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INTRODUCTION 
 
The process of identifying the knowledge contained inside 
biological systems has been sped up as a result of the revolutions 
that have taken place in both the field of biotechnology and the 
field of information technology. These advancements are 
changing the methods used for doing research, development, and 
applications in the field of biomedicine. The addition of clinical 
data to biological data makes it possible to provide 
comprehensive descriptions of both healthy and sick states, as 
well as the progression of illness and the body's reaction to 
therapies. The study of biological systems at many different 
levels of organization is possible thanks to the availability of data 
reflecting diverse biological states, processes, and the time 
dependencies of those activities. These levels range from 
molecules to organisms and even populations. In high-

throughput genomics and proteomics research, mathematical and 
computational models are being used more frequently to assist in 
the understanding of biological data. The use of complex 
computer models that enable the modelling of intricate biological 
processes leads to the creation of hypotheses and the suggestion 
of experiments as next steps in the research process. Text mining 
and knowledge discovery approaches are currently being utilized 
by computational models in order to make use of the large 
amount of data that is stored in biomedical databases. The study 
of biological systems at many different levels of organization is 
possible thanks to the availability of data reflecting diverse 
biological states, processes, and the time dependencies of those 
activities. These levels range from molecules to organisms and 
even populations [1–7]. 
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 ABSTRACT 
As a result of the fact that several research do not carry out statistical diagnostics on the nonlinear 
model that was employed, the data could not be random. Because these systems rely on random 
data, this is a necessity for all parametric statistical assessment procedures. The Wald–Wolfowitz 
runs test was done on the modified logistics that were employed in the fitting of the growth curve 
of immobilized Pseudomonas putida on phenol. This test was carried out in order to determine 
whether or not the logistical changes had any effect on the growth curve. This test was carried 
out so that it could be determined whether or not the adjustments made to the logistical processes 
were successful. The runs test showed that there was a total of eight runs, which contradicts the 
expectation that there would only be seven runs due to the unpredictability of the circumstance. 
The assumption was based on the fact that there would only be seven runs. Since the p-value was 
larger than 0.05, the null hypothesis is not rejected; this suggests that there is no convincing 
evidence of the non-randomness of the residuals; rather, the residuals represent noise in the data. 
As a consequence of the findings of Grubb's test, which indicate that there is no outlier, it is not 
necessary to reanalyze the data because the modified logistics model used in the fitting of the 
growth curve of immobilized Pseudomonas putida on phenol was adequate enough. This means 
that the reanalysis would be unnecessary. 
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A collection of things that are linked together is called a 
system. For instance, a biological system could be thought of as 
a collection of several cellular compartments (such as cell types), 
each of which is specialized for a certain biological function (e.g. 
white and red blood cells have very different commitments).An 
elemental unit of some sort that can be observed but whose 
interior structure is either unknown or does not exist is referred 
to as an object. The chosen elemental unit will determine the 
scale that will be used to display the system. The study of 
biological systems at many different levels of organization is 
possible thanks to the availability of data reflecting diverse 
biological states, processes, and the time dependencies of those 
activities. These levels range from molecules to organisms and 
even populations. A representation of a system that can be 
deciphered or understood by researchers in general is called a 
model. A model is a description of a system in terms of the 
constituent components and the interactions between those 
components [8–15]. 
.  

Nevertheless, in a nonlinear regression, the curve's residuals 
need to have a natural dispersion, in contrast to the standard least 
squares approach, which requires the residuals to have a normal 
distribution in a linear regression. This is because the standard 
least squares approach is based on the principle of least squares. 
More importantly, the residuals must be random and have the 
same variance (homoscedastic distribution). The Wald-
Wolfowitz runs test is used to establish whether or not the 
randomization process was successful [16]. On the other hand, 
the residuals of the curve in a nonlinear regression need to have 
a natural dispersion, whereas in a linear regression, the residues 
need to have a normal distribution in order for the typical least 
squares approach to work well. More crucially, the residuals must 
be random and have the same variance (homoscedastic 
distribution) (homoscedastic distribution). The residuals must 
also be random and outliers’ absence. The Wald-Wolfowitz runs 
test is used to establish whether or not the residuals for the 
modified logistics used in the Fitting of the growth curve of 
immobilized Pseudomonas putida on phenol is random whilst the 
Grubb’s test is applied to detect the presence of outliers. 
 
