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INTRODUCTION 
 
Even though dyes perform a considerable function inside the 
manufacturing and industrial areas, pollution by dye will take 
place as a result of incorrect waste management. Despite the fact 
that natural dyes have got no recourse in any way, nonetheless, 
these synthetic dyes might cause toxicity to both humans and 
animals. As a consequence of fast industrialization, dyes are 
getting into the main water supply affecting the environment. 
These neglected textile effluents are packed with colour, high in 
BOD or biochemical oxygen demand, high in COD or chemical 
oxygen demand, high in TOC or total organic carbon, elevated 
SS or suspended solids, temperature, pH, turbidity and toxicity 
[1].  
 

Bioremediation can solve the problem of contaminants of soil, 
water or sediments, and it is the productive utilisation of the 
biodegradative method to eliminate or detoxify pollutants that go 
into the environment and jeopardize the public health or security 
of the surroundings [2,3]. Within this framework, bioremediation 
is the utilization of organisms to break down, sequester or 
conjugate environmental contaminants.  
 

Particular microorganisms are capable of breaking down 
toxins in the surroundings, which has been well known in the 
dyes field. In the last decades, the capacity of microorganisms 
has been looked into as an approach to degrade, decolourise, 
convert and mineralise dyes to safe, non-toxic by-products. In 
addition, the function of microorganisms employed for dye 
degradation is eco-friendly as a much less chemical substance is 
utilized to get rid of the contaminated site. In addition to this, 
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 ABSTRACT 
Basic Green 4 or Malachite Green (MG) is an important dye that found great usage in controlling 
fish pathogens. The use of MG has been banned but developing, and third-world countries still 
found applications for this dye. Bioremediation of dyes using microorganisms is on the rise. The 
ability to accurately predict the rate of bioremediation relies upon the gathering of the accurate 
rate of decolourisation, which is often inhibited at high concentrations of the toxicant. Various 
secondary models such as Monod, Haldane, Teissier, Aiba, Yano and Koga, Hans-Levenspiel, 
Webb and the Luong models were utilized to fit the specific decolourisation rate, and most of 
them show visually acceptable fitting except Monod and Teissier. The best model based on 
statistical analysis was Hans-Levenspiel with the highest value for the adjusted coefficient of 
determination and the lowest values for RMSE, AICc, HQC and BIC and the closest value to 1.0 
for accuracy and bias factors. The Hans-Levenspiel model was found to conform to normality 
tests and is adequate to be used to fit the experimental data. The normality tests carried out using 
tests such as the Kolmogorov-Smirnov, Wilks-Shapiro and the D'Agostino-Pearson omnibus K2 
test shows that the model pass the normality tests with p >0.05 for all normality tests carried out. 
The experimental data obtained indicates that Malachite Green is toxic and slows down the rate 
of decolourisation at higher concentrations. The maximum MG specific biodegradation rate 
(qmax), half-saturation concentration (KS), maximum allowable MG concentration (Sm), and the 
shape factors (n and m) were 0.136 h-1, 0.56 mg/L, 2691 mg/L, -33.31 and 35.12, respectively. 
The parameters obtained from this exercise can be utilized to model the bioremediation of MG 
in the future. 
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whenever less chemical is included, lower energy is needed for 
the bioremediation process, thus rendering it a cost-effective 
substitute for both chemical and physical decomposition 
procedures. The inhibitory effect of dye or its degradation 
metabolite to the growth or degradation rate of the dye can be 
modelled using secondary models such as Haldane, which is 
popular due to its simple equation and has been reported in 
several studies [4–6] despite the existence of numerous other 
secondary models such as  Teissier, Aiba, Yano and Koga, Hans-
Levenspiel, Webb and the Luong that can predict concentrations 
of the toxicant that can completely cease growth or degradation 
rate. 
 

In a previous work, a recalcitrant dye; Basic Green 4 or 
malachite green (MG) is degraded by Staphylococcus aureus and 
hence has the potential to be a remediation agent. The rate of 
decolourisation appears to be inhibited by a high concentration 
of the dye. Hence, the objective of this research is to 
mathematically model the degradation or the decolourization of 
Malachite Green dye using non-linear regression such as Monod, 
Haldane, Teissier, Aiba, Yano and Koga, Hans-Levenspiel, 
Webb and the Luong models. This modelling will allow for more 
accurate parameters of decolourization to be obtained. The best 
model will be evaluated based on the various statistical test such 
as the adjusted coefficient of determination (adjR2), root means 
square error (RMSE), corrected Akaike Information Criterion 
(AICc), accuracy factor (AF) and bias factor (BF). 
 
MATERIALS AND METHODS 
 
Data acquisition 
Graphical data of a published work [7] from Figure 7 were 
electronically processed using WebPlotDigitizer 2.5 [8] which 
helps to digitize scanned plots into a table of data with good 
precision and reliability [9,10].  
 
Fitting of the data 
The data were fitted using a nonlinear regression that uses a 
Marquardt algorithm (Table 1).  CurveExpert Professional 
software (Version 1.6), which minimizes the sums of the square 
of the differences between values of the predicted and measured.  
 
