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INTRODUCTION 
 
Because it is an important component in so many enzymes, mo-
lybdenum is an essential microelement for all living things. The 
most prevalent soluble form found in nature, molybdate (VI), is 
one of five potential oxidation states. The molybdate anion is the 
primary soluble form of molybdenum in solutions with a pH 
close to neutral; it is said to be the sole form that plants can ab-
sorb. Molybdate ions can be readily polymerized into Mo7O246-, 
Mo8O264- and Mo12O372--type polyions in acidic environments. 
Reducing agents can be used to decrease these polyions, resulting 
in the creation of "isopolymolybdenum blue." In addition, these 
polyions can form heteropolymolybdate by combining with spe-
cific heteroatoms, such as phosphate, arsenate, tungstate, sul-
phate, or silicate. These compounds can then be reduced chemi-
cally with reducing agents like dithionite or ascorbic acid or bio-
logically with Mo-reducing enzymes to produce intense blue col-
loidal products called heteropolymolybdenum blue [1,2]. Molyb-
denum-containing wastes could be released to the ecosystem 
from their utilization as alloys, catalysts, and lubricants by min-
ing activities, the application of sewage sludge, fertilizers, and 

atmospheric deposition. Typically, soil has 0.2–6 mg/kg of Mo, 
however soil that is polluted with metals might have values of 
10-100 mg/kg. Cattle that graze on soil that is rich in molyb-
denum may be at risk of molybdenosis, a disease caused by a lack 
of copper, since molybdenum inhibits ruminants' ability to absorb 
copper [3]. The harmful effects of molybdenum on embryogene-
sis and spermatogenesis in mice and catfish have been demon-
strated in recent studies, and levels as low as several parts per 
million are inhibited [4,5].  
 

One method for cleaning up polluted environments is biore-
mediation. Agricultural soil polluted with molybdate in Tyrol, 
Austria, was the first to undergo molybdenum bioremediation 
with success [6]. The molybdate was able to be reduced in tox-
icity by the use of phytoremediation and a combination of soil 
bacteria that rendered it insoluble. Evidence of microbial reduc-
tion of molybdate has been documented in multiple studies [8-
10].  
 

 

 

 

HISTORY 
 
Received: 24th May 2023 
Received in revised form: 24th July 2023 
Accepted: 30th July 2023 
 

 ABSTRACT 
Molybdenum, a heavy metal, is toxic to ruminants and can inhibit animal spermatogenesis. A 
previously identified Mo-reducing bacterium known as Serratia sp. strain MIE2 was optimized 
using an Artificial neural network (ANN) to predict points that can give optimum molybdenum 
blue production to combat molybdenum pollution in agricultural soils. ANN predicted the best 
optimum points occurring at pH, temperature, sucrose, ammonium sulfate, phosphate, and mo-
lybdate concentrations of 6.5 to 7.0, between 27 to 35°C, 30 to 40 g/L, 10 g/L, between 4 and 6 
mM and between 10 and 20 mM, respectively, with a Mo-blue production of 14 absorbance unit 
as measured at 865 nm. The effect of various xenobiotics such as carbofuran, diazinon, metho-
myl, malathion, trichlorfon, bendiocarb, carbaryl, hexane, and butanol showed minimal inhibition 
to molybdenum blue production. The results indicate ANN's utility in predicting optimum pro-
duction of Mo blue from this bacterium.  
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Bacterial reduction processes, which are part of their detox-
ification strategy, include reducing molybdenum from its 6+ ox-
idation state to a lower oxidation state, such as Mo-blue. In their 
study, Shukor et al. shown that molybdenum-reducing bacteria 
undergo reduction by an enzymatic mechanism rather than a 
chemical mediator [7]. So far, no molybdenum-reducing bacteria 
have been found in agricultural soil, according to the literature. 
Since molybdate is hazardous to animals such as cattle and fish, 
a novel molybdenum reducer derived from agricultural soil is re-
quired for bioremediation. Because some crops are tolerant of 
and absorb a high molybdate concentration, untreated agricul-
tural soil may not be suited for growing these crops. Ingesting 
plants that have built up molybdate in their tissues could be harm-
ful to humans and other creatures [8,9].  
 