METHODOLOGY 
 
One of the utilities of residual information is that it can be utilized 
to measure the accuracy of any model fitting a curve in nonlinear 
regression can be achieved by evaluating (D’Agostino, 1986). In 
the statistical meaning, residual data is calculated by the 
difference between observed and predicted data, the latter 
obtained using suitable model and usually carried out using 
nonlinear regression (Eqn. 1); 
 

         (Eqn. 1) 
 
where yi is the ith response from a particular data and xi is the 
vector of descriptive variables to each set at the ith observation 
which corresponds to values from a particular data. Residual 
data from the modified logistics used in the fitting of the growth 
curve of immobilized Pseudomonas putida on phenol. 
 
Grubbs’ Statistic 
The test is a statistical test used to discover outliers in a univariate 
data set that is believed to have a Gaussian or normal distribution. 
Grubb's test assumes that the data is regularly distributed. The 
test is used to discover outliers in a univariate context [17]. The 
test can be utilized to the maximal or minimal examined data 
from a Student’s t distribution (Eq. 2) and to test for both data 
instantaneously (Eq. 3).  
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(Eqn. 3) 

The ROUT method can be employed in the event that there is more 
than one outliers  [18]. The False Discovery Rate is the foundation 
of the approach (FDR). Q, a probability of (incorrectly) 
recognizing one or more outliers must be explicitly specified. It is 
the highest desired FDR. Q is fairly comparable to alpha in the 
absence of outliers. Assumption that all data has a Gaussian 
distribution is mandatory.  
 
Runs test 
The residuals of the curve in a nonlinear regression need to have 
a natural distribution. This differs from the requirements of the 
least squares method, which calls for the residues to have a 
regular distribution. In addition to this, residuals are required to 
be random and have the same variance (homoscedastic 
distribution). For the purpose of determining whether or not 
randomization has been achieved, the Wald–Wolfowitz test is 
utilized. Biological systems are inherently unpredictable, and as 
a result, the model may be relied upon to be statistically accurate. 
[19–21]. This test was applied to the regression residuals in order 
to find unpredictability in the residuals. The number of sign runs 
is often stated as a percentage of the greatest number possible.  
 

The runs test examines the sequence of residuals, of which 
they are composed of positive and negative values. A successful 
run, after running the test, is often represented by the presence of 
an alternating or adequately balanced number of positive and 
negative residual values. The runs test computes the likelihood 
of the residuals data having too many or too few runs of sign (Eq. 
4). Too few runs may suggest a clustering of residuals with the 
same sign or the existence of systematic bias, whereas too many 
of a run sign may identify the presence of negative serial 
correlation [16,22]. 
 
The test statistic is 
 
H0=  the sequence was produced randomly 
Ha= the sequence was not produced randomly 

sR
RRZ
_

−
=          (Eqn. 4) 

 
Where Z is the test statistic, 𝑅𝑅� indicates the anticipated number 
of runs, sR is the standard deviation of the runs and R is the 
observed number of runs and (Eqns. 5 and 6). The calculation of 
the respective values of 𝑅𝑅� and sR (n1 is positive while n2 is 
negative signs) is as follows. 
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As an example  
 
Test statistic: Z = 3.0 
Significance level: α = 0.05 
Critical value (upper tail): Z1-α/2 = 1.96 
Critical region: Reject H0 if Z > 1.96 
If the test statistical value (Z) is greater than the critical value, then the rejection of 
the null hypothesis at the 0.05 significance level shows that the sequence was not 
generated randomly. 
 
