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INTRODUCTION 
 
Surfactants are widely utilized in both household and industrial 
settings owing to their typical physicochemical properties, par-
ticularly their surface activity. These molecules consist of a hy-
drophilic head and a hydrophobic tail, which give them am-
phiphilic properties [1]. Surfactants are categorized into four 
types based on their chemical structure: cationic, anionic, 
nonionic, and zwitter ionic [2]. Anionic surfactants serve as piv-
otal components in various products such as detergents, tooth-
paste, shampoo, pesticides, textile paints and personal care items 

[3,4]. Moreover, they find application in diverse fields including 
soil remediation, enhanced oil recovery, dispersion, emulsion 
polymers, deinking, ore flotation and cutting oils [5]. Because of 
their extensive use and versatility, surfactants frequently end up 
in both industrial and domestic wastewater, as they might not be 
fully utilized in their intended applications. Some of the dis-
charged surfactants may undergo natural degradation. However, 
reliance solely on biodegradation or natural breakdown might not 
suffice, especially when surfactants are present in high concen-
trations [6]. Residual surfactants, particularly the anionic vari-
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 ABSTRACT 
A remodelling evaluation was conducted on the sorption isotherm data for SDS adsorption onto 
activated coconut shell using nonlinear regression. A total of nineteen models, including BET, 
Brouers-Sotolongo, Dubinin-Radushkevich, Fowler-Guggenheim, Freundlich, Fritz-Schlunder 
III, Hill, Henry, Jovanovic, Khan, Langmuir, Moreau, Radke-Prausnitz, Redlich-Peterson, Sips, 
Temkin, Toth, Unilan, and Vieth-Sladek, were employed to determine the best fit through non-
linear regression. All models were found to exhibit good fits to the data, except for the Fowler-
Guggenheim, Henry and Dubinin-Radushkevich models. Statistical analysis based on error func-
tion assessments, including accuracy factor (AF), bias factor (BF), root-mean-square error 
(RMSE), adjusted coefficient of determination (adjR2), Bayesian Information Criterion (BIC), 
corrected AICc (Akaike Information Criterion), and Hannan-Quinn Criterion (HQC), revealed 
that the best performance was achieved by the Moreau model followed by (descending order) 
Unilan, Redlich-Peterson, Fritz-Schlunder III, Toth, and Langmuir. The maximum adsorption 
capacity estimates given by the Moreau and Langmuir models were better in line with experi-
mental findings. The value of the maximum monolayer adsorption capacity for SDS binding to 
activated coconut shell according to the Langmuir’s parameter  qmL was 81.93 mg g-1 (95% Con-
fidence interval from 76.422 to 87.440), while bL (L mg-1), the Langmuir model constants  was 
0.10 L mg-1 (95% C.I. from 0.070 to 0.133). The value of the maximum monolayer adsorption 
capacity for SDS binding to activated coconut shell according to the Moreau’s parameter qmM 
was 90.82 mg g-1 (95% Confidence interval from 76.336 to 105.303), while b (L mg-1), the Mo-
reau’s model constant was 0.15 L mg-1 (95% C.I. from 0.089 to 0.203) and l, another Moreau’s 
dimensionless constant was 0.3 (95% C.I. from -0.049 to 0.646). 
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ants, can adversely affect aquatic microorganisms and ecosys-
tems in water bodies. Additionally, if these surfactants enter the 
food chain, they can also pose risks to humans [7]. Moreover, the 
presence of surfactants can impact the effectiveness of 
wastewater treatment plants [8]. For instance, surfactants can in-
fluence sludge dewatering characteristics and enhance the solu-
bility of organic compounds, thus affecting treatment efficacy 
[9]. Therefore, it is crucial to devise an efficient treatment method 
for removing surfactants, as attempted in the current study, fo-
cusing on a specific case of SDS. 
 

SDS, a fundamental and significant anionic surfactant, finds 
extensive application in detergents, shampoos, and cosmetics. 
SDS has been linked to symptoms like depression, difficulty 
breathing, and diarrhea in both humans and animals [10]. SDS 
also induces acute and chronic toxicity in fish [11]. Surfactants 
elevate the solubility of organic compounds in water, potentially 
increasing the carcinogenicity and risk of dermatitis, as docu-
mented in literature [7,12]. Given the environmental and health 
concerns, the acceptable limits for surfactants in water intended 
for domestic use are set at 1 mg/L, and even lower at 0.5 mg/L 
for potable water [13]. These stringent regulations underscore the 
necessity for treating wastewater containing surfactants. Thus, 
the significance of the present study on SDS removal is high-
lighted. 
 