The present work reports on the optimization using both 
OVAT or OFAT (one variable-at-a-time or one factor-at-a-time) 
and Artificial Neural Network (ANN) of a previously-isolated 
Mo-reducing bacterium [10]. The optimization process was per-
formed using one variable at a time (OVAT) with molybdate con-
centration, phosphate concentration, pH, temperature, ammo-
nium sulphate concentration, and sucrose concentration as varia-
bles and molybdenum blue as a response. We try to use an artifi-
cial neural network (ANN) to fit OVAT experimental data to pre-
dict the optimum condition. We tried to fit the experimental data 
with ANN to select the best parameter values that minimize the 
entire error over the set of data points being considered, thus pre-
dicting the best optimal points. The characterization of this bac-
terium would make it suitable for future bioremediation works on 
agricultural soil contaminated with molybdenum. 
 
MATERIALS AND METHOD 
 
Chemicals 
All chemicals used were of analytical grade and purchased from 
Sigma (St. Louis, MO, USA), Fisher (Fisher Scientific (M) Sdn 
Bhd, Shah Alam, Selangor, Malaysia) and Merck (Darmstadt, 
Germany). 
 
Statistical analysis 
The effect of toxicants was statistically assessed using GraphPad 
Prism, with three replicates. Artificial Neural Network (ANN) 
was analyzed using Automated Neural Network, STATISTICA 
8.0, (Statsoft)  
 
Growth of molybdenum-reducing bacterium 
The bacterium was grown in low phosphate media containing 10 
mM sodium molybdate for 24 hours. The ingredients of low 
phosphate media were glucose (1%), (NH4)2.SO4 (0.3%), 
MgSO4.7H2O (0.05%), yeast extract (0.5%), NaCl (0.5%), 
Na2MoO4.2H2O (0.24 %), Na2HPO4 (0.04%). 10 µl aliquot of the 
soil suspension was pipetted and spread onto agar of low phos-
phate media (pH 7.5). When blue colonies form, it means that the 
molybdenum-reducing bacterium is reducing molybdate [11]. In 
order to cultivate a pure culture, the colony with the highest blue 
intensity was chosen and moved to low phosphate media (LPM). 
In order to conduct the molybdate reduction experiment, 10 mi-
croliters of the bacterial culture were added to 10 milliliters of 
freshly made LPM. The next step was to incubate the mixture at 
30°C for 24 hours so that the molybdate might be reduced. Later, 
1 milliliter of the Mo-blue solution extracted from the LPM was 
taken and spun in an Eppendorf™ centrifuge at 10,000 x g for 20 
minutes at room temperature. Following this, the liquid was ex-
amined using a UV-spectrophotometer (Shimadzu 1201), which 
scanned the 400 to 900 nm range, with LPM as the adjustment 
reference point [10]. Direct dilution with blank media was per-
formed for absorbance values greater than 1.0. 

 
Predictive optimization using Artificial Neural Network 
(ANN) 
Low phosphate medium (LPM) as reported by Ghani et al. [11] 
was used to study the effect of various parameters such as mo-
lybdate and phosphate concentration, pH, electron donor sources, 
temperature,  and nitrogen sources on molybdate reduction by 
Serratia sp. MIE2. Upon reaching an ideal density of 0.9 to 1.0 
at 600 nm, two milliliters of freshly harvested bacterial cells were 
pipetted into LPM. Unless otherwise specified during tempera-
ture optimization, all infected LPM broths were kept at 27°C for 
a full 24 hours. The quantity of molybdenum-blue that was pro-
duced was determined by pipetting one milliliter of LPM and 
measuring it at 865 nm [18].  
 

