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 ABSTRACT 
As an approach for bioremediation, the decomposition of acrylamide by microorganisms has 
received gradual but persistent worldwide interest. Prior to this study, a molybdenum-reducing 
bacteria had been identified and exhibited the ability to breakdown amides. Its key growth 
parameters on acrylamide were further investigated. A Central Composite Design (CCD) was 
employed to optimize the two previously identified key factors (incubation time and acrylamide 
concentration). For the examination of the significant factors or parameters, ANOVA, the 
perturbation plot, and numerous other diagnostic plots were employed. Using the "Numerical 
Optimisation" toolbox of Design Expert software, predicted ideal conditions were calculated. 
There were two ideal conditions investigated. The first was to determine the optimal growth under 
the employed range of variables, while the second was to forecast the optimal growth at the 
greatest acceptable acrylamide concentration of 1 g/L. The solution for the first predicted model 
predicted a maximum growth of 8.96 Log CFU/mL (95 percent confidence interval from 8.19 to 
9.73), which was confirmed by experimental results with a growth of 9.88 Log CFU/mL (95 
percent confidence interval from 9.79 to 9.97), which was close to the predicted values but 
significantly greater than the predicted values. The second numerical optimization for maximum 
growth with the highest acrylamide content. The solution had a predicted maximum growth of 
7.81 Log CFU/mL (95 percent C.I. from 7.06 to 8.57) and was experimentally confirmed to have 
a growth of 8.74 Log CFU/mL (95 percent C.I. from 8.56 to 8.92), with the difference not being 
statistically significant (p0.05) indicating close agreement between predicted and experimental 
values. The findings of the RSM exercise demonstrated that growth on acrylamide may be 
optimized more efficiently with RSM than with OFAT, indicating that RSM is more useful in 
this regard than OFAT. 
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INTRODUCTION 
 
Even though Spencer and Schaumburg [1] established that 
acrylamide exposure leads to the development of cancer in 
experimental animals, it is still unknown whether or not the same 
is true for humans exposed to the chemical. Acrylamide has been 
shown to bind to DNA and mouse protamine during all phases of 
spermiogenesis in mice, leading researchers to conclude that it 
causes genetic harm [2]. According to studies [3], acrylamide 
exposure in rats is associated with an increased risk of perinatal 
death, mutagenicity, clastogenicity, endocrine-related 
malignancies, and male reproductive toxicity. According to Yang 
et al. [4], Salmonella strains TA100 and TA98 may be mutagenic 
when exposed to acrylamide. A greater number of chromosomal 
abnormalities were observed in the bone marrow of mice that had 
received an intraperitoneal injection of acrylamide at a dosage of 
50 mg/kg after administration of the drug. The incidence of 
chromosomal abnormalities in lymphocytes from mice that were 
administered up to 125 mg/kg of acrylamide intraperitoneally did 
not increase significantly. This result was observed when 
acrylamide was given intraperitoneally [5]. 
 

The Maillard reaction is a cooking process that can result in 
the creation of acrylamide, a carcinogenic and neurotoxic 
chemical. When foods high in carbs are cooked at a high 
temperature, acrylamide can form. As a result of the Maillard 
reaction, meals high in carbohydrates may contain acrylamide. 
The Maillard reaction is initiated when carbohydrates and amino 
acids are combined. This is the major mechanism for the 
synthesis of acrylamide [6]. Alternatively, acrylamide can be 
produced from various carbonyl compounds [7]. Alternatively, 
acrylamide can be derived from a variety of different carbonyl 
compounds [7]. Both cattle and fish perished in Sweden and 
Norway as a direct result of acrylamide contamination in nearby 
waterways. In the production of adhesives, plastics, and printed 
materials, as well as in the treatment of drinking water, 
polyacrylamide, abbreviated PAM, is the most prevalent use of 
acrylicamide. As of 2005, commercial polyacrylamides are 
regularly contaminated with the toxic monomer of acrylamide, a 
scenario that has had a significant effect on our food supply chain 
due to the widespread use of these compounds. The herbicide 
Roundup, which contaminates agricultural soil with acrylamides, 
has thirty percent polyacrylamide. Acylamide must be degraded 
through a biological mechanism in order to handle this issue, 
which must be addressed in order to be remedied [8]. As a result 
of acrylamide-induced histological abnormalities in the 
seminiferous tubules, the reproductive systems of male rats are 
also damaged. The chemical is the cause of these histological 
abnormalities. If acrylamide is inhaled or absorbed through the 
skin, it could induce a burning sensation or a rash. A hyperactive 
sweat gland, a sluggish body, and tongue trembling are all 
indications that something is wrong with the nervous system [1]. 
Acrylamide, which is highly soluble in water, can be absorbed 
via the skin, lungs, digestive tract, and even the placental barrier. 
By assessing the amount of acrylamide adducts present in 
haemoglobin, it is feasible to determine the amount of acrylamide 
to which the general population is exposed as a result of their 
occupation. According to the results, 41 workers at an acrylamide 
production facility had neurotoxicity concerns related with 
haemoglobin adducts as a biomarker. The increased amount of 
haemoglobin adducts in workers from a Chinese acrylamide-
manufacturing factory suggests that the workers were exposed to 
exceptionally high levels of acrylamide [9]. Numerous cases of 
acute acrylamide poisoning have been recorded in Japan as a 
result of acrylamide contamination of the country's water supply. 
These events have occurred in several individuals. Igisu et al. 
[10] discovered an acrylamide content as high as 400 mg 

