L [22] 
 
 
 
 

MATERIAL AND METHODS 
 
Preparation of casein and achromopeptidase solution 
Casein, procured from Sigma, was precisely measured to 2 grams 
and blended with 100 milliliters of deionized water. To achieve 
a pH level of 8.0, the solution was titrated with 5N solutions of 
NaOH and/or HCl. This mixture was then continuously agitated 
at 60°C throughout the night to ensure thorough dissolution. To 
separate insoluble particles, the solution was strained through 
multiple cheesecloth layers. Subsequent clarification was 
achieved by centrifuging the solution at 10,000×g at a 
temperature of 4°C. The protein concentration in the resulting 
clear supernatant was determined via the Bradford method, 
employing crystalline BSA from Sigma as a reference. This 
prepared solution was preserved at 4°C for immediate use or 
frozen at -20°C for long-term storage. Achromopeptidase (EC 
3.4.21.50), from Achromobacter lyticus, is an extracellular 
protease with a mol wt of 30 kDa, procured from Sigma, was 
dissolved at 4 °C in a 20 mM sodium phosphate buffer with a pH 
of 8.0, creating a 1.0 mg/mL stock solution. From this stock, 
working solutions of achromopeptidase (1.0 mg/mL) and casein 
(1 mg/mL) were prepared daily. 
 
Achromopeptidase inhibition studies 
The initiation of the positive control experiment involved 
combining 50 μL of achromopeptidase (0.06 mg/mL final 
concentration) in 20 mM phosphate buffer at a pH of 8.0, as 
determined from a previous experiment  [22]. Zinc at 1 mg/L 
final concentration served as a positive control. This mixture was 
then incubated for 30 minutes at a temperature of 30°C. 
Following this substitution, 50 μL of casein solution was 
introduced to the mixture, resulting in a final concentration of 0.1 
mg/mL, and was thoroughly mixed. An aliquot of 20 μL from 
this mixture was immediately combined with 200 μL of Bradford 
dye-binding reagent. The resulting solution was allowed to stand 
at ambient temperature for 5 minutes, after which the absorbance 
was recorded at 595 nm, marking the initial absorbance reading. 
After an additional incubation period of 30 minutes, a second 
aliquot of 20 μL was extracted, mixed with the Bradford dye 
reagent in the same manner, and the absorbance at 595 nm was 
measured following a 5-minute incubation, mirroring the initial 
procedure. 
 
Near real-time field trials 
Every hour for six hours, water samples were collected into acid-
washed HDPE bottles, each supplemented with a few drops of 
1% (v/v) HNO3, from the Kuah's Jetty in Langkawi specifically 
at the coordinates 6°18'18.4"N 99°51'01.0"E (refer to Fig. 1). 
Initially, these samples underwent filtration through a 0.45 µm 
syringe filter to obtain a clear filtrate. Subsequently, 50 
microliters of this filtrate were assayed for zinc content using the 
achromopeptidase assay at a controlled temperature of 30 °C. 
This temperature control was achieved using a portable egg 
incubator (30 Watt, generic brand) powered by a DC12V to 
AC220V car inverter (ZTE Avid Plus, China), ensuring a stable 
environment of 30 ± 1°C. The absorbance measurements were 
conducted with a portable mini-spectrophotometer (Model M6+, 
Axiom, Germany). Post-assay, the samples were stored in a 
Coleman® ice cooler for preservation until they could be 
analyzed further in the laboratory.  
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Zinc was determined using Atomic Emission Spectrometry, 
specifically on a Perkin Elmer ICP OES (Optima 8300, 
PerkinElmer, Inc., 940 Winter Street, Waltham, MA, USA). This 
comprehensive approach allowed for the precise quantification 
of these metals, providing critical insights into the water quality 
near the geoforest park. 
 

 

 

Fig. 1. Location of water sampling (red pinned) in Kuah's Jetty in 
Langkawi, Malaysia . (Source Google Earth image). 
 