Several methods, including adsorption [2,4,5,13], ultra-fil-
tration [14,15], biodegradation [10] and advanced oxidation [9], 
are commonly used for wastewater treatment. Among these 
methods, adsorptive separation stands out due to its versatility in 
fine-tuning adsorbent performance, the potential for synthesizing 
adsorbents from biomass or waste materials, and its feasibility 
for large-scale continuous operation. The synthesis of adsorbents 
from various materials, including biomass waste such as coconut 
shell [5,16], wood, wood stalks, sawdust, sugarcane bagasse, 
seeds, seed hulls, jackfruit peels, coffee beans [17–21], microal-
gae, etc., has been extensively documented in the literature. In 
previous study [16], the adsorptive separation of sodium dodecyl 
benzene sulfonate (SDBS) using a biosorbent derived from coco-
nut shells was investigated, demonstrating its efficacy. The cur-
rent research extends the work by applying the same biosorbent 
(PAACS-I) to the adsorptive separation of SDS [5], another sig-
nificant anionic surfactant. The influence of various operating pa-
rameters on the SDS removal efficiency was examined, conduct-
ing a comprehensive analysis of kinetics and thermodynamics to 
elucidate the adsorption mechanism and heat effects. 
 
 Gaining a full understanding of the biosorption process in 
distinct species requires a careful examination of the kinetics and 
isotherms. The data in question is intrinsically nonlinear, alt-
hough scientific publications frequently depict it as though it 
were linear. Nevertheless, the error structure linked to essentially 
nonlinear data is changed during the linearization process. One 
problem with this method is that it makes the modified data's re-
siduals seem less likely to follow a normal distribution. [22]. 
Consequently, it gets increasingly difficult to put a number on 
uncertainty, which is typically shown as a 95% confidence range. 
The purpose of this research is to review and reevaluate an earlier 
paper on SDS sorption upon AC shroud [5], which employed lin-
ear regression to derive the best-fitting models. 
 
METHOD  
 
Data acquisition and fitting 
Figure 9 data (323 K) from a previously published study  [5] was 
digitized using the freeware Webplotdigitizer 2.5 [23]. The pro-
gram's digitization capabilities have garnered accolades for their 

reliability [24]. Following that, Curve-Expert Professional (Ver-
sion 2.6.5, copyright Daniel Hyams), a program for curve fitting, 
was used to perform nonlinear regression on the data. The soft-
ware package MATLAB (Mathworks, Massachusetts, USA) was 
used to resolve the implicit equations.   
 
Isotherms 
As the value of the data points is very small, only models hav-
ing parameters of up to three were considered to prevent over-
fitting. 
 
Table 1. Mathematical models that were used in modelling data. 
 
Isotherm p Formula Ref. 
Henry’s law 1 𝑞𝑞𝑒𝑒 = 𝐻𝐻𝐶𝐶𝑒𝑒 [25] 

Langmuir 2 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑏𝑏𝐿𝐿𝐶𝐶𝑒𝑒
1 + 𝑏𝑏𝐿𝐿𝐶𝐶𝑒𝑒

 
[26] 

Jovanovic 2 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚(1 − 𝑒𝑒−𝐾𝐾𝑗𝑗𝐶𝐶𝑒𝑒) [27] 

Freundlich 2 𝑞𝑞𝑒𝑒 = 𝐾𝐾𝐹𝐹𝐶𝐶𝑒𝑒
1
𝑛𝑛𝐹𝐹 

[28] 

Dubinin-Radush-
kevich 
 
 
 
 
 
 
 

2 
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[29,30] 
 
 
 
[31,32] 

    

Temkin 3 𝑞𝑞𝑒𝑒 =
𝑅𝑅𝑅𝑅
𝑏𝑏𝑇𝑇

{𝑙𝑙𝑙𝑙(𝑎𝑎𝑇𝑇𝐶𝐶𝑒𝑒)} [33,34] 

Redlich-Peterson 3 𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑅𝑅𝑅𝑅1𝐶𝐶𝑒𝑒

1 + 𝐾𝐾𝑅𝑅𝑅𝑅2𝐶𝐶𝑒𝑒
𝛽𝛽𝑅𝑅𝑅𝑅

 
[35] 