acrylamide/L in a well that was contaminated by a grouting 
operation that occurred at a depth of 2.5 meters. This discovery 
was published in 1975 by Igisu et al. Five individuals who drank 
tainted water had symptoms like truncal ataxia and confusion, 
according to the study. It is believed that these symptoms are the 
result of acrylamide toxicity caused by drinking the water. 
 

To get acrylamide poisoning, it must be inhaled in polluted 
air or ingested. Depending on how it comes into touch with the 
body, the mucous membranes in the lungs, the digestive system, 
or the skin may absorb this chemical. Alternatively, it will be 
removed by the urinary system. The presence of acrylamide in 
biological fluids and the dispersion of acrylamide throughout the 
body contribute to the facilitation of acrylamide's effect. Despite 
the fact that it is rapidly metabolized and removed from the body 
following exposure, acrylamide poses a risk to individuals and 
workers due to its high degree of protein reactivity [11–13]. The 
use of microbes for acrylamide remediation is gaining popularity 
because in some circumstances, such as soil, the matrix is 
complex and it will be more expensive to remove acrylamide 
with physicochemical approaches. The yeast Rhodotorula sp. 
[14], the fungus Aspergillus oryzae [15], and bacteria [16–25], 
which are significantly more numerous than yeast or fungi, have 
been identified as capable of using acrylamide. 
 

It is crucial that RSM be capable of sequentially designing 
and analyzing trials. The experimenter will make educated 
assumptions as to which variables will influence the outcome. 
During the preliminary screening step, an experiment can 
examine the significance of each factor. This reduces the total 
number of experimental components, hence reducing the total 
number of required runs. It is up to the fitted model to determine 
whether or not the obtained data come close to a perfect solution. 
This allows for the investigation of the issue space and the 
determination of the next location for experimentation. The 
collecting of data points from numerous locations aids in the 
development of a process space viewpoint. During the final cycle 
of experimentation, the objective is to create a model that more 
accurately simulates the actual function within a confined 
problem space. Each experiment improves our process model. 
Following an initial experiment, we now have the model's core 
components. The mathematical modeling of biological systems 
can facilitate the solution of complex biological problems and the 
comprehension of unexpected behavior. As noted, it is vital to 
collect data from tests properly. Experiments must be conducted 
to build a prediction model leveraging RSM's statistical analysis. 
 

The response surface method, also known as RSM, is a 
statistical method consisting of the following phases: selecting an 
appropriate experimental design; determining the efficient 
levels/optimum points of a large number of independent 
parameters; forecasting and validating model equations; and 
creating contour plots and response surfaces [26]. Effectively 
enhancing biodegradation, biotransformation, and 
bioremediation processes, such as cyanide degradation [27], 
phenol degradation [28], caffeine degradation [29], and 
hexavalent chromium and molybdenum reduction to a less toxic 
form [30], has been a function of RSM. RSM optimizes yield 
within a specific process range, where the range is estimated 
using mathematical and statistical software such as Design 
Expert® or MATLAB®. RSM's objective is to get optimal 
results using the available resources. The optimal response, 
which can be visually observed, is illustrated by 2-D and 3-D 
contour plots, which also indicate the influence of the levels of 
two factors and the potential for interactions by establishing 
optimal concentrations for other parameters. Optimal reactions 
can be visually observed [31]. Two types of optimization 
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methods are popular, which are Box Behnken (BB) and Central 
Composite Design (CCD) [1,2]. In this study, the CCD will be 
selected for the optimization of a bacterial growth on acrylamide 
due to the presence of only two factors to be optimized. 
 
 
MATERIALS AND METHODS 
 
All chemical reagents were generated in large quantities and 
utilised in the analysis in their unpurified forms, and all of the 
materials used in this study were of analytical grade. In all cases, 
unless otherwise noted, experiments were carried out in 
triplicate. 
 