Intelligent issue solver, STATISTICA neural network soft-
ware from stat soft co., ltd (Tokyo, Japan) with a multilayer feed-
forward (MLP) and radial basis function (RBF) network as the 
network was used to assess the experimental findings collected 
from these tests. Automated neural network analysis included 
two phases: training and testing. The experimental data was ran-
domly split between the two stages, with half going into training 
and half into testing. During the training phase, four activation 
functions were utilized for the hidden and output layers: identity, 
logistic, tanh, and exponential.  

 
The optimum layer selection was evaluated based on the 

lowest selection error and highest coefficient of determination 
(R2). For optimization and prediction, the top network was cho-
sen. Using the root-mean-square error (RSME) (Eq. 2) and coef-
ficient of determination (R2) (Eq. 1) between the experimental 
values and the network's projected values, we assessed the mod-
el's training and testing performances. The model's low ADD and 
RSME values characterize the system's accurate behavior, and its 
high correlation and determination (R2) values are indicative of a 
good model [12]. 
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with p being the number of runs in the experiment and yi,exp 

and yi,cal being the calculated and experimental responses, respec-
tively. when n is the total amount of data from the experiments. 
 
Preparation of crude Mo-reducing enzyme 
The phosphate concentration was modified to 100 mM and Ser-
ratia sp. MIE2 was cultured in 9 liters of high phosphate medium 
(HPM). No amount of HPM could induce bacterial production of 
Mo-blue. The cell still has an active enzyme, even though a high 
phosphate concentration hinders molybdate reduction to create 
Mo-blue [14,15]. All experiments were conducted at 4oC unless 
otherwise indicated to make sure the heat didn't kill the cells. An 
HPM was centrifuged at 10,000 xg for 20 minutes at 4°C in order 
to extract the bacterial cells. This was followed by three washes 
with distilled water for the cells. Following resuspension in Tris-
HCl buffer (pH 7.0), the cells underwent a 10-minute re-centrif-
ugation run at 10,000 xg. The pellets combined with 10 ml of 50 
mM Tris Buffer (pH 7.0) that contained 2 mM EDTA, 1 mM 
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PMSF (a protease inhibitor), and 2 mM DTT to make a new so-
lution. Biosonik 111TM sonication was subsequently applied to 
the cells.  
 

A total of two hours of sonication was completed by sub-
jecting the mixture to one minute of sonication on an ice bath 
followed by three minutes of cooling. After the samples were 
sonicated, the pellet cells dissolved and the color turned from 
light yellow to light pink. The ultra-centrifuged fraction, which 
included the crude enzyme, was obtained by subjecting the soni-
cated fraction to a 90-minute centrifugation run at 4°C and 
24,000 × g. The experiments were conducted at 4oC with stirring 
for 10 hours using a 40 to 50% ammonium sulfate fraction dia-
lyzed in 5 L of a 10 mM Tris-HCl pH 7.5 buffer that contained 
0.1 mM dithiothreitol. In this study, the proportion of ammonium 
sulfate had a high activity comparable to that of Shukor et al. 
[14]. Previously, in Shukor et al. [16], 50 mM of Tris-HCl pH 7.5 
buffer containing 0.1 mM beta-mercaptoethanol was substituted 
with dithiothreitol due to early research showing that beta-mer-
captoethanol reduces the activity of Mo-reducing enzymes after 
long-term storage [14,15]. 
 