Sips 3 𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑠𝑠𝑞𝑞𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒

1
𝑛𝑛𝑆𝑆

1 + 𝐾𝐾𝑠𝑠𝐶𝐶𝑒𝑒
1
𝑛𝑛𝑆𝑆

 

[36] 

Toth 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒

�𝐾𝐾𝑇𝑇 + 𝐶𝐶𝑒𝑒
𝑛𝑛𝑇𝑇�

𝑛𝑛𝑇𝑇  [37] 

Hill 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝐶𝐶𝑒𝑒

𝑛𝑛𝐻𝐻

𝐾𝐾𝐻𝐻 + 𝐶𝐶𝑒𝑒
𝑛𝑛𝐻𝐻 

[38]  

Khan 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑏𝑏𝐾𝐾𝐶𝐶𝑒𝑒

(1 + 𝑏𝑏𝐾𝐾𝐶𝐶𝑒𝑒)𝑎𝑎𝐾𝐾  
[39] 

BET 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑒𝑒

(1 − 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑒𝑒)(1 − 𝛽𝛽𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑒𝑒 + 𝛼𝛼𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑒𝑒) [40] 

Vieth-Sladek 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑏𝑏𝑉𝑉𝑉𝑉𝐶𝐶𝑒𝑒

(1 + 𝑏𝑏𝑉𝑉𝑉𝑉𝐶𝐶𝑒𝑒)𝑛𝑛𝑉𝑉𝑉𝑉  
[41] 

Radke-Prausnitz  3 𝑞𝑞𝑒𝑒 =
𝐴𝐴𝑅𝑅𝑅𝑅𝐵𝐵𝑅𝑅𝑅𝑅𝐶𝐶𝑒𝑒

𝛽𝛽

𝐴𝐴𝑅𝑅𝑅𝑅 + 𝐵𝐵𝑅𝑅𝑅𝑅𝐶𝐶𝑒𝑒
𝛽𝛽−1 

[42–44] 

Brouers–Sotolongo 3 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �1 + (0.5) �
𝑡𝑡
𝜏𝜏
�
𝛼𝛼
�
−2

� 
[45,46] 

Fritz-Schlunder-III 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝐾𝐾𝐹𝐹𝐹𝐹𝐶𝐶𝑒𝑒

1 + 𝐾𝐾𝐹𝐹𝐹𝐹𝐶𝐶𝑒𝑒
𝑛𝑛𝐹𝐹𝐹𝐹 [47] 

Fowler-Guggen-
heim* 
 3 

 

𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝐾𝐾𝐿𝐿𝐶𝐶𝑒𝑒𝑒𝑒

𝛼𝛼𝑞𝑞𝑒𝑒
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

1 + 𝐾𝐾𝐿𝐿𝐶𝐶𝑒𝑒𝑒𝑒
𝛼𝛼𝑞𝑞𝑒𝑒
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

 

[48] 

Moreau 
3 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚

𝑏𝑏𝐶𝐶𝑒𝑒 + 𝑙𝑙𝑏𝑏2𝐶𝐶𝑒𝑒2

1 + 2𝑏𝑏𝐶𝐶𝑒𝑒 + 𝑙𝑙𝑏𝑏2𝐶𝐶𝑒𝑒2
 

[49] 

Unilan  3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚
2𝑏𝑏𝑈𝑈

𝑙𝑙𝑙𝑙 �
𝑎𝑎𝑈𝑈 + 𝐶𝐶𝑒𝑒𝑒𝑒𝑏𝑏𝑈𝑈

𝑎𝑎𝑈𝑈 + 𝐶𝐶𝑒𝑒𝑒𝑒−𝑏𝑏𝑈𝑈
� 

 

Baudu 4 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑏𝑏𝐵𝐵𝐶𝐶𝑒𝑒

(1+𝑥𝑥+𝑦𝑦)

1 + 𝑏𝑏𝐵𝐵𝐶𝐶𝑒𝑒
(1+𝑥𝑥)  

[50] 

Marczewski-Jaroniec 4 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 �
�𝐾𝐾𝑀𝑀𝑀𝑀𝐶𝐶𝑒𝑒�

𝑛𝑛𝑀𝑀𝑀𝑀

1 + �𝐾𝐾𝑀𝑀𝑀𝑀𝐶𝐶𝑒𝑒�
𝑛𝑛𝑀𝑀𝑀𝑀�

𝑚𝑚𝑀𝑀𝑀𝑀
𝑛𝑛𝑀𝑀𝑀𝑀

 