Growth and maintenance of acrylamide-degrading 
bacterium 
Staphylococcus sp. strain Amr-15 was previously isolated from 
soil samples obtained from the grounds of a polluted site in Sadat 
City, Egypt. The isolation, partial identification and 
characterization of the growth based on five operational 
parameters (pH, temperature, incubation time, acrylamide 
concentration and glucose concentration) of this bacterium on 
acrylamide are reported elsewhere.. From an overnight pure 
culture of the bacterium in nutrient browth, 0.1 mL was added 
into 45 mL of acrylamide enrichment medium in a 100 mL 
volumetric flask and the culture was incubated at 25 ℃ on an 
incubator shaker (Certomat R, USA) at 150 rpm for 48 h. 
Minimal salt medium (MSM) was used to for the growth of the 
bacterium with 0.5 g acrylamide g/L as the sole nitrogen source, 
glucose 10 g/L as the carbon source, MgSO4·7H2O 0.5 g/L, 
KH2PO4 6.8 g/L and trace elements with the following 
sompositions; FeSO4·H2O 0.005 g/L and 10 mL of H3BO3 0.05 
g/mL, ZnCl2 0.03 g/L, CoCl2·6H2O 0.003 g/mL, 
Cu(CH3COO)2·H2O 0.01g 0.002 g of FeCl2·6H2O [3].  The pH 
of the medium was adjusted to meet the specifications. For 
sterilisation, 0.45 micron PTFE syringe filters were utilized, and 
crylamide was the sole source of nitrogen. One milliliter samples 
of the growing culture were serially diluted in sterile tap water to 
determine the number of colony-forming units per milliliter. In a 
prior 2-level factorial design, it was determined that three growth 
parameters (pH, acrylamide concentration, and incubation 
length) were major contributors (results reported elsewhere), and 
CCD would be used to optimize these components in this 
investigation. 
 
Optimization study using RSM  
 
Two parameters, acrylamide concentration and incubation 
period, were shown to be significant out of the five components 
evaluated using a two-level factorial design (results published 
elsewhere). As a result, a two-factor Central Composite Design 
(CCD) was implemented as an RSM to optimize the growth of 
this bacteria based on these two parameters. CCD is built on three 
processes, including designing and experimental setup, response 
surface modeling using regression, and optimization (Du et al., 
2010). Using a second-order polynomial equation, the 
relationship and interrelationship between input variables and the 
experimental response variable were determined. The equation is 
as follows: 

y = β0 + �βi

k

i=1

xi + �βiixii2
k

i=1

+ ��βijxixj + error
k

j>1

k−1

i=1

 

where, y is the estimated response variable, β0 is the regression 
constant, βi is the linear regression coefficient, βii is the quadratic 
regression coefficient, βij is the bi-linear regression coefficient.  
A two-factor CCD was employed in this study (Table 1). The 
response was bacterial growth measured as log CFU/mL. The 

CCD generated 13 experimental runs with 5 centerpoints (Table 
2) that were randomized to minimize the unpredictable variations 
in the observed responses due to uncontrolled extraneous factors.  
 
 
Table 1. Coded and uncoded levels of the independent variables. 
 
Factor Name Units Minimum Maximum Coded 

Low 
Coded 
High Mean Std. 

Dev. 

A Acrylamide g/L 0.1550 1.14 -1 ↔ 
0.30 

+1 ↔ 
1.00 0.6500 0.2858 

B Incubation 
time day 1.59 4.41 -1 ↔ 

2.00 
+1 ↔ 
4.00 3.00 0.8165 

 
 
Table 2. Experimental design and results of CCD for the growth of the 
bacterium on acrylamide. 
 

Run 

Factor 1. A: 
Acrylamide 
concentration 
(g/L)  

Factor 2. B: 
Incubation 
(day) 

Response. 
Bacterial 
growth (log 
CFU/mL) 

1 0.3 2 5.001 
2 1 2 3.03 
3 0.3 4 5.41 
4 1 4 4.93 
5 0.155025 3 4.45 
6 1.14497 3 2.62 
7 0.65 1.58579 2.59 
8 0.65 4.41421 4.68 
9 0.65 3 8.13 
10 0.65 3 9.27 
11 0.65 3 9.31 
12 0.65 3 8.23 
13 0.65 3 9.47 
14 0.3 2 5.001 
15 1 2 3.03 
16 0.3 4 5.41 
17 1 4 4.93 

 
 
All experiments were performed in duplicate and their mean 
values are reported here. Data were analyzed using Design Expert 
11.0, Stat-Ease, Inc (trial version) program including ANOVA to 
find out the significant factors among these variables.  
 
Statistical Analysis 
Values are means ± SD, in triplicate. One-way analysis of 
variance (with post hoc analysis by Tukey’s test) or Student’s t-
test was used to compare between groups. P-value of < 0.05 was 
considered was significant. 
 