Data and Statistical Analysis 
The per cent inhibition was calculated according to the following 
formula: 
 
% Inhibition =

 Test activity of sample −  test activity of control x 100
Test activity of control

 

 
RESULTS AND DISCUSSION 
 
Ecotourism, especially water-based activities, can 
unintentionally increase heavy metal levels in aquatic 
environments through many interrelated paths. Boats and 
watercraft engines used in ecotourism activities emit exhaust 
pollutants including heavy metals such as lead, cadmium, and 
mercury due to fuel combustion. Older and inadequately 
maintained vessels are especially responsible for this pollution. 
Boats commonly use antifouling coatings to inhibit the growth of 
barnacles and algae, which release copper and other heavy metals 
as they break down [32]. These boats' maintenance can introduce 
heavy metals into the water through operations including paint 
stripping, engine repairs, and replacing metal parts.  

 
 
 
 

Anchoring disrupts sediment, releasing heavy metals and 
making them more accessible to aquatic food systems. 
Constructing docks and marinas for ecotourism infrastructure can 
disrupt soil and sediment, which may release accumulated heavy 
metals. Tourist arrivals result in elevated wastewater and runoff, 
potentially transporting heavy metals from different origins into 
aquatic environments. Recreational equipment like jet skis and 
motorboats can cause erosion and sediment resuspension, 
releasing heavy metals that had previously deposited in the 
sediments. While marketed as a sustainable tourism option, 
ecotourism requires careful supervision to reduce its 
environmental effects, such as the possible increase in heavy 
metal concentrations in water sources [2,33–35]. 
 
Near real-time field trials 
We conducted a near real-time field trial over a six-hour duration, 
with measurements taken at hourly intervals for three 
consecuttive days. The results demonstrated minimal inhibition 
(less than 10%) on the achromopeptidase assays utilized. 
Instrumental analyses further revealed that the levels of zinc were 
below the maximum permissible limits (MPL) set at 0.4 mg/L for 
class III waters. In this context, the threshold for significant 
inhibition was established at 20%. This minimal inhibition 
suggests the effectiveness of the achromopeptidase assay in these 
environmental conditions. Previous near real-time studies 
utilizing enzymatic methods in riverine settings [19,21,22,25,36] 
have demonstrated the efficacy of these bioassays in tracking the 
temporal fluctuations of heavy metal concentrations, suggesting 
a broad applicability for monitoring environmental contaminants. 
Building on this foundation, a subsequent investigation was 
conducted using samples from marine and brackish waters [24]. 
These expansive aquatic systems act as significant reservoirs, 
quickly diluting heavy metals originating from terrestrial 
sources. Despite this rapid dilution, research has consistently 
shown elevated levels of heavy metals in these environments, 
particularly within sedimentary fractions [37–40]. 
 

The tendency of sediments to accumulate heavy metals 
highlights the intricate dynamics of pollutant distribution across 
different aquatic environments. Sediments often serve as 
environmental sinks, capturing and retaining heavy metals over 
extended periods, which can lead to long-term ecological 
impacts. This phenomenon underscores the necessity of 
implementing comprehensive monitoring strategies that 
encompass various environmental compartments, including both 
water columns and sediments, to provide a holistic assessment of 
heavy metal pollution in marine and brackish waters [37–40]. 
 

Such assessments are crucial as they allow for the 
identification of pollution sources and the evaluation of 
contaminant dispersion patterns, which are vital for the 
development of effective environmental policies and remediation 
strategies. Moreover, the use of bioassays, as demonstrated in 
riverine and maritime studies, offers a promising approach to 
enhance real-time monitoring capabilities in these complex 
aquatic systems, potentially leading to more proactive 
environmental management and protection measures [41–44]. 
This observation of an absence in response to achromopeptidase 
suggests that this area remains comparatively pristine. To protect 
this ecotourism destination, it will be essential to implement 
increased monitoring measures going forward in the future.  
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Fig. 2. Near real-time detection of zinc in Kuah's Jetty waters in 
Langkawi waters using the achromopeptidase inhibitive enzyme assay on 
day 1. Error bars represent mean ± standard deviation (n=3). 
 

