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INTRODUCTION 
 
Detergents have been shown to be harmful to marine life. 
According to previous findings, anionic surfactants are toxic to a 
wide spectrum of aquatic creatures from 0.0025 to 300 mg/L [1]. 
It altered the life cycle of aquatic species and caused behavioral 
changes. Another study found that the oyster digestive gland is 
susceptible to SDS exposure, creating a detrimental disruption in 
the nutritional and metabolic activities of the oyster, resulting in 
reduced oyster survivorship [2]. As more anionic surfactants are 
discharged into bodies of water, pollution from these substances 
will increase the deleterious effects on invertebrates and 
crustaceans. SDS, commonly known as Sodium Lauryl Sulfate, 
is the most often used anionic detergent in home items such as 
toothpastes, shampoos,  bubble baths, cosmetics, shaving foams, 
and detergents [3]. However, in the industry, it is employed as a 
wool cleaning agent, a de-inking agent in the paper industry, a 
leather softening agent, a penetrant, a flocculating agent, and a 
key component of fire-fighting equipment, engine degreasers, 

floor cleaners, and car wash soaps [4–6]. The existence of SDS 
in the environment is mostly due to its presence in home and 
industrial effluents, as well as its direct discharge from some 
applications. Because of this, SDS remediation is critical. 
Microorganisms are recognized for their capacity to degrade 
organic substances such as SDS [7–11], and their usage as 
bioremediation agents is economically critical for the removal of 
xenobiotic pollutants. One of the first reports of an SDS-
degrading bacteria was Pseudomonas sp. strain C12B 
biodegrading anionic surfactant under aerobic conditions [12].  
 

It is not very common to find research on bacteria that 
display the ability to degrade numerous xenobiotics. However, 
because polluted sites typically include a wide variety of 
inorganic and organic contaminants, isolating such unique 
bacteria is absolutely necessary. Because of their microscopic 
nature, SDS decomposition is sensitive to temperature changes. 
The physiology of an organism may be modulated by 
temperature, which enables the organism to better adapt to 
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 ABSTRACT 
Sodium dodecyl sulfate, occasionally known as SDS, is  a widely used anionic surfactant globally 
as a foaming component in a wide variety of cleaning products, including shampoos, toothpaste, 
and detergents. Large quantities of SDS are released into the environment despite the fact that 
they are hazardous and have the ability to create foam. This can lead to problems in sewage 
treatment facilities. There are a few different models that may be utilized to mimic the growth 
rate of microbes on a variety of different medium at various temperature. Arrhenius is one of the 
most often used models partly since it has a small number of parameters. Temperature frequently 
influences the progress and metabolic activities of microbes on the substrates they are growing 
on. Because of their small size, microbes are very sensitive to variations in temperature. In order 
to describe the development of Serratia marcescens strain DRY6 on SDS, a discontinuous 
apparent activation energy with a chevron-like graph was used, and the graph's break point was 
set at 28.05 degrees Celsius. Following the completion of the regression study, two activation 
temperatures were established: 20-27 degrees Celsius and 30-42 degrees Celsius, with respective 
activation energies of 41.72 and 84.72 kilojoules per mole. Within the temperature range that was 
taken into account, it was projected that the Q10 value would be 2.905, and the theta value would 
be 1.11. (30-42 oC). This study is especially helpful in projecting SDS breakdown and migration 
during bioremediation because of its comprehensive nature. 
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changing environments. When researching the process of 
chemical breakdown by microbes, temperature is an important 
factor to take into consideration. It is common practice to use the 
temperature function Arrhenius model to compute the apparent 
activation energy, H*, which is thought to be present for either 
growth or decay on distinct metabolic substates. The temperature 
function Arrhenius model has become increasingly popular for 
use in the investigation of the growth and decomposition rates of 
bacteria [13–21]. 
 

Throughout the majority of the temperature range, the delta 
H (H*) value is nearly constant. For extreme temperatures, this 
value can vary by three or four times depending on the 
temperature range [22]. In some studies, the model may be 
incorrect when applied to the entire temperature range of the 
bacterial process [23]. When modeling temperature effects, 
Arrhenius' model is frequently used, but it is less frequently used 
when the temperature ranges are large [24]. The Arrhenius plot 
may also show a previously identified transition, which is a fast 
shift in activation energy [25]. Because Arrhenius' model 
includes the fewest parameters, it is pretty widely accepted by 
researchers [24].  