RESULTS 
 
Experimentation planning in fundamental research is typically 
governed by "intuition." Biology experiments have always been 
conducted "one variable at a time" (OFAT). In this procedure, all 
factors and variables are held constant with the exception of the 
researched object, and the object's output is analyzed. This 
technique has the potential to reveal important "major impacts" 
in biological research, yet the interplay between its components 
will result in misspelled words. To get optimal results, it is 
necessary to regulate a high number of input elements due to the 
complexity of the process. Even if various studies on process 
optimization have used OFAT to improve responsiveness, it will 
be necessary to comprehend the interdependencies between 
components in order to optimize more complex procedures [26]. 
Using the OFAT approach, one axis would be optimized before 
the other. If, by some stroke of luck, the beginning of the study 
was reasonable, then it is possible to identify the global 
maximum that maximizes the output variable. Nonetheless, it is 
possible that the search was completed at a local maximum or 
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pseudo-optimal point. Experiment outcomes may be noisy, and 
there may be a great deal of exciting incoming data. In such cases, 
the selection of data points can be modified to maximize the 
quantity of relevant information gathered through the use of 
statistically-based experimental design, which can lead to much 
more interesting data.  
 

The DOE's basic issue structure takes into account a variety 
of factors believed to influence process output. The experiment 
design finally chosen is determined by which of various possible 
designs delivers the greatest amount of anticipated data [27]. 
Typically, this criterion is established by the precision or 
accuracy of the fitted model's estimates of the input variable or 
its projections of the output variable. The mechanics of this 
collaboration are typically unknown. In its place, a model of the 
system is provided to characterize the system's output in terms of 
its influencing aspects. This so-called "response surface" model 
accepts continuous inputs and often takes the shape of a first-
order (linear) or second-order (quadratic) polynomial. Response 
surface methodology is a stricter technique for experimental 
point placement and response analysis (RSM). When there are 
few aspects that influence the design, it is preferable to utilize the 
Taguchi, complete factorial, or Central Composite Design with 
two factors. When multiple factors influence a reaction or design, 
the response surface technique [28] is advantageous. The CCD 
scheme of variables with actual value is illustrated in Table 3, 
along with experimental, predicted values of response and the 
residuals. 
 
Table 3.  Design scheme of variables with experimental, predicted values 
of response and the residuals. 
 

Run 

Factor 1. A: 
Acrylamide 
concentration 
(g/L)  

Factor 2. B: 
Incubation 
(day) 

Response. 
Bacterial 
growth (log 
CFU/mL) 

Predicted 
response. 
Log 
CFU/mL 

Residuals 

1 0.3 2 5.001 4.433 0.568 
2 1 2 3.030 2.428 0.602 
3 0.3 4 5.410 5.004 0.406 
4 1 4 4.930 4.490 0.440 
5 0.155025 3 4.450 4.930 -0.480 
6 1.14497 3 2.620 3.148 -0.528 
7 0.65 1.58579 2.590 3.208 -0.618 
8 0.65 4.41421 4.680 5.070 -0.390 
9 0.65 3 8.130 8.882 -0.752 
10 0.65 3 9.270 8.882 0.388 
11 0.65 3 9.310 8.882 0.428 
12 0.65 3 8.230 8.882 -0.652 
13 0.65 3 9.470 8.882 0.588 
 
F-test evaluates the statistical significance of the model, analysis 
of variance (ANOVA) and P-value of a selected factor is shown 
in Table 4.The F value of 29.04 and the low P-value of 0.0002 
indicate that the model is very significant. All factors are 
significant model terms. Calculating the correlation coefficient 
(R2: 0.954, which is closer to one) and the adjusted correlation 
coefficient (Adj R2: 0.9211) proves the model's accuracy. These 
two coefficients indicate that the model explains 92.11 percent of 
the total variance in response data. The Predicted R2 and the 
Adjusted R2 (0.786) were in reasonable agreement, with a 
difference of less than 0.2 between them.  
 

In scientific terminology, Adeq Precision refers to the ratio 
between the amount of signal and the amount of noise in an 
experiment. Preferably, the ratio should be greater than 4. With a 
value of 12.97, a signal was obtained that was adequate. Using 
this paradigm, it is easier to navigate the design space. The fact 
that the Lack of Fit F-value is 1.67 and the p-value is >0.05 
indicates that it is not statistically significant relative to the pure 
error. There is a likelihood of 31,01 percent that the F-value for 
lack of fit is this high due to noise. We regard a small lack of fit 

to be favorable because we want the model to be correct. The 
expected increase as a response can be obtained and shown in 
terms of the subsequent coded factors and equation in terms of 
real factors. (Table 5). 
 
Table 4. ANOVA analysis of the fitted CCD design. 
 