RESULT  
 
Optimization and prediction of optimal points using artificial 
neural network (ANN) 
 
Effect of initial pH and temperature on molybdate reduction.  
Conical flasks were used to incubate the MIE2 strain at various 
initial pH levels, ranging from 5.5 to 8. According to the data 
shown in Fig. 1, the ideal starting pH was 6.0, while pH 5.5 and 
7.5 inhibited decrease. Fig. 2 shows the temperature effect across 
a large temperature range (15 to 45°C), with the optimal range 
being 27 to 35 °C, and no statistically significant difference 
(p>0.05) was found between the data recorded. The synthesis of 
molybdenum blue from strain MIE2 was inhibited by tempera-
tures higher than 35°C. In order to forecast the best ideal value, 
the data collected from both effects were processed and fitted 
with ANN (Table 1). For pH and temperature, the optimal archi-
tecture was a network of RBF (1-2-1) nodes. In this RBF (1:2:1), 
the input, hidden, and output layers each have a specific number 
of neurons. All neurons from the hidden layer and the output 
layer neuron have Gaussian and identity as transfer functions for 
both parameters. The network was chosen due to the R2 values 
of the training and testing sets being close to 1.0 and showing 
fewer errors than other networks. The optimum points for pH and 
temperature predicted by ANN were 6.5 and 30 oC, respectively. 
The predicted point gives the highest molybdenum-blue produc-
tion was chosen as the best point in this predictive analysis 
 
Effect of electron donor and nitrogen sources on molybdate 
reduction 
Fig. 3 shows that among the nitrogen sources and electron donors 
that were evaluated, 2% sucrose was the most successful in re-
ducing molybdate. The best supply of nitrogen was determined 
to be ammonium sulfate at a concentration of 1% (Fig. 4). When 
grown in a medium containing sucrose, strain MIE2 produced the 
largest amount of molybdenum blue. Effectiveness was then 
found for glucose, fructose, maltose, and galactose in decreasing 
order. 
 
 

 
Fig. 1. Influence of starting pH on MIE2 strain molybdenum reduction. 
Error bars represent mean ± standard deviation (n=3). 
 
 

 
 
 
Fig. 2. Study on the temperature-dependent molybdenum reduction by 
the MIE2 strain. Error bars represent mean ± standard deviation (n=3). 
 

The formation of molybdenum blue was not supported by 
starch, arabinose, or raffinose. The optimal nitrogen source to fa-
cilitate molybdenum reduction was determined to be ammonium 
sulfate during the screening process. Tryptone, ammonium chlo-
ride, glycine, L-alanine,caffeine, urea,  and ammonium acetate 
gave lower molybdenum blue (p< 0.05) compared to ammonium 
sulphate. There was no evidence that glutamic acid or L-gluta-
mine could facilitate molybdenum blue synthesis (data not 
shown). No statistically significant difference was found among 
the values of 30–50 g/L of sucrose, as shown in Fig. 3 (p>0.05).  

 
The optimum point of sucrose concentration predicted by 

ANN was 30 g/L, with MLP (1-3-1) chosen as the network. Re-
garding transfer functions, every neuron in both the hidden and 
output layers uses an exponential or identity function. With this 
MLF (1:3:1), the input, hidden, and output layers each have a 
certain number of neurons. Fig. 4 shows that the optimum of am-
monium sulphate concentration was 10 g/L. ANN also predicted 
the same values with experimental with MLP (1-3-1) was chosen 
as the best network. All hidden and output layers neurons have 
tanh and exponential as transfer functions.  
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Fig. 3. The impact of various sources of electron donors. A variety of 
electron donors and 10 mM molybdate were added to low phosphate me-
dia in which strain MIE2 was cultured. Error bars represent mean ± stand-
ard deviation (n = 3) 
 

 
Fig. 4. Different sources of nitrogen and their effects. The MIE2 strain 
was cultured using sucrose as an electron source in low phosphate envi-
ronment that also contained 10 mM molybdate. Error bars represent mean 
± standard deviation (n = 3). 
 