 
Fig. 3. Near real-time detection of zinc in Kuah's Jetty waters in 
Langkawi waters using the achromopeptidase inhibitive enzyme assay on 
day 2. Error bars represent mean ± standard deviation (n=3). 

 
Fig. 4. Near real-time detection of zinc in Kuah's Jetty waters in 
Langkawi using the achromopeptidase inhibitive enzyme assay on day 3. 
Error bars represent mean ± standard deviation (n=3). 
 

The fact that heavy metal concentrations in rivers and 
oceans can change over time is evidence of the ever-changing 
character of these contaminants. Heavy metal concentration in 
sediments also varies across time and space, highlighting the 
intricate patterns of environmental pollution [45]. An essential 
part of environmental forensics, addressing these variations calls 
for fast detection technologies that can follow changes in heavy 
metal concentrations. 
 

Batch processing of samples, which necessitates collection 
and transportation to a laboratory for analysis, has traditionally 
been the mainstay of heavy metal detection procedures [46–48]. 
This method is laborious and can miss quick shifts in pollution 
levels. A move towards real-time or near real-time monitoring 
approaches has occurred in reaction to these restrictions. 
Emerging as potential options for quick environmental 
evaluation are innovations in bioassays that utilize plants, 
microbes, and enzymatic reactions  [49–51].  
 

Enzyme assays are ideal for on-site assessment because they 
provide rapid results. The entire process, from sample collection 
to detection, may be finished in about an hour using portable 
spectrophotometry. Monitoring drinking water systems quickly 
and in near-real-time is essential to preserve public health. 
Monitoring is a crucial early warning system that helps minimize 

health risks and prevent exposure to hazardous substances by 
quickly identifying chemical and biological contaminants. This 
prompt response adheres to stringent legislative standards that 
ensure water quality remains within acceptable consumption 
limits and empowers water providers to address any arising 
concerns promptly. Furthermore, it enhances operational 
efficiency by allowing you to adjust your water treatment 
processes in real-time, optimizing resource use and reducing 
costs associated with excessive treatment or emergency pollutant 
removal. Public confidence in the water supply is crucial, and the 
transparency and promptness of near-real-time biomonitoring 
assure customers that their drinking water is safe. It also helps 
prevent infrastructure damage from contaminants and allows for 
quick responses to changing environmental conditions that may 
affect water quality, such as weather events or industrial 
accidents. Ensuring the safety and purity of drinking water is 
crucial for public health, regulatory adherence, and the efficient 
functioning of water treatment plants. Swift biomonitoring is 
crucial in this procedure [52–55]. 
 

The research has demonstrated that enzyme-based tests 
effectively detect changes in heavy metal levels over time in 
water bodies located in industrial areas. The achromopeptidase 
test monitors mercury in marine habitats, showcasing a unique 
method and demonstrating the technique's potential. Future 
studies will build upon this foundation by discovering more 
sampling locations and conducting thorough field experiments. 
This trend confirms the effectiveness of enzyme tests for 
environmental monitoring. It paves the way for broader use and 
advancement of real-time detection systems to improve our 
capacity to respond to environmental toxins. 
 
CONCLUSION 
 
Enzyme tests, namely the achromopeptidase dye-binding assay, 
are a significant tool in environmental management for 
identifying contaminants, notably zinc, in Kuah's Jetty in 
Langkawi. Showcasing responsiveness to minimal levels of zinc 
for early detection of the metal, allowing for immediate 
corrective measures. Enzyme tests are cost-effective and easy to 
use, making them excellent for broad environmental evaluations 
and greatly enhancing our comprehension of ecological health. 
Furthermore, the minimal inhibition seen in our tests indicates 
that the region being studied is still reasonably clean, 
emphasizing the necessity of continuous monitoring to protect 
this ecotourism destination. The data obtained from these 
evaluations can improve government and increase public 
awareness and conservation efforts. This research highlights the 
importance of enzyme tests in environmental conservation by 
providing a quick, precise, and easily available method to protect 
both ecological balance and public health. 
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