Source Sum of 

Squares df Mean 
Square 

F-
value 

p-
value 

 

Model 77.89 5 15.58 29.04 0.0002 significant 
A-Acrylamide 3.17 1 3.17 5.92 0.0453  

B-Incubation 
time 3.46 1 3.46 6.46 0.0386  

AB 0.5558 1 0.5558 1.04 0.3427  

A² 40.79 1 40.79 76.03 < 
0.0001 

 

B² 39.13 1 39.13 72.92 < 
0.0001 

 

Residual 3.76 7 0.5365    

Lack of Fit 2.09 3 0.6952 1.67 0.3101 not 
significant 

Pure Error 1.67 4 0.4175    

Cor Total 81.65 12     

Std. Dev. 0.7325  R² 0.9540 

Mean 5.93  Adjusted 
R² 0.9211 

C.V. % 12.35  Predicted 
R² 0.7864 

   Adeq 
Precision 12.9691 

 
 
Table 5. Final equation in terms of coded and actual factors. 
 
Coded  Actual 
Growth factor Growth factor 

8.88   -19.54173   
-0.6299 A 20.70357 Acrylamide 
0.6581 B 14.19521 Incubation time 
0.3728 AB 1.065 Acrylamide * Incubation time 
-2.42 A² -19.76786 Acrylamide² 
-2.37 B² -2.37156 Incubation time² 

 
 
 
 
Table 6 displays the estimated coefficients of the examined 
components, together with their corresponding standard errors, 
confidence intervals, and variance inflation factors (VIF). The 
variance inflation factor, or VIF, is a statistic that measures the 
extent to which a lack of orthogonality in the design raises the 
variance of a particular model variable. The standard error for a 
model coefficient in an orthogonal design is bigger than the 
standard error for the same model coefficient in a VIF design by 
a factor equal to the square root of the VIF. In general, a VIF of 
one is preferred since it ensures that the coefficient is orthogonal 
to the other model components, or that the correlation coefficient 
is zero. In contrast, VIFs more than ten are cause for concern, 
VIFs greater than one hundred are cause for concern since they 
indicate that coefficients were improperly estimated due to 
multicollinearity, and VIFs greater than one thousand indicate 
severe collinearity.  
 

The VIF was determined to be 1 for all variables, indicating 
that the regression analysis contained a considerable amount of 
multicollinearity. The significance of a factor's regression 
coefficient is determined by how each component's confidence 
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limit is constructed. All of the examined components had positive 
coefficients of estimates, with pH having the highest value, 
followed by incubation time, and then acrylamide concentration. 
 
Table 6. Coefficients in terms of coded factors. 
 
Factor Coefficient 

Estimate df Standard Error 95% CI Low 95% CI 
High VIF 

Intercept 8.88 1 0.3276 8.11 9.66  

A-Acrylamide -0.6299 1 0.2590 -1.24 -0.0175 1.0000 
B-Incubation 
time 0.6581 1 0.2590 0.0457 1.27 1.0000 

AB 0.3728 1 0.3662 -0.4933 1.24 1.0000 
A² -2.42 1 0.2777 -3.08 -1.76 1.02 
B² -2.37 1 0.2777 -3.03 -1.71 1.02 

 
According to OFAT methodology, these were also major 

contributing elements to the formation of acrylamide-producing 
bacteria (the findings of which were reported elsewhere). This 
research was conducted with acrylamide concentrations that were 
well within the range reported to be tolerated by the vast majority 
of bacteria that breakdown acrylamide. Concentrations of 
acrylamide more than 1000 mg/L are typically toxic to 
microorganisms. The source of acrylamide's toxicity is its 
propensity to form alkylation products with bacteria' proteins. 
Several acrylamide-degrading bacteria have been shown to 
require an incubation period of between two and five days for 
optimal development. Therefore, it is necessary to forecast the 
results of the incubation period. The majority of microorganisms 
that breakdown acrylamide grow in conditions that are close to 
neutral, which is consistent with the results of our work and 
published patterns. 
 

The perturbation plot (Fig. 1) of the model illustrates the 
relative effect of all operational factors at a certain location in the 
design space. The plot reveals that factor B (pH) has the steepest 
curve, followed by factor C (acrylamide) and factor A. 
(incubation). The perturbation plot demonstrates two-factor 
interactions that suggest synergistic effects. Moreover, all 
quadratic effects exhibited significant negative synergistic 
effects, (A2), (B2), and (C2), all at p<0.0001, indicating that the 
contributions were negative, indicating that an increase in 
incubation period and acrylamide concentrations, the two highly 
significant factors, were detrimental to the response obtained. 
This is expected, as higher concentrations of acrylamide are 
highly growth inhibitory, but not for incubation period, which 
may indicate the p-value was 
 

 
 
Fig. 1. Perturbation plot of operational parameters obtained 
through regular two-factor design. 
 

In order to verify the normality assumption, a half-normal 
probability plot of the residuals (Fig. 2) was produced and 
evaluated. All internally studentized residuals values were 
determined to be within 2 and along the straight line, indicating 
that a transformation of the response is unnecessary. This was 
determined by research. The graph comparing the actual 
experimental results to the model's predicted values reveals a 
decent fit. 
 