Effect of phosphate and molybdate concentration on molyb-
date reduction 
The optimum concentration of phosphate concentration was 2 
mM (Fig. 5). The concentration over than 2 mM was inhibitory 
to molybdenum blue production. The best optimum point pre-
dicted by ANN for phosphate concentration was 5 mM with MLP 
(1-4-1) was chosen as the best network. All neurons from the hid-
den layer and the output layer neuron have tanh as transfer func-
tion parameters. Otherwise, the optimum concentration of mo-
lybdate occurred at 10 mM (Fig. 6). The optimum values pre-
dicted by ANN occurred at between 10-20 mM with 20 mM was 
chosen as the best predicted value in this analysis with MLP (1-
3-1) was chosen as the best network. All neurons from the hidden 

layer and the output layer neuron have exponential and logistic 
as transfer functions.  
 
Validation experiment 
The validation compared the experimental optimal point with the 
ANN-predicted optimal point for Mo-blue production by Serra-
tia sp. MIE2. Validation experiments followed the optimal point 
outlined in Table 2. The validation of the ANN-predicted opti-
mal point showed that Mo-blue production increased to an ab-
sorbance of 14.0 at 865 nm, compared to the experimental opti-
mal point, which only reached an absorbance of 9.7. 
 

 
 
Fig. 5. The MIE2 strain's molybdenum reduction as a function of phos-
phate concentration. Error bars represent mean ± standard deviation (n = 
3). 
 

 
 
Fig. 6. The MIE2 strain's molybdenum reduction as a function of mo-
lybdate concentration. Error bars represent mean ± standard deviation (n 
= 3). 
 

 
Table 1. Summary of active networks of each variable. 
 
Parameters Net. name Training perf. Test perf. Training error Test error Training algorithm Hidden activation Output acti-

vation 
R2 RSME 

pH RBF 1-2-1 0.9995 0.9555 0.0001 0.010807 RBFT Gaussian Identity 0.8059 0.031963 
 

Temperature  RBF 1-2-1 0.9995 0.9555 0.0001 0.010808 RBFT Gaussian Identity 0.9377 0.013172 
Sucrose conc MLP 1-3-1 0.9637 0.9000 0.0129 0.115727 BFGS 6 Exponential Identity 0.96 0.003924 
Ammonium Sul-
phate conc 

MLP 1-3-1 0.9637 0.9000 0.0129 0.115727 BFGS 6 Tanh Exponential 0.956 0.035422 

Molybdate conc MLP 1-3-1 1.0000 0.9982 0.0000 0.054669 BFGS 6017 Exponential Logistic 0.9226 0.039000 
Phosphate conc MLP 1-4-1 0.9504 1.0000 0.0088 0.014971 BFGS 7 Tanh Tanh 0.8326 0.006663 
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Table 2. Experimental and ANN predicted value for each variable. 
 
 pH Temper-

ature 
(ºC) 

Sucrose 
conc  
(g/L) 

Ammo-
nium sul-

phate 
conc (g/L) 

Molyb-
date conc 

(mM) 

Phos-
phate 
conc 
(mM) 

Validation 
(Mo-Blue-
865 nm) 

Experi-
mental 

6.0 27 30 5 10 2 9.7 

ANN 6.5-7.0 27-35 30-40 5-10 10-20 4-6 14 

 
A study on the molybdenum reduction effect of solvents and 
insecticides 
The effects of several pesticides on bacterial cells and molyb-
denum-reducing enzyme activity are shown in Fig. 7. A compar-
ison was made between the control and bacterial cells exposed to 
carbofuran, diazinon, methomyl, malathion, trichlorfon, bendio-
carb, and carbaryl at 1 ppm, and the results showed inhibition 
rates below 50%. In contrast, no inhibitory effects were observed 
for propoxur, parathion, dimethoate, chlorpyrifos, atrazine, or si-
mazine. Diazinon, bendiocarb, carbaryl, chlorpyrifos, atrazine, 
and simazine were the only pesticides that did not reduce the mo-
lybdenum-reducing enzyme's activity, whereas the majority of 
the others affected it by less than 30%. Only hexane and butanol, 
as shown in Fig. 8, were able to limit bacterial cell molybdenum 
blue synthesis by more than 20%. When contrasted with the con-
trol, other solvents showed inhibition levels below 20%. The in-
hibition of the molybdenum-reducing enzyme was less than 20% 
in all solvents tested, suggesting that it had little effect even at a 
10% concentration. 
 