 
Because of its biological underpinnings and non-linear 

behavior this rival Ratkowsky model is also based on the linear 
growth premise but lacks constant development [26]. This means 
that the Arrhenius models are essential for figuring out how 
temperature affects bacterial growth. The Arrhenius parameter 
estimate is obtained by plotting an Arrhenius plot and then 
performing a linear regression on the data. Arrhenius plot 
analysis and the effect of temperature on Pseudomonas sp. strain 
DRYJ7's SDS growth were the subject of a similar study a 
number of years ago [16]. This study found that a bacterium can 
break down SDS at a number of different activation energies, 
which was previously unknown and will be extremely useful in 
predicting how SDS breakdown and transport will occur during 
bioremediation. 
 
MATERIALS AND METHODS 
 
Growth and maintenance of bacterium 
Serratia marcescens strain DRY6 growth and characterization on 
SDS has been published previously  and stored in the university’s 
culture collection unit [27]. The SDS as sole carbon source 
medium composition (g L-1) was as follows; KH2PO4, (1.36), 
KNO3, (0.5), MgSO4 (0.01), CaCl2 (0.01), Na2HPO4 (1.39) and 
(NH4)2SO4 (7.7). The final concentration of the standard trace 
elements was 0.01 mg L-1 in the medium. Sodium dodecyl 
sulfate, filter-sterilized, was added to the medium as a carbon 
source. Sodium dodecyl sulphate, a carbon source, was added to 
the medium at a final concentration of 1.0 g/L via filter-
sterilization (Dhouib et al. 2003). The bacterium was grown on 
nutrient agar plates treated with SDS at the same dose for 5 days 
at 30 °C. The colony count method was used to measure the 
growth of microorganisms. 
 
Measurement of the Activation energy of growth on SDS  
Biodegradation growth data from Serratia marcescens strain 
DRY6 previously isolated as an SDS-degrading bacterium was 
processed [27] by converting the temperature-dependent growth 
rates to natural logarithms. 
 
The Arrhenius equation [28] is as follows, 
 

     [Eqn. 1 

Where R is the universal gas constant (0.008314 kJ/molK-1), T is 
the absolute temperature (Kelvin = °C + 273.15), Ea is the 
activation energy (kJ/mol) and A physically signifies the rate 
constant at which all the participating molecules possess 
sufficient energy prior reaction (Ea = 0). A linearized form is 
given via the plot of log normal growth rate against 1/T and the 
equation is as follows; 
 

     [Eqn. 2] 
 
Coefficient of Q10 estimation 
 
The Q10 value is estimated via the following equation. 
 

     [Eqn. 3] 
 
Following rearrangement, 
 

     [Eqn. 4] 
  
Another essential biological constant derived by substituting the 
given values into the reaction rates equation regulated by the Q10 
rule is the coefficient of temperature or theta () value (simplified 
Arrhenius temperature coefficient); 
 
kT = k20Θ (T-20)    [Eqn. 5]   
 
RESULT AND DISCUSSION 
 
Bacterial growth rate is affected by temperature. Plotting ln 
growth rate (per day) vs 1/T yielded a Chevron-like graph, 
revealing a discontinuous curve across the entire temperature 
range (Fig. 2). It was surprising to find a break point at 28.05 °C. 
At temperatures ranging from 20 to 27 °C, growth on SDS 
showed an activation energy of 41.72 kJ/mol, with a rise in 
activation energy to 84.72 kJ/mol at temperatures between 30 and 
42 °C, as shown in regression analysis results in Table 1. As the 
temperature rises, the maximum rate of bacterial growth on SDS 
is found to be 27 °C, and the maximum rate drops as the 
temperature increases (Fig. 1).  
 