[51] 

Fritz-Schlunder-IV  4 𝑞𝑞𝑒𝑒 =
𝐴𝐴𝐹𝐹𝐹𝐹𝐶𝐶𝑒𝑒

𝑎𝑎𝐹𝐹𝐹𝐹

1 + 𝐵𝐵𝐹𝐹𝐹𝐹𝐶𝐶𝑒𝑒
𝑏𝑏𝐹𝐹𝐹𝐹 

[47] 

Weber-van Vliet* 4 𝐶𝐶𝑒𝑒 = 𝑃𝑃1𝑞𝑞𝑒𝑒
�𝑃𝑃2𝑞𝑞𝑒𝑒

𝑃𝑃3+𝑃𝑃4� 
[52] 

Note *Implicit equation or function. 
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Statistical analysis 
The following statistical discriminatory tests were utilized in this 
study: HQ, BF, AF, RMSE, adjusted coefficient of determination 
(R²), corrected Akaike Information Criterion (AICc), BIC, and 
Hannan and Quinn's Criterion (AIC). The root-mean-squared er-
ror (RMSE) was calculated using Eqn. 1, which indicates that in 
most cases, a reduced RMSE is obtained with fewer parameters. 
Where n is the total number of observations, Obi and Pdi are the 
predicted and observed values, and p is the total number of pa-
rameters utilized in this context [22]. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
     (Eqn. 1) 

 
The modified R² is utilized to overcome the limitation that R², 
which stands for the coefficient of determination, does not take 
into account the total number of parameters in a model. The total 
variance of the y-variable is represented by S2y in the equation 
(Equations 2 and 3), while RMS refers to the Residual Mean 
Square. 
 
 
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�   (Eqn. 2) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
� (Eqn. 3) 

 
In the AICc equation, p is the number of parameters and n is the 
number of data points, and the AICc is derived accordingly. Data 
sets with many parameters but few values are best handled by 
applying the updated Akaike information criterion (AICc). [53]. 
It is more probable that a model is correct if its AICc score is 
lower [53]. The AIC’s (Akaike Information Criterion) basis is in-
formation theory. It finds a happy medium between a model's 
complexity and its goodness of fit [54]. 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛ln �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
�+ 2(𝑝𝑝+1)+2(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 4) 

 
In addition to AICc, the Bayesian Information Criterion (BIC) 
(Equation 5) is another information-theory-based statistical tool.  
This error function penalizes parameter count more harshly than 
AIC [55]. 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛In �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 𝑘𝑘In(𝑛𝑛)     (Eqn. 5) 

 
Equation 6 represents the Hannan-Quinn information criterion 
(HQC), an additional information theory-based method for error 
functions. The HQC is more reliable than the AIC due to the in-
clusion of the ln n element in the calculation [53]. 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛𝑛𝑛𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2𝑘𝑘In(In 𝑛𝑛)    (Eqn. 6) 

 
Two further error function analyses extracted from Ross's re-
search are the Accuracy Factor (AF) and the Bias Factor (BF) 
[53].  Rather than penalizing models based on their parameter 
counts, these error functions empirically assess their goodness-
of-fit (Equations 7 and 8). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑌𝑌2
         (Eqn. 7) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)

(𝑛𝑛−𝑝𝑝−1)
    (Eqn. 8) 

 

A typical error function utilized in much isotherm research is 
Marquardt's percent standard deviation (MPSD). Depending on 
the number of degrees of freedom in the system, the function 
takes on a shape similar to a geometric mean error distribution 
[56]. Among the first to use this error function in the adsorption 
field is [57] and the McKay group first proposed the official name 
for the error function, which is MPSD (Equation 9) [58]. 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1    (Eqn. 9) 

 
in which n is the total number of experimental data points, 

p is the total number of parameters, Obi is the set of experimental 
data points, and Pdi is the value that the model predicts. 
 
RESULTS AND DISCUSSION 
 
Several models were applied to the equilibrium data given in [5] 
by non-linear regression. Importantly, as shown in Figs. 1–18, all 
of these models showed good data fits with the exception of the 
Henry, Dubinin–Radushkevich models. There was no conver-
gence in the Fowler-Guggenheim model. Among several assess-
ment metrics, the Moreau isotherm model stood out as the top 
performer. These metrics included having the shortest RMSE, 
adjusted R², AF, and BF values close to one, as well as the lowest 
values for Bayesian Factor (BF), MPSD, and AICc values. Nev-
ertheless, the Langmuir model emerged as the top performer 
when AICc was utilized as the only error function. Moreau, Uni-
lan, Redlich-Peterson, Fritz-Schlunder III, Toth, and Langmuir 
were the top models in descending order according to the major-
ity error function analysis.  
 