 
 
Fig. 2.  Half-normal probability plot of the residuals. 
 

The Box–Cox figure, depicted in Fig. 3, provides useful 
information for selecting the suitable power law transformation 
based on lambda value. Due to the fact that the 95% confidence 
interval contains a value of 1 that corresponds to the value that 
was designed into the model, it is not recommended to alter the 
observed response further in order to suit the model. Examining 
the plot of expected against actual data for the CCD design 
reveals a high correlation between the expected forecast values 
and the experimental or observed values.(Fig. 4). The leverages 
vs run plot shown in Fig. 5 demonstrates that all obtained 
numerical values fall within the normal range of 0 to 1. This 
implies that a design point may influence how well the model fits. 
If there is a problem with the data point, such as an unexpected 
error, a leverage point value greater than one is regarded "poor" 
since the error has a considerable effect on the model.  

 
According to the plot of leverages vs runs, there are no data 

with leverages greater than the average leverage, as such data 
would influence at least one model parameter. The plot of Cook's 
distances can be used to produce a measurement of the response 
outlier that is equivalent to an experimental trial (Fig. 6). Cook's 
distances are nonnegative numbers, and the greater these 
numbers, the more meaningful an observation. For the majority 
of researchers, the threshold for assessing whether or not an 
observation is significant is three times the mean value of Cook's 
D for the dataset. The values of the Cook's distances are 
determined to be within 1, and this analysis reveals no outliers. 
Figure demonstrates that a comparison of residuals to run data 
finds no indications of serial correlation and implies that the 
data's characteristics are random by nature. 
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Fig. 3. Diagnostic’s plot in the form of Box-Cox plot for the CCD 
optimization studies. 
 
 

 
Fig. 4. Diagnostic’s plot in the form of the predicted vs real data 
for the CCD optimization studies. 
 
 
 
Fig. 5. Diagnostic’s plot in the form of the predicted versus actual 
plot for the CCD optimization studies. 
 

 
  
Fig. 6. Diagnostic’s plot in the form of leverage vs runs for the 
CCD optimization studies. 
 
 

 
 
Fig. 7. Diagnostic’s plot in the form of residuals vs runs for the 
CCD optimization studies. 
 
 
 

 
Fig. 8. Diagnostic’s plot in the form of Cook’s distance vs runs 
for the CCD optimization studies. 
 
It's not always an issue when influential points are raised, but it's 
crucial to follow up on observations tagged as extremely 
influential. A high result on an influence measure could indicate 
a number of things, such as a data entry error or an observation 
that is clearly not representative of the population of interest and 
must therefore be eliminated from the study. During the process 
of fitting a model, the introduction of one or more sufficiently 
critical data items may cause coefficient estimations to be thrown 
off and the interpretation of the model to be muddled.  
 

In the past, before doing a linear regression, histograms and 
scatterplots were used to assess the likelihood of outliers in a 
dataset. Before conducting the linear regression, this was 
completed. Both ways of evaluate data points were subjective, 
and there was little way to determine the influence of each 
potential outlier on the data reflecting the results. This led to the 
creation of other quantitative indicators, including DFFIT and 
DFBETA. The DFFFITS algorithm determines how big of an 
impact each specific example has on the expected value. 
According to Cook, it is possible to translate it to a distance. In 
contrast to Cook's distances, dffits can be either positive or 
negative.  

 
 
 
 
 
 
 

Lambda

Ln
(R

es
id

ua
lS

S)

Box-Cox Plot for Power Transforms

1

2

3

4

5

-3 -2 -1 0 1 2 3

1.86904

Growth

Current Lambda = 1

Recommended transform:
None

Actual

Pr
ed

ic
te

d

Predicted vs. Actual

2

4

6

8

10

2 4 6 8 10

Growth

Color points by value of
Growth:
2.59 9.47

Run Number

Le
ve

ra
ge

Leverage vs. Run

0.00

0.20

0.40

0.60

0.80

1.00

1 3 5 7 9 11 13

0.461538

0.923077

0

Growth

Color points by value of
Growth:
2.59 9.47

Run Number

Ex
te

rn
al

ly
 S

tu
de

nt
iz

ed
 R

es
id

ua
ls

Residuals vs. Run

-6.00

-4.00

-2.00

0.00

2.00

4.00

6.00

1 3 5 7 9 11 13

4.56117

-4.56117

0

Growth

Color points by value of
Growth:
2.59 9.47

Run Number

C
oo

k'
s 

D
is

ta
nc

e

Cook's Distance

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13

0.983339

0

Growth

Color points by value of
Growth:
2.59 9.47

https://doi.org/10.54987/jemat.v10i2.735


JEMAT 2022, Vol 10, No 2, 13-22 
https://doi.org/10.54987/jemat.v10i2.735 

 

- 19 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

When the value is zero, the questioned point is precisely on 
the regression line. Utilizing leverage makes this possible. It is 
the mathematical difference between the expected value with 
observations and the forecast value without observations. As 
indicated by the alternative formula, DFFITS is a representation 
of the externally studentized residual (ti) that has been inflated 
by high leverage points and diminished by low leverage points. 
The graphs depict DFBETAS values (Fig. 9) and DFFITS values 
(Fig. 10) were within the size-adsjuted threshold acceptable 
range with the esception of two values, which were at runs 5 and 
14. However, these values barely were above the acceptable 
range and in overall do not affect the reliability of the model as a 
whole. 
 