On acrylamide, a previous study found an activation energy 
of 14.96 Kj/mol for Pseudomonas sp.  strain DrYJ [16], which is 
definitely much lower. It was found that the activation energy 
obtained using the Arrhenius model was within the range of 
activation energies reported in the literature for diverse 
biodegradation processes (Table 2). Dismantling the connections 
appears to necessitate more effort. Energy savings can be 
achieved by raising the temperature. Many publications on 
activation energy computed from metabolic process rates at 
various temperatures report only one activation energy across a 
wide temperature range, rather than reporting on the occurrence 
of two activation energies. One study shows a higher activation 
energy at higher temperatures than at lower temperatures, 
whereas the other shows the opposite occurrence in the opposite 
direction (Table 2). It was found that the activation energy 
obtained using the Arrhenius model was within the range of 
activation energies reported in the literature for diverse 
biodegradation processes (Table 2). Dismantling the bonds 
appears to necessitate more effort. Energy savings can be 
achieved by raising the temperature. Many publications on 
activation energy computed from metabolic process rates at 
various temperatures report only one activation energy across a 
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wide temperature range, rather than reporting on the occurrence 
of two activation energies. One study shows a higher activation 
energy at higher temperatures than at lower temperatures, 
whereas the other shows the opposite occurrence in the opposite 
direction (Table 2). An example is the growth of Bacillus sp. JF8 
on the xenobiotic polychlorinated biphenyl (PCB) with an 
activation energy from 20 to 46 °C of 12.1 Kj/mol  and from 50 
to 70 °C the activation energy is 31.4 Kj/mol [29]. A contrasting 
study shows the growth on phenol from 15 to 30 °C by 
Pseudomonas sp. AQ5-04 of 38.92 Kj/mol and from 35-45 °C, the 
activation energy is 11.34 Kj/mol [30]. 
 
 

 
 
Fig 1. The effect of temperature on the specific growth rate of Serratia 
marcescens strain DRY6 on SDS. 
 

 
Fig 2. Growth rate of SDS by Serratia marcescens strain DRY6 in the 
form Arrhenius plot.  
 
Table 1. Regression analysis was performed on the Arrhenius plot of the 
SDS biodegradation rate by Serratia marcescens strain DRY6. 
 

Distribution of the experimental points  Three points to the left, three 
points to the right   
Left part  

Temperature range °C 30, 35 and 42  
Regression equation  y=10.195x - 35.508  
Coefficient of determination 0.97  
tan a ± Standard error 10.19±0.05  
Ea ± Standard error, kJ/mol 84.72±0.41  
t-Statistic 205.01  
Degrees of freedom 2      

Right part  
Temperature range °C 20, 25 and 27  
Regression equation  y = -5.0207x + 15.043  
Coefficient of determination 2  
tan a ± Standard error -5.02±0.47  
Ea ± Standard error, kJ/mol 41.72±3.89  
t-Statistic -10.72  
Degrees of freedom 2   

Break points data  
Intersection coordinates, (x, y)  3.32, -1.642  
Break point temperature °C 28.05  

Table 2. Arrhenius temperature characteristics for growth on numerous 
xenobiotics. 
 
Microorganisms Temp-

erature 
range 
(°C) 

Substrate DH* apparent 
activation energy 
(Kj.mol-1) 

Ref 

activated sludge 10–20  phenol 39.0 [31] 
Selanastrum 
capricornutum 

20–28  
 

phenol 28.4 [32] 

aerobic fluidized-bed 
reactors (FBRs)  

14-16.5 2,4,6-
trichlorophenol 
(TCP), 2,3,4,6-
tetrachlorophenol 
(TeCP), and 
pentachlorophenol 
(PCP)  

TCP and TeCP 126-
194  
PCP  
59-130 

[33] 

Pseudomonas 
putida Q5 
 

10–25 phenol 61.6 [24] 

Acclimated cultures 15-30 nonylphenol 42.7 [34] 
Pseudomonas putida 
MTCC 1194 

15-30 phenol 57.74 [35] 

Bacillus sp. JF8 20-70  polychlorinated 
biphenyl (PCB)  

12.1 (20–46 °C) 
31.4 (50–70 °C) 

[29] 

Pseudomonas sp. 
AQ5-04 

15-45 phenol 38.92 (15–30 °C)  
11.34 (35–45 °C) 

[30] 

Pseudomonas sp. 
Strain DrYJ7 

10-20 SDS 14.96 [16] 