RESULTS 
 
It might be difficult to locate an appropriate model for biological 
and even chemical processes. The process of modelling is 
challenging in and of itself, and mistakes are not an extremely 
uncommon occurrence. The modelling technique is in and of 
itself a process that adheres to a loosely formalized set of 
guidelines. The process is based on the completion of four large 
phases. The first step is to get a solid grasp of the issue at hand, 
which involves precisely defining the queries that are posed to 
the model.  
 

The second phase is to develop a strategy for addressing the 
problem, which entails outlining a sequence of activities that 
need to be carried out in order to locate an accurate model of the 
system that is the subject of the investigations. In this step, you 
will acquire knowledge and data from specialists in the field as 
well as from published works, model structure, model 
hypothesis, conceptual model, appropriate mathematical 
formalism selection, solving the formal model, obtaining the 
results, checking to see if the results of the model match the data 
that is available, and other similar tasks. The third phase is to put 
the plan into action, which involves doing the processes from the 
previous two steps, determining whether or not the solution is 
accurate, and finally refining the model. This last step is a 
significant test to examine the hypothesis that was developed 
prior to the setting of the model. Ultimately all models will need 
to be subjected to mathematical curve fitting and this is where 
nonlinear regression comes into place  [1–7]. 
. 

In the statistical analysis of nonlinear regression, the data 
known as residuals play an important role. Residuals indicate the 
difference between the data that was observed and the data that 
was anticipated. The differences that exist between the values 
that are predicted by a mathematical model and the values that 
are actually observed in the data are referred to as residuals. 
The residuals must be subjected to statistical analysis in order to 
assess whether or not they are sufficiently random, do not include 
any outliers, adhere to the normal distribution, and do not display 
autocorrelation.  
 

The data on residues are frequently presented in the form of 
positive and negative values, which is vital for demonstrating that 
the data are balanced; this may be seen visually before any tests 
are carried out. When performing nonlinear regression, it is 
common practice to ignore the results of residual tests. When 
there is a larger gap between the values that were anticipated and 
those that were actually observed, a model's quality is considered 
to be lower, as a general rule. This is due to the lower degree of 
correlation that exists between the two sets of data. [23]. The 
residuals for the modified logistics model are shown in Table 1. 
 

Table 1. Residuals for the modified logistics used in the Fitting of the 
growth curve of immobilized Pseudomonas putida on phenol. 
 

Time residuals 
4 -0.04703 
8 0.063298 
12 -0.05265 
16 0.043047 
20 -0.03252 
24 0.012304 
28 -0.00158 
32 -0.00951 
36 -0.00648 
40 -0.00098 
44 0.00701 
48 0.011794 

 
When applied to the data that had been previously 

published, Grubbs' test demonstrated that there was no indication 
of an outlier. This suggests that the model was successful in 
accurately representing the data. When trying to fit a nonlinear 
curve, it is possible to add a significant amount of inaccuracy if 
either the mean is changed by a single data point or a single data 
point from a triple is distorted. Both of these scenarios have the 
same effect. The Grubbs test has the ability to identify a single 
anomaly throughout any given time period. When fitting curves, 
it is essential to look for and eliminate any outlying data points. 
 

Because it was determined that this particular data point was 
an outlier, it was removed from the collection, and the analysis 
was carried out again until there were no more outliers. Because 
the test reliably identifies the vast majority of points as outliers, 
it is not a good idea to utilise sample sizes of six or less. 
Additionally, doing several repeats of the test can change the 
chance that it will find something. The sample value that has the 
greatest absolute departure from the sample mean, as assessed by 
the sample's standard deviation, is the one that the Grubbs' test 
statistic zeroes in on to determine the winner. In the event that 
the test statistic g produces a number that is greater than the 
critical value, the result in question is referred to as an outlier. 
This is as a result of the fact that the critical value is the minimum 
value that may be tolerated (Grubbs 1969). The results of 
Grubbs's test suggested the absence of an outlier (Table 2).  
 