The Unilan, Redlich-Peterson, Fritz-Schlunder III, and Toth 
models all performed well, but their maximum adsorption capac-
ities were very different from the experimental values, and the 
wide 95% confidence interval demonstrated that they were not a 
good fit. The small sample size is probably to blame for this dis-
parity. On the other hand, the maximum adsorption capacity es-
timates given by the Moreau and Langmuir models were better 
in line with experimental findings. Nonlinear regression provides 
more accurate results than linear regression, which was utilized 
in the original publication—which only presented the linearized 
forms of the Langmuir, Temkin, Dubinin-Radushkevich, and 
Freundlich models—because many models fit the bentonite data 
well. 

.  
Fig. 1. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Henry model. 
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Fig. 2. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Langmuir isotherm model. 

 
Fig. 3. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Freundlich isotherm model. 

 
Fig. 4. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Temkin isotherm model. 

 
Fig. 5. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Dubinin-Radushkevich isotherm model. 

 
Fig. 6. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Jovanovic isotherm model. 

 
Fig. 7. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Redlich-Peterson isotherm model. 
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Fig. 8. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Sips isotherm model. 

 
Fig. 9. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Toth isotherm model. 

 
Fig. 10. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Hill isotherm model. 

 
Fig. 11. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Khan isotherm model. 

 
Fig. 12. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the BET isotherm model. 

 
Fig. 13. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Vieth-Sladek isotherm model. 
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Fig. 14. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Radke-Prausnitz isotherm model. 

 
Fig. 15. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Brouers-Sotolongo isotherm model. 

 
Fig. 16. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Fritz-Schlunder III isotherm model. 

 
Fig. 17. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Unilan isotherm model. 

 
Fig. 18. SDS adsorption isotherm onto activated coconut shell as mod-
elled using the Moreau isotherm model. 
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Table 2.  Error function analysis for the fitting of the isotherm of SDS 
onto activated coconut shell. 
 
Model MPSD RMSE adR2 AICc BIC HQC BF AF 
Moreau 157.5 1.58 1.00 36.45 8.28 6.44 1.00 1.01 
Unilan 158.8 1.59 1.00 36.56 8.40 6.55 1.00 1.01 
Redlich-Peterson 159.7 1.60 1.00 36.63 8.47 6.63 1.00 1.01 
Fritz-Schlunder III 159.7 1.60 1.00 36.63 8.47 6.63 1.00 1.01 
Toth 159.9 1.60 1.00 36.66 8.49 6.65 1.00 1.01 
Khan 160.3 1.60 1.00 36.69 8.52 6.68 1.00 1.01 
Radke-Prausnitz 160.3 1.60 1.00 36.69 8.52 6.68 1.00 1.01 
Hill 160.7 1.61 1.00 36.73 8.56 6.72 1.00 1.02 
Sips 160.7 1.61 1.00 36.73 8.56 6.72 1.00 1.02 
Brouers–Sotolongo 162.0 1.62 1.00 36.84 8.68 6.84 1.00 1.02 
Vieth-Sladek 174.2 1.74 0.99 37.85 9.69 7.85 1.00 1.01 
BET 177.9 1.78 0.99 38.15 9.98 8.14 1.00 1.01 
Marczewski 183.3 1.83 0.99 80.55 10.34 7.88 1.00 1.01 
Baudu 184.2 1.84 0.99 80.62 10.40 7.94 1.00 1.01 
Fritz-Schlunder IV 184.2 1.84 0.99 80.62 10.40 7.94 1.00 1.01 
Weber-van Vliet  187.6 1.88 0.99 80.88 10.66 8.21 1.00 1.02 
Temkin 190.9 1.91 0.99 39.13 10.97 9.13 1.00 1.02 
Langmuir 240.9 2.41 0.99 27.95 13.84 12.61 1.00 1.03 
Freundlich 312.4 3.12 0.98 31.59 17.48 16.25 1.01 1.04 
Jovanovic 525.2 5.25 0.96 38.87 24.76 23.53 0.98 1.07 
Dubinin-Radush-
kevich 2577.8 25.78 0.39 61.14 47.03 45.80 0.22 4.86 
Henry 2643.2 26.43 0.43 53.77 46.71 46.10 0.57 1.92 
Fowler-Guggen-
heim n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Note: 
RMSE Root mean Square Error 
adR2 Adjusted Coefficient of determination 
p no of parameters 
AF Accuracy factor 
BF Bias factor 
BIC Bayesian Information Criterion 
AICc Adjusted Akaike Information Criterion 
HQC Hannan–Quinn information criterion 
 