Statistical analysis 
The root-mean-square error or RMSE is the standard deviation of 
the residuals (prediction errors), and it measures the spread of the 
residual. It is calculated according to Eq. 1, where p is the 
number of parameters of the assessed model, Obi is the 
experimental data, Pdi is the values predicted by the model and n 
is the number of experimental data. 
 
The RMSE was calculated as folows,  
 

       (Eqn. 1) 
where  
 
n  number of experimental data  
Pdi   pvioleticted values by the model  
Obi  experimental data 
p   parameters number of the model 
 
 
 
 
 

Table 1. Kinetic models for the growth of Staphylococcus aureus on 
dyes. 
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Note: 
qmax maximal decolourisation rate (h-1) 
Ks  half saturation constant for maximal degradation (mg/L) 
Sm  maximal concentration of substrate tolerated and (mg/L) 
m, n, K curve parameters 
S substrate concentration (mg/L) 
P product concentration (mg/L) 
 

This error function penalizes for a number of parameters, 
and as a rule of thumb, the model with the smaller number of 
parameter resulted in a smaller RMSE value [19] and is more 
desired than a larger RMSE value. In linear and nonlinear 
regression, the assessment of the goodness of fit is often based 
on the coefficient of determination or R2. However, the method 
ignores the number of parameters of models and hence, does not 
freely provide comparative analysis. As a solution, and adjusted 
R2 that takes into account the number of parameter of models 
(Eqns. 2 and 3) is used to work out the quality of nonlinear 
models according to the formula below; 
 

      (Eqn. 2) 
 

     (Eqn. 3) 
where  
 

is the total variance of the y-variable and RMS is the 
Residual Mean Square  
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The Akaike information criterion (AIC) is an estimator of 
the relative quality of statistical models. It is established upon 
information theory.  The error function trade-off goodness of fit 
of models taking into account the number of parameter of the 
model. To select for the best model, the model with the least 
value for AIC is the best. When the data in a study is small 
concerning the parameters’ number, a corrected version of AIC; 
the Akaike information requirements (AIC) with the correction 
or AICc is utilised instead [20].  

 
Only the quantum of the difference is important and not the 

actual values with a difference of 5 usually indicates a more 
likelihood of the data with the smaller value to be accurate or 
correct. The formula incorporates some variables penalty where 
the more the variables, the higher the AIC value indicating a less 
parsimonious model. AIC discourage the use of more 
complicated models (overfitting) in fitting experimental data. 
AICc is calculated using the following equation (Eqn. 4); 
 

  (Eqn. 4) 
 
Where  
n  number of data points   
p  parameter numbers of the model 
 
 

Another goodness-of-fit of models is the Accuracy Factor 
(AF), and Bias Factor (BF) (Eqns. 5 and 6) adapted from 
common use in predicted microbiology for bacterial growth in 
food science [21]. The statistics calculates the perfect match 
between experimental and predicted values. As a rule, a BF value 
> 1.0 indicates a model which is fail-safe a value < 1.0 indicates 
a model that is fail-dangerous. On the other hand, the AF is 
always ≥ 1.0, with precise models giving values nearing to 1.0. 
 

( )










∑

= =

n

i

ii

n
ObPd

1

/log

10factorBias       (Eqn. 5) 
( )











∑

= =

n

i

ii

n
ObPd

1

/
log

10factor Accuracy      (Eqn. 6) 
 

Assesment of normality (Eqn. 7) for the residuals was 
carried out using the GraphPad Prism® 6 (Version 6.0, GraphPad 
Software, Inc., USA). The residual for the ith observation in the 
regression model can be mathematically represented as follows; 
 

        (Eqn. 7) 
 

Where the ith response from a given data set is denoted by yi 
while at each set of the ith observation, the vector for the 
explanatory variables is xi [22], the normality tests carried out is 
based on the tests of Kolmogorov-Smirnov [23,24], Wilks-
Shapiro [25] and the D'Agostino-Pearson omnibus K2 test [26]. 
 
RESULT AND DISCUSSION  
 
Various secondary models (Figs. 1 to 8) were utilized to fit the 
specific decolourisation rate, and most of them show visually 
acceptable fitting except Monod and Teissier.  
 
 
 
 
 

The best model based on statistical analysis was Hans-Levenspiel 
with the highest value for the adjusted coefficient of 
determination and the lowest values for RMSE, AICc, HQC and 
BIC and the closest value to 1.0 for accuracy and bias factors. 
The Hans-Levenspiel model was found to conform to normality 
tests and is adequate to be used to fit the experimental data. The 
normality tests carried out show that the model passes the 
normality tests with p >0.05 for all normality tests carried out 
[22]. The experimental data obtained indicates that Malachite 
Green is toxic and slows down the rate of decolourisation at 
higher concentrations. The maximum MG specific 
biodegradation rate (qmax), half-saturation concentration (KS), 
maximum allowable MG concentration (Sm), and the shape 
factors (n and m) were 0.136 h-1, 0.56 mg/L, 2691 mg/L, -33.31 
and 35.12, respectively. 
 