Cupriavidus sp. 
strain CNP-8 

20-40 2-chloro-4-
nitrophenol 

75.16 
88.71 

[36] 

Escherichia 
coli BL21 

20-50 Chromate  28.01 [37] 

Ochrobactrum 
intermedium 

25-35 Chromate 120.69 [38] 

Shewanella 
oneidensis·MR-1  

25-40 Selenate Control system  
62.90 
TPPS-supplemented 
system 47.33  
 

[39] 

anaerobic sludge 30-55 Reactive Red 2 22.9  [40] 
activated bacterial 
consortium 

20-37 Remazol Black B 48.8 [41] 

Enterobacter sp. 
strain (GY-1) 

20-35 Reactive Black 5 
(RB 5)  

35.56 [42] 

Escherichia coli 
NO3 

20-45 Reactive red 22 27.49 [43] 

Pseudomonas 
aeruginosa 

15-45 Reactive Black 39 
and Acid Red 360 
by  

RB39 61.89 
AR360 81.18  

[44] 

Pseudomonas sp. 
LPM-410 

20-28 EDTA  91.2 [45], 

Pseudomonas sp. 
AQ5-04 

15-45 phenol 38.92 (15–30 °C) 
11.34 (35–45 °C) 

[30] 

Cupriavidus sp. 20–25 
30–40 

2-chloro-4-
nitrophenol 

88.71 (20-25) 
75.16 (30-40) 

[17] 

Pseudomonas sp. 
strain DRYJ7 

10-20 Acrylamide 14.96 [16] 

     
Note: (TPPS) Meso-tetrakis (4-sulfonatophenyl) porphyrin mediator 
 

The temperature is an essential factor to take into account 
while thinking about bacteria. Nearly every aspect of the folding, 
structure, and stability of biomolecules, in addition to the rate at 
which metabolic reactions occur, are all influenced. The ability 
of microbes, such as pathogens, to sense the presence of a host 
and adapt their metabolic processes accordingly is essential to the 
microbe's ability to live on in its environment. In order to modify 
their gene expression in response to changes in temperature, 
organisms have created specialized sensing systems that are 
capable of detecting temperature fluctuations in an indirect 
manner. Both a heat shock and a cold shock can result in the 
aggregation of aggregated proteins, but only a cold shock can 
result in the accumulation of stopped ribosomes [14,15,46–51]. 
Molecular thermosensors could be built using molecular switches 
as the building blocks. Changes in molecular architecture that 
result in dysfunctional activity are one example of direct 
temperature sensing. Other examples include temperature-
responsive regulatory proteins and alterations in lipid membrane 
integrity in relation to fluidity. It is impossible to exaggerate the 
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importance of temperature in the regulation of biological 
processes. Applications in the field of temperature-controlled 
biotechnology could also stand to profit from this method. 
Changes in temperature bring to a plethora of metabolic 
modifications, many of which are closely connected with one 
another. In light of this, models that illustrate how the progression 
of a biological process varies as a function of temperature are an 
absolute must if we want to simplify things and get a better 
understanding of how everything is connected. As early as the 
1900s, Arrhenius provided a mathematical account of how 
biochemical reactions respond to high or low temperatures in the 
form of his "primal" temperature model [47–51]. 
 

Bacteria need more energy to break down more complex 
xenobiotics when the activation energy is higher. Several 
xenobiotic-degrading microbial species have activation energies 
within the ranges observed in this study for both temperature 
ranges, as shown in Table 2. In contrast, the activation energies 
of typical mesophilic bacteria range from 33.5 to 50.3 kJ/mol 
[52]. It's possible that one of the temperature ranges examined 
had a higher activation energy. The activation energy was found 
to vary with temperature in this study, rather than being a 
constant [53]. The model is useful as an observational model 
because it can't account for all of the simultaneous interactions 
among the various biological processes. Instead of thinking in 
terms of the activation energy used in chemical reactions, we 
should consider activation energy to be the total temperature 
response of a microorganism [54].  
 