Moreau 
Interactions between adsorbates occur on a homogenous adsor-
bent surface, as described by the Moreau isotherm model [59], 
furthermore, the Ruthven model, which was created for zeolite 
adsorption, is very similar to this one [60]. Proteins adsorb to pol-
ymer surfaces by a complex web of interactions, some of which 
include hydrogen bonding, van der Waals forces, and hydropho-
bic effects. Taking into account the heterogeneity and interaction 
among adsorbed proteins, the Moreau isotherm was determined 
to be the most effective model for the adsorption process [61]. 
The value of the maximum monolayer adsorption capacity for 
SDS binding to activated coconut shell according to the Moreau’s 
parameter qmM was 90.82 mg g-1 (95% Confidence interval from 
76.336 to 105.303), while b (L mg-1), the Moreau’s model con-
stant was 0.15 L mg-1 (95% C.I. from 0.089 to 0.203) and l, an-
other Moreau’s dimensionless constant was 0.3 (95% C.I. from -
0.049 to 0.646). 
 
Unilan (Unilin) model 
Among the empirical correlations proposed for use in equilib-
rium data analysis in the book by Valenzuela and Myers is Uni-
lan. Some publications also use the name Unilin when UniLan is 
more appropriate. An acronym for "Uniform distribution and 
Langmuir local" isotherm, UniLan describes this design.  Assum-
ing a surface that is defined patch-wise, the Unilan equation 
states that the local Langmuir equation is applicable to each patch 
[62]. The Unilan equilibrium constant (aU) and model exponent 
(bU) are used in this isotherm, while qmU (mg g-1) is the maximal 
monolayer adsorption capacity predicted by the isotherm.  
 

The variability of the system is described by bU. The more 
this parameter's value increases, the more diverse the system gets. 
The UniLan equation is transformed into the classical Langmuir 
equation when bU = 0 in this limit, which also happens when the 
value for the range of energy distribution becomes zero [63]. The 
result of the remodeling exercise, however, did not conform to 
the observed experimental qm value of about 90 mg g-1 (Table 3). 

 
Langmuir isotherm 
There is a continuum between empirical and mechanistic iso-
therm models; the Langmuir isotherm is definitely in the former. 
On the assumption of structural homogeneity in the adsorbent 
and equal energy for all adsorption sites, this model postulates 
that adsorption occurs as a uniform monolayer on the adsorbent 
surface [64]. Because intermolecular interactions decrease expo-
nentially with increasing distance, it predicts that a monolayer 
will form on the outer adsorbent surface. The linearization of the 
relationship and the assumption of a constant monolayer adsorp-
tion capacity are both brought about by this. That Henry's model 
holds true for both extremely dilute and concentrated solute con-
centrations is another important finding [65].  
 

The Freundlich and Langmuir models are two of the most 
popular choices for sorption research. The nonlinear regression 
method was able to get parameter estimates that were quite sim-
ilar to the original study's, but it couldn't give a 95% confidence 
interval. The value of the maximum monolayer adsorption capac-
ity for SDS binding to activated coconut shell according to the 
Langmuir’s parameter  qmL was 81.93 mg g-1 (95% Confidence 
interval from 76.422 to 87.440), while bL (L mg-1), the Langmuir 
model constants  was 0.10 L mg-1 (95% C.I. from 0.070 to 0.133). 
These values are very similar to the reported linear regressed val-
ues in the original publication for qmL  and bL values at 90.9 mg g-

1 and 0.09 L mg-1, respectively [5] (Table 4). 
 