 
 
Fig. 1. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Aiba model.   
 

 
 
Fig. 2. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Luong model. 
   

 
Fig. 3. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Haldane model.   
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Fig. 4. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Monod model.   
 

 
Fig. 5. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Tessier-Edward 
model.   
 

 
Fig. 6. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Yano model.   
 

 
Fig. 7. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Hans-Levenspiel 
model.   

 
 

 
 
Fig. 8. Fitting the effect of Malachite Green dye concentration on the 
specific growth rate of Staphylococcus aureus using the Webb model.  
 
Table 2. Statistical analysis of kinetic models. 
 
model p RMSE AdjR2 AICc BF HQC BIC AF 
Aiba 3 0.003 0.9944 -85.74 1.94 -92.68 -92.06 2.068 
Luong 4 0.0066 0.9697 -73.07 1.78 -80.01 -79.4 1.865 
Haldane 3 0.0065 0.9679 -73.12 5.59 -80.06 -79.44 3.386 
Monod 2 0.0223 0.5765 -53.53 6.36 -60.47 -59.85 4.783 
Tessier-Edward 3 0.0318 0.4008 -47.85 0 -54.79 -54.17 nil 
Yano 4 0.0019 0.9977 -92.89 1.77 -99.83 -99.21 1.36 
Hans-Levenspiel 5 0.008 0.9996 -106.2 1.1 -113.1 -112.5 1.1 
Webb 4 0.0063 0.97 -73.66 2.88 -80.59 -79.98 1.888 
Note: 
p parameter 
RMSE  Root Mean Square Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
 

Mathematical modelling on the effect of substrate (dyes) on 
the growth rate of dye-degrading bacteria is rarely done despite 
this kind of exercise being routinely carried out in other 
xenobiotics-degrading microorganism works. The model 
parameters obtained from such exercise can be a useful tool in 
comparing efficiency between degraders and can be used to 
estimate the inhibitory effect of the substrate in field studies. The 
Hans-Levenspiel model was also the best model for the 
biodegradation of methylene blue (MB) by Ralstonia eutropha. 
The maximum MB specific biodegradation rate (rmax), half-
saturation concentration of MB (KS), maximum allowable MB 
concentration (Sm), and the shape factors (n and m) were 7.37 mg 

h-1, 32.13 mg/L, 158.8 mg/L, 0.27, and 0.76, respectively [27].  
 

The Haldane model is often the one that is used as the basis 
for most dye-decolorizing kinetics research. For instance, in the 
process of Congo red being broken down by Bacillus species, the 
Haldane and Monod models were applied, and it was discovered 
that the Haldane model was the superior of the two [28]. The 
Haldane model was also utilized as the best model for the bio-
decolorization of the textile azo dye Reactive Red 2 by a mixed, 
mesophilic methanogenic culture [4] and the bio-degradation of 
Tectilon Yellow 2G (TY2G) by a Pseudomonas putida mutant 
[29].  

 
In the biodegradation of Methyl Orange (MO) with 

tolerance at concentrations of up to 100 mg/L by the salt-tolerant 
Bacillus sp. strain CICC 23870 the biodegradation was estimated 
by the Haldane model as the sole model due to the popularity of 
this model. The average specific decolorization rate of the free 
cell system was 26.30 mg/g/h at an initial MO concentration of 
32.7 mg/L [30].  
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Because the Haldane model has been proved to be more accurate 
when compared to other models, this generalization regarding the 
employment of the Haldane model in published works ought to 
be approached with extreme caution. For example, in addition to 
the Haldane model, which is most frequently stated [31], several 
other different models have been found to be optimal such as 
Luong [32,33] and Edward [34]. As a consequence of this, the 
utilization of extensive models that are easily available may 
therefore replace the Haldane in certain circumstances. The 
unique utilization of the Haldane model must not be used freely 
because it can only be achieved by really fitting these other 
models to the data that is available for either the growth or 
degradation rate, and then conducting the proper statistical 
analysis. 
 
CONCLUSION 
 
Malachite Green (MG) is an important dye in controlling fish 
pathogens as it is antibacterial, antifungal, and anti-parasitic. 
Bioremediation of MG using microorganisms is on the rise. The 
rate of decolourisation, which is often inhibited at high 
concentrations of toxicant can be modelled using various 
secondary models. The best model based on statistical analysis 
was Hans-Levenspiel with the highest value for the adjusted 
coefficient of determination and the lowest values for RMSE, 
AICc, HQC and BIC and the closest value to 1.0 for accuracy and 
bias factors. The Hans-Levenspiel model was found to conform 
to normality tests and is adequate to be used to fit the 
experimental data. The experimental data obtained indicates that 
Malachite Green is toxic and slows down the rate of 
decolourisation at higher concentrations. The maximum MG 
specific biodegradation rate (qmax), half-saturation concentration 
(KS), maximum allowable MG concentration (Sm), and the shape 
factors (n and m) were 0.136 h-1, 0.56 mg/L, 2691 mg/L, -33.31 
and 35.12, respectively. The parameters obtained from this 
exercise can be utilized to model the bioremediation of MG in 
the future. 
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