 
 
Fig. 7. The Mo-reducing enzyme and bacterial cell viability as a result of 
pesticide exposure. The error bars represent mean ± standard deviation 
for three replicates. 
 
DISCUSSION 
 
In this work, we have isolated a new Mo-reducing bacterium 
from agricultural soil for the first time. According to previous 
works, most Mo-reducing bacteria were isolated from the pol-
luted soil collected from galvanic factories and workshops. Soil 
microbes, for example, may not be able to handle pollution in 
different environments as well as those in agricultural soil. Com-
mercial bacteria or other degraders from other regions aren't al-
ways the best option; sometimes, autochthonous microbes—iso-
lated from particular polluted soils, expanded to a huge scale, and 
then returned to the contaminated soils—work better. The rising 
number of reports of new microbial strains that can break down 

certain xenobiotics or heavy metals is a prime example of this 
trend [17–23]. 
 

 
Fig. 8. Solvent effects on bacterial cell membranes and molybdenum-re-
ducing enzyme activity. The error bars represent mean ± standard devia-
tion for three replicates. 
 

When reducing molybdenum, temperature and pH are cru-
cial factors. Both characteristics have the potential to influence 
protein folding and enzyme activity, which in turn inhibits mo-
lybdenum reduction because this process is enzyme-mediated. 
Malaysia, a tropical country with an average annual temperature 
range of 25 to 35 °C, would benefit from bioremediation at an 
ideal temperature for a wide range of 27 to 35 °C [24]. Therefore, 
strain MIE could be a candidate for soil bioremediation of mo-
lybdenum locally and in other tropical countries. Strain MIE2 re-
duces molybdenum optimally at pH 6, indicating that this bacte-
rium is a neutrophile bacterium that is able to grow between pH 
5.5 and 8.0. During the growth of strain MIE2 in low phosphate 
media, the pH of the media dramatically decreased from pH 6 to 
5 before molybdenum reduction took place. Since acidic pH 
plays an essential role in forming phosphomolybdate before it is 
reduced to molybdenum blue, this indicates that the species could 
also form during growth on molybdenum. 
 

Previous works by Shukor's lab [15,25–27] demonstrated 
that all of the Mo-reducing bacteria from the genus Serratia use 
sucrose as the best carbon source. However, molybdenum reduc-
tion in E. coli K12 [28] and E. cloacae strain 48 prefer glucose 
as a better carbon source than sucrose [12]. Bacteria can produce 
electron-donating substrates like NADH and NADPH when car-
bon sources are present in the medium by means of metabolic 
processes like glycolysis, the Krebs cycle, and the electron 
transport chain. The molybdenum-reducing enzyme relies on 
NADH and NADPH substrates to facilitate reduction by provid-
ing electrons. 

 
The production of nucleic acids, enzymes, and amino ac-

ids—essential building blocks for bacterial metabolism and 
growth—requires a nitrogen source. When we grew strain MIE2 
with ammonium sulfate as the nitrogen source, we saw the great-
est reduction of molybdate. Consistent with earlier studies on 
molybdenum reduction, this confirms that ammonium sulfate is 
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the nitrogen source of choice for numerous Serratia species, re-
nowned for their molybdenum-reducing abilities. The molyb-
denum reduction process relies on proteins and enzymes, and this 
preference probably helps with that [15,25–27].  
 

Knowing the ideal amounts of phosphate and molybdate to 
facilitate molybdenum reduction is crucial, as these anions limit 
bacterial molybdenum blue synthesis. Strain MIE2 needed 2 mM 
phosphate for optimum reduction, whereas other Mo-reducing 
bacteria have been found to require 5 mM of phosphate [29–31]. 
Research on the effects of different molybdenum concentrations 
revealed that strain MIE2 could decrease molybdenum concen-
trations up to 60 mM. However, this was accompanied by a de-
crease in Mo-blue synthesis. This strain could mitigate the high 
levels of molybdenum contamination by reducing the concentra-
tion to insoluble. 
 