Toth isotherm 
The Toth isotherm model serves as an equation used to explain 
adsorption processes, on surfaces with variations. It is crafted to 
address differences from the Langmuir isotherm, which assumes 
adsorption sites and single layer adsorption. The Toth isotherm 
provides flexibility in describing adhesion behaviors that differ 
from the Langmuir model by accommodating both high concen-
trations of adsorbate. By incorporating the parameter nT it accom-
modates surface diversity simplifying to match the Langmuir iso-
therm. In fields such, as engineering, wastewater treatment and 
material science the process of adsorption involves capturing pol-
lutants, dyes, heavy metals and other impurities on different ma-
terials like activated carbon, clays and biochar.  
 

The Toth isotherm is preferred over models as it fits data 
better especially in cases of varied adsorption environments. This 
model can handle a range of adsorption scenarios due to its pa-
rameters. However it is more intricate than models like Langmuir 
or Freundlich as it requires estimating parameters. The Toth iso-
therm serves as an adaptable tool for explaining adsorption on 
surfaces with greater precision for systems that deviate from sim-
pler model assumptions. The Toth isotherm was found as the best 
isotherm for the adsorption of two organic dyes (alizarin red S 
and phenol red) on mesoporous silica and hybrid gels [66], the 
adsorption of the red, yellow, and mustard yellow acid dyes onto 
granular activated carbon [67] adsorption of CO2 using biochar 
and KOH and ZnCl2 activated carbons derived from pine sawdust 
[68] and adsorption of ammonia onto an activated carbon [69]. 
 
Redlich-Peterson isotherm 
The Redlich-Peterson isotherm is a widely used model in adsorp-
tion studies that combines elements of both the Langmuir and 
Freundlich isotherms. It is particularly valuable for describing 
adsorption processes on heterogeneous surfaces where the ad-
sorption energy varies. The model's flexibility stems from the ex-
ponent βRP, which allows it to transition between the Langmuir 
isotherm (when βRP=1) and the Freundlich isotherm (when βRP 
approaches 0). This makes it suitable for describing adsorption 
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on both homogeneous and heterogeneous surfaces. Unlike sim-
pler isotherm models, the Redlich-Peterson isotherm accounts for 
the non-linearity of adsorption processes. This can provide a 
more accurate fit for experimental data, especially when the ad-
sorption sites have varying affinities. The model is extensively 
used in environmental engineering, chemical engineering, and 
materials science for the study of adsorption phenomena. It is ap-
plied in the removal of contaminants from water, adsorption of 
gases on solids, and in the design of adsorption systems for in-
dustrial processes.  
 

The parameters are usually estimated using non-linear re-
gression techniques. Accurate estimation of these parameters is 
crucial for predicting the adsorption capacity and understanding 
the adsorption mechanism. While the Redlich-Peterson isotherm 
provides a good fit for a wide range of data, its complexity can 
be a drawback. The need for non-linear regression and the inter-
pretation of three parameters can complicate its application com-
pared to simpler models. In addition, the model assumes that the 
adsorption process does not follow a strictly Langmuir or Freun-
dlich pattern but a combination of both. This assumption may not 
hold for all adsorption systems, especially those that strictly ad-
here to either Langmuir or Freundlich behavior. Furthermore, the 
Redlich-Peterson model lacks a clearly established physical basis 
and is thus an empirical model similar to the Sips model [70]. 
Hence, we will not offer a mechanical interpretation based on the 
best model because it is a variation of the Sips equation, which is 
an empirical model in and of itself. 
 
Fritz-Schlunder III 
The Fritz Schlunder III isotherm serves as a model utilized in ex-
plaining adsorption processes, on surfaces with differing proper-
ties. It blends aspects of the Langmuir and Freundlich isotherms 
making it applicable to scenarios where adsorption sites exhibit 
variations in both energy levels and capacities. This model 
proves to be highly effective in real world data for adsorption 
systems like organic pollutant adsorption on activated carbon or 
heavy metal removal from wastewater using biosorbents. Its ca-
pability to accommodate adsorption energies and capacities es-
tablishes it as a tool, for predicting adsorption tendencies within 
heterogeneous systems. 
 
Table 3. Isothermal models’ constants for the top seven models.   
 