 
Fig. 9. Diagnostic’s plot in the form of DFBETAS for intercept 
vs runs for the CCD optimization studies. 
 

 
Fig. 10. Diagnostic’s plot in the form of DFFITS vs runs for the 
CCD optimization studies. 
 

The Design Expert program's model equation was used to 
generate the 3D plots, which were constructed so that the 
interaction between the elements could be analyzed. The three-
dimensional displays were made possible by plotting the 
response against any two independent variables along the Z-axis. 
A constant variable is depicted in the middle of each of these 
graphs, while the other two variables change as the experimental 
range grows. Each figure depicts the influence of the reciprocal 
interaction between two substantial, independent aspects, while 
the status quo is maintained for the other two analyzed 
components. The shape of the plot is controlled by three aspects 
that are independent of one another: how they impact growth and 
how they communicate with one another. Changes in incubation 
time and acrylamide concentration result in a mild elliptical 
profile, indicating a minor synergistic effect (Fig. 10a) The 
circular form of the 3D wireframe and contour plot suggests 
considerable mutual interaction between independent factors 
[34,35]. At the expected values of 0.61 mg/L acrylamide 
concentration and 3.17 days of incubation, the maximum 

response of 8.96 log CFU/mL (95 percent confidence interval 
from 8.19 to 9.73) was observed (Fig. 10b). The anticipated 
optimal regions (Fig. 10c) are between 0.32 and 0.83 g/L 
acrylamide concentration and between 2.33 and 3.96 days of 
incubation. The confidence range for the maximum responses at 
95 percent overlapped and was not statistically distinct (p>0.05) 
[36]. 
 

 
(a) 

 
(b) 

 
(c) 
 
 
Fig. 10. The 3D response surface plots of between the factor 
incubation and acrylamide concentration. 
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Verification of BB experimental design of RSM for the 
growth of the bacterium on acrylamide  
Using the "Numerical Optimisation" toolbox of Design Expert 
software, predicted ideal conditions were calculated. There were 
two ideal conditions investigated. The first was to determine the 
optimal growth under the employed range of variables, while the 
second was to forecast the optimal growth at the greatest 
acceptable acrylamide concentration of 1 g/L. Various parameter 
value combinations revealed the projected value of the dependent 
variable for both experimental design sets. Table 7 shows the 
solutions for the verification of the first predicted model. The 
model predicted the maximum growth of 8.96 Log CFU/mL 
(95% C.I. from 8.19 to 9.73) which was verified through 
experimental result with a growth of 9.88 Log CFU/mL (95% 
C.I. from 9.79 to 9.97) with the actual results were near to the 
predicted values but was signficanty higher than the predicted 
values. (Table 8). The second numerical otpmization for 
maximum possible growth using the highest concentration of 
acrylamide. The solution was a predicted maximum growth of 
7.81 Log CFU/mL (95% C.I. from 7.06 to 8.57) and verified 
experimentally with a growth of 8.74 Log CFU/mL (95% C.I. 
from 8.56 to 8.92) with the difference not significant statistically 
(p<0.05) indicating close prediction of experiment with predicted 
values.  
 
Table 7. Suggested parameter for each variable for maximum 
growth of the bacterium on acrylamide based on the CCD design. 
 
Name Goal Lower 

Limit 
Upper 
Limit 

Lower 
Weight 

Upper 
Weight Importance 

A:Acrylamide is in 
range 0.3 1 1 1 3 

B:Incubation 
time 

is in 
range 2 4 1 1 3 

Growth maximize 2.59 9.47 1 1 3 

 
Table 8. Suggested parameter for each variable for maximum 
growth of the bacterium on maximum acrylamide concentration 
based on the CCD design. 
 
Name Goal Lower 

Limit 
Upper 
Limit 

Lower 
Weight 

Upper 
Weight Importance 

A:Acrylamide maximize 0.3 1 1 1 3 
B:Incubation 
time 

is in 
range 2 4 1 1 3 

Growth maximize 2.59 9.47 1 1 3 

 
 
Table 9. Verification results between experiments and predicted 
response.  
 

RSM target 
solution 

Desira-
bility 

Predicted 
mean (95%, 
C.I.) log 
CFU/mL 

Experimental 
verification 
(95%, C.I.) 