A neural network (ANN) is a type of computational method 
that mimics the way the brain processes data. Like the human 
brain, it learns from its environment and uses the strength of con-
nections between interneurons, also called synaptic weights, to 
store the information it has learned. The network is composed of 
widely dispersed adaptive nonlinear processing elements, or neu-
rons. Because of these ANN features, data fitting, prediction, and 
the modeling of nonlinear relationships are all made easier and 
more flexible [31]. Here, we showcased ANN's capacity to fore-
cast the optimal point by fitting optimization experimental data. 
The findings demonstrate that ANN can accurately fit experi-
mental data, as evidenced by an R2 close to one and an RMSE 
approaching zero. The best concentrations of pH (6.5), tempera-
ture (30 ºC), ammonium sulphate (30 g/L), molybdate (20 mM), 
and phosphate (4 mM) were predicted by artificial neural net-
works (ANN) based on the predictive analysis. Verifying the 
ANN-predicted point revealed a rise in Mo-blue production from 
9.7 to 14.1 nm at 865 nm (Table 2).  

 
In molybdenum reduction, the concentrations of molybdate 

and phosphate are critical because an excessive amount of phos-
phate can destabilize the intermediate molybdate and inhibit the 
synthesis of molybdenum blue. Therefore, for the maximum Mo-
blue generation, the phosphate to molybdate proportion is crucial 
[29–31]. It may be inferred from the maximum Mo-blue produc-
tion following predictive analysis that ANN can accurately pre-
dict the ratio of the two parameters. Therefore, the study con-
cluded that the prediction analysis was successful, and it shown 
that ANN can be a robust fitting method. 

 
Since pesticides are commonly found in agricultural set-

tings, they are considered persistent organic pollutants. Severe 
ecological consequences and effects on bioremediation could re-
sult from pesticides that disrupt the activity of soil microbes, al-
tering soil nutritional quality [32]. In order to determine how well 
strain MIE2 reduced molybdate in the presence of pesticides and 
Mo-reducing enzymes, experiments were conducted to study the 
effects of these inhibitors on bacterial cells.  

 
The results indicate that pesticides impede the metabolic 

process of strain MIE2, reducing Mo-blue formation, since they 
function as respiratory inhibitors. since a result, bacterial cells 
exhibit less inhibition compared to Mo-reducing enzyme. Be-
cause of its use as a pesticide solvent, the study assessed the ef-
fects of solvents. Bacterial cells and the Mo-reducing enzyme 
were relatively unaffected by the presence of solvents, suggesting 
that strain MIE2 has solvent tolerance and can function in various 
solvent environments. 
 
 

CONCLUSION 
 
Finally, the first molybdenum-reducing bacterium was isolated 
from agricultural soil, and this was reported. The dialysis tubing 
experiment clearly shows that enzymatic reduction is the primary 
mechanism for reducing molybdenum to Mo-blue. With an in-
crease in Mo-blue production from 9.7 to 14.0 absorbance nm at 
865 nm, the point predicted by ANN was confirmed. The highest 
Mo-blue production after predictive analysis implies that ANN 
can predict the best point for mo-blue maximum output. Thus, 
the predictive analysis was considered successful, and the capa-
bility of ANN to be a robust fitting tool was proven in this study. 
Pesticide and solvent effects demonstrated a 50% inhibition of 
bacterial cell viability. On the other hand, the Mo-reducing en-
zyme was unaffected by either inhibitor. Using multivariate anal-
ysis and response surface methodology (RSM), we are currently 
optimizing this bacterium and purifying its Mo-reducing enzyme 
to homogeneity. 
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