These drawbacks notwithstanding, the model continues to 
see widespread use. Temperature affects the activation energy of 
microbes, which has been demonstrated in a variety of settings, 
such as the decolorization of various colors by various organisms 
(Table 2). Although the exact mechanism causing the 
transformation is still a mystery, two hypotheses can account for 
it. When transitioning from one state to another, the water 
features change and a "bottleneck" theory suggests the same 
processes occur simultaneously and quickly [55]. Based on 
numerous observations of Arrhenius break point temperatures, 
the first hypothesis does not appear to be valid. There are many 
reasons why it is difficult to prove the "bottle-neck" hypothesis, 
according to the "bottle-neck" theory. Because of the effect of 
temperature on the cell membrane, it will also change [56]. 
Academics continue to believe in the "bottleneck" theory [25,57].  
 
 

 
Fig. 3. Ln growth rate vs temperature plot for estimating theta. 
 
It is also possible to calculate the Q10 values using the Arrhenius 
plots, or by monitoring growth rates at various incubation 
temperatures with ten degrees of variation [58]. The Arrhenius 
curve is the slope of the resultant plot when the bioreduction and 
growth rates are logarithmically plotted against 

1000/temperature (Kelvin) (Fig. 1). For the temperature range of 
30 to 42 °C, a Q10 value of 2.905 was obtained (Fig. 3). However, 
due to the dynamic nature of biological processes, many Q10 
values may be found for each investigated temperature range. 
The conversion of molybdate to molybdenum blue yielded a 
2.038 value [59]. A Q10 value of 2.31 was found in Morganella 
sp, yet another molybdenum reducer in nature. In order to 
properly attribute the growth process to a specific biological 
activity, this value is essential. For oil degradation in a beach 
gravel column, previous research found Q10 to be 2.7 [60]. 
Nevertheless, a Q10 value of 2.2 for microbiological process was 
reported in another study on decane and toluene-contaminated 
soil [61]. Degradation rates for other petrochemical compounds 
affected by salinity was reported to exhibit a Q10 value of 2.2 
[62], while acrylamide degradation between 25 and 45 °C in 
immobilized bacterial systems reported a Q10 value of 2.8 [63].  

 
Declining temperatures frequently lead to an increase in the 

Q10 value [64,65]. The Q10 value for the phenol degradation by 
Pseudomonas sp. strain AQ5-04 was 1.834 [30] while a Q10 value 
of 2.17 was calculated for the growth rate of this organism on 
SDS.  A lower Q10 value of 2.17 is reported in another study on 
acrylamide biodegradation by the Antarctic bacterium 
Pseudomonas sp. strain DRYJ7 [16]. The theta value was 
determined to be 1.11 (Fig. 3), close to the theta value found of 
1.08 for molybdenum reduction by Serratia sp. strain HMY1 
[59]. A lower theta value of 1.03 is reported for the growth rate 
on SDS by the Antarctic bacterium Pseudomonas sp. strain 
DRYJ7 [16]. There are reports of xenobiotics being broken down 
with theta values of up to 16.2, but theta values are typically 
between 1.1 and 1.7, which is within the typical range for many 
biological processes [66]. In the biodegradation of nonylphenol, 
a theta value of 1.06 was observed [34]. 
 
CONCLUSION 
 
SDS biodegradation requires an activation energy that can be 
seen in an Arrhenius plot with two activation energies. This is the 
first study to demonstrate this. Temperature has a significant 
impact on microbial growth and metabolic activity on their 
substrates. Because they are so small, microorganisms are 
extremely sensitive to temperature changes in their environment. 
An apparent activation energy graph was presented, with a break 
point at 28.05 °C showing the apparent activation of Serratia 
marcescens DRY6 on SDS. There were two different activation 
temperatures: 20–27 °C and 30–42 °C, both with activation 
energies of 41.72 and 84.72 kJ/mol, respectively, based on the 
regression analysis results. A Q10 value of 2.905 and a theta value 
of 1.11 were calculated for the studied temperature range (30-42 
°C). More than three times as powerful as mesophilic bacteria at 
temperatures between 30 and 42 °C, the quantum. Breaking an 
amide bond is thought to require a much higher activation energy. 
Additional research and inquiry into the parameters themselves 
are being conducted in order to better understand the relationship 
between temperature and growth kinetics.  
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