Statistical 
significant 
Difference 
between 
predicted 
and 
experiment 
 

All factors 
within range, 
Maximum 
growth 

0.926 8.96 (8.19 to 
9.73 

9.88 (9.79 to 
9.97) 

Significant 
difference 
(p>0.05) 

Acrylamide 
concentration 
maximum,  
Maximum 
growth 

0.772 7.81 (7.06 to 
8.57) 

8.74 (8.56 to 
8.92) 

Significant 
diference 

 
 

Comparison of optimisation parameters between OFAT and 
RSM  
 
In comparison, results from OFAT and RSM were gathered and 
compared to each other (Table 10). A statistically better and 
higher response was achieved through RSM optimisation. 
 
Table 10. Comparison of optimum conditions and results 
obtained between OFAT and RSM for growth of the bacterium 
on acrylamide 
 
 OFAT RSM 

Factors Optimum 
value 

Max 
growth 
(Log 
CFU/mL) 

Optimum 
value 

Max growth 
(Log 
CFU/mL) 
(95% C.I. ) 

Incubation period (d) 3 8.96 (8.19 
to 9.73 

3.130 9.88 (9.79 to 
9.97) Acrylamide (g/L) 300 to 1000 0.608 

 
 
BB designs often have fewer design points than CCD designs; 
hence, they are less expensive to maintain and run when 
resources are few. In contrast to the CCD, the Box-Behnken 
architecture never exceeds three layers per factor [5]. In a Box-
Behnken design, the design points are situated at combinations 
of the variables that correspond to the minimum, maximum, and 
median values. For instance, if the temperature range for an 
experiment is 10 to 60 degrees Celsius, the lowest temperature 
point will be 10 degrees Celsius and the highest temperature point 
will be 60 degrees Celsius, with 30 degrees Celsius serving as the 
midpoint.  
 

Box-Behnken lacks a limit breaker, commonly known as an 
extreme setting, so unlike CCD, the minimum temperature will 
not fall below 10 degrees Celsius and the maximum temperature 
will not exceed 60 degrees Celsius. This feature is vital when we 
want our goal scale to remain within the safe range due to 
physical or conceptual constraints (e.g., when the temperature 
starts at zero with no negative range). Central composite designs 
are a sort of complete fractional factorial design that consist of a 
collection of center points and axial points [5]. As a result, both 
its upper and lower limits are always outside of the target scale's 
limit range. Box and Behnken (BB) proposed a three-level 
incomplete factorial design as a time-saving alternative to the 
labor-intensive full factorial design [6]. In order to accurately 
represent linear, quadratic, and interaction effects, it is necessary 
to include polynomials of the second order in the modeling 
process. Box and Behnken devised this practical approach in 
order to reduce the number of necessary tests, especially in the 
process of fitting quadratic models [6]. The three levels of 
factorial designs used to generate experiment matrices are +1, 0 
and -1. To achieve the appropriate level of precision in the final 
output, the central point has been reproduced several times. In 
this design, there is no experimental point where all components 
have their most extreme values. This skill could be useful during 
trials where undesirable occurrences are possible due to extreme 
conditions. In terms of labor efficiency, the Basic Block Design 
(BB) is somewhat superior than the Central Composite Design 
(CCD), but significantly superior to the Full Factorial Design 
(FFD) (FFD). The number of experimental components must be 
equal to or more than three, and the BB should not be used to fit 
equations other than second-order polynomials. These conditions 
must be satisfied for the BB to be valid [7]. 
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CONCLUSION 
 
In order to optimize three factors affecting the development of 
the bacterium on acrylamide, the CCD design was utilized. 
Among these variables are pH, incubation period, and acrylamide 
content. Using ANOVA, pertubation's plot, and other diagnostic 
plots, the major contributing factors or parameters were 
analyzed. The model was supported by diagnostic plots such as 
half-normal, Cook's distance, residual vs runs, leverage vs runs, 
Box-Cox, DFFITS, and DFBETAS. To identify the optimal 
growth under the range of employed factors and to anticipate the 
optimal, which was 1 g/L, predicted optimal growth conditions 
were identified. Using the "Numerical Optimisation" toolbox of 
Design Expert software, predicted ideal conditions were 
calculated. There were two ideal conditions investigated. The 
first was to determine the optimal growth under the employed 
range of variables, while the second was to forecast the optimal 
growth at the greatest acceptable acrylamide concentration of 1 
g/L. The actual findings for the first requirement were close to 
the projected values but much higher than the predicted values. 
The second numerical optimization yielded a solution that was 
validated by experimental data, where the actual results matched 
the expected values. The RSM exercise yielded significantly 
better acrylamide growth than OFAT, demonstrating the 
superiority of RSM over OFAT for optimizing acrylamide 
growth. 
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