Table 2. Outlier detection for the residuals for the modified logistics used 
in the fitting of the growth curve of immobilized Pseudomonas putida on 
phenol. 
 
Row  Value  Z Significant Outlier? 
1 -0.0470 1.3699   

2 0.0633 1.9213 
Furthest from the rest, but not a 
significant outlier (P > 0.05). 

3 -0.0526 1.5374   
4 0.0430 1.3172   
5 -0.0325 0.9371   
6 0.0123 0.4001   
7 -0.0016 0.0141   
8 -0.0095 0.2505   
9 -0.0065 0.1603   
10 -0.0010 0.0038   
11 0.0070 0.2422   
12 0.0118 0.3849    
 

An extreme data point that the investigator deems to be 
improbable due to the fact that it does not fulfil a number of 
certain requirements is an example of a potential outlier. A figure 
that stands out as being significantly different from the rest of the 
data in a sample is known as an outlier  [24–30]. . For example, 
the maximum is regarded an outlier when it is statistically 
significantly bigger than the distribution predicted for the 
maximum based on the population model used in engineering. 
This criterion is applied to determine whether or not the 
maximum is an outlier. Identifying possible measurement 
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outliers may be accomplished with the use of Chauvenet's 
criterion, the 3-sigma criterion, and the Z-score. In the field of 
chemometrics, the Z-score is typically applied in combination 
with the 3-sigma criteria. A boxplot is a straightforward method 
for pinpointing probable outliers in measurement data. 
 

For the purpose of determining whether or not a data set 
contains an outlier, a statistical test is preferred, despite the fact 
that the procedures in question are uncomplicated, rapid, and can 
pass visual inspections. Two particular tests that may be utilised 
to determine whether or not an individual is an outlier are the 
Dixon's Q-test and the Grubbs' ESD-test. The specific value of 
the predicted number of outliers, denoted by k, needs to be 
provided before the Grubbs test may be accepted as valid. This is 
the most significant restriction of the exam. If k is not accurately 
reflected in the test, it is quite possible that the findings of the test 
will be changed. Rosner's generalised Extreme Studentized 
Deviate, also known as the ESD-test, or the ROUT methodology 
may be utilised in circumstances in which there are several 
outliers, or the precise number of outliers cannot be determined. 
Both of these methodologies are usually referred to as the ESD-
test [18] are recommended [31]. Of the two, the ROUT method, 
which combines robust regression and outlier removal is 
increasingly being employed in removal of multiple outliers 
[24,32–35] 
 

The runs test discovered that there were 8 total runs, but the 
assumption of randomness led to the prediction of 7 runs (Table 
3). This suggests that the collection of residuals is appropriate. 
The Z-value represents the number of standard errors by which 
the actual number of runs deviates from the predicted number of 
runs, and the p-value that accompanies it represents the degree to 
which this Z-value is significant. The null hypothesis is not 
rejected since the p-value was more than 0.05; this means that 
there is no persuasive evidence of the non-randomness of the 
residuals; rather, the residuals represent noise. When there are an 
excessive number of occurrences of a certain run sign, it may be 
an indication of a negative serial correlation; when there are an 
inadequate number of runs, it may be an indication of a clustering 
of residuals that have the same sign or the presence of a 
systematic bias  [22]. 
 
Table 3. Runs test for randomness. 
 

Runs test Residual data set 
R= 8 
n0= 6 
n1= 6 
n= 12 
E(R)= 7.00 
Var(R)= 2.73 
StDev(R)= 1.65 
Z= 0.61 
p-value= 0.7276 

 
When using a particular model, the runs test can discover a 

systematic divergence from the curve, such as an overestimation 
or underestimating of the sections. This can be accomplished by 
comparing the actual values to the predicted values. This may be 
accomplished by contrasting the model's predictions with the 
values that actually occurred. The runs test is utilized to 
determine if an excessive amount of sign runs