Model  Unit Value 

 
(95% confidence in-
terval) 

Unilan qmU 
bU 

aU 

mg g-1 

 

L mg-1 

16.79 
2.35 
0.08 

-5.873 to 39.445 
0.518 to 4.178 
0.022 to 0.129 

Redlich-Peter-
son 

KRP1 

KRP2 

βRP 

L g1 

(mg L–1)–n 
12.91 
0.27 
0.89 

4.412 to 21.405 
-0.044 to 0.580 
0.779 to 0.999 

Moreau qmM  
b 
l 

mg g-1 

L mg-1 

 

90.82 
0.15 
0.3 

76.336 to 105.303 
0.089 to 0.203 -0.049 
to 0.646 

Fritz-Schlun-
der III 

qmFS 
nFS 
KFS 

mg g-1 

 

L mg-1 

48.24 
0.89 
0.27 

22.653 to 73.816 
0.779 to 0.999 
-0.044 to 0.580 

Toth qmS 
KT 

nT 

mg g-1 

(mg L-1)nT 
45.93 
4.10 
0.94 

20.956 to 70.912 
-0.322 to 8.514 
0.879 to 0.998 

Langmuir qmL  

bL  
mg g-1 
L mg-1 

81.93 
0.10 

76.422 to 87.440 
0.070 to 0.133 

 
A comparison of the SDS adsorption capacity by various 

adsorbents reported in the literature is presented in Table 4. The 
types of regression used in the study are also displayed and most 
of the studies used linear regression to analyse their data. Accord-
ing to Paranjape and Sadgir [71], linear regression is the most 
frequently used method to determine the best-fitting model for 
adsorption isotherms and kinetics, including the respective model 

parameters [5,72–75]. However, the error distribution can vary 
significantly depending on the linearization of the isotherm and 
kinetic equations, leading to either the best or worst fit. There-
fore, many researchers prefer the nonlinear regression approach 
to verify the parameters of adsorption isotherms and kinetics. 
This method is based on minimizing the discrepancies between 
the experimental data and the predicted isotherm values.  
 
Table 4. Summary of SDS sorption by various adsorbents. 
 
Adsorbents pH Adsor-

bent 
dosage 
(g/L) 

Maximum 
Adsorption 

capacity 
Qmax (mg/g) 

Isotherm 
models 

Kinetic 
models 

Regres-
sion 

Error 
func-
tion 

Ref 

Chemically 
activated co-
conut shell 

- 2 90.9 Langmuir PSO Linear R2 [5] 

Medicinal 
plants 

5 25 - Freundlich PFO Linear R2 [72] 

Sweet lime 
peel charcoal 

4.3 2 g - Langmuir n.a. Linear R2 [73] 

Granular acti-
vated char-
coal 

7 5 3.750 Langmuir n.a. Linear R2 [74] 

Waste tire 
rubber gran-
ules 

7 5 4.164 Langmuir n.a. Linear R2 [74] 

Wood char-
coal 

7 5 5.170 Freundlich n.a. Linear R2 [74] 

Silica gel 7 5 5.181 Freundlich n.a. Linear R2 [74] 
Modified cel-
lulose 

7 n.a 32.5 Langmuir PSO Linear R2 [75] 

Alumina 4 n.a 230 2-step ad-
sorption 
model 

n.a Non-lin-
ear 

n.a [76] 

Note:  
n.a. Not available 
PSO Pseudo second order 
PFO Pseudo first order 
R2 Coefficient of determination 
 
CONCLUSION 
 
Using a variety of models with one to three parameters each, the 
adsorption isotherm data for SDS on activated coconut shell was 
subjected to nonlinear regression. Moreau model outperformed 
Unilan, Redlich-Peterson, Fritz-Schlunder III, Toth, and Lang-
muir, in that order, according to statistical analysis based on error 
function assessments. Results from experiments were more con-
sistent with the upper limits of adsorption capacities predicted by 
the Moreau and Langmuir models. The value of the maximum 
monolayer adsorption capacity for SDS binding to activated co-
conut shell according to the Langmuir’s parameter  qmL was 81.93 
mg g-1 (95% Confidence interval from 76.422 to 87.440), while 
bL (L mg-1), the Langmuir model constants  was 0.10 L mg-1 (95% 
C.I. from 0.070 to 0.133). The value of the maximum monolayer 
adsorption capacity for SDS binding to activated coconut shell 
according to the Moreau’s parameter qmM was 90.82 mg g-1 (95% 
Confidence interval from 76.336 to 105.303), while b (L mg-1), 
the Moreau’s model constant was 0.15 L mg-1 (95% C.I. from 
0.089 to 0.203) and l, another Moreau’s dimensionless constant 
was 0.3 (95% C.I. from -0.049 to 0.646). These values include 
95% confidence intervals, which were absent in the original 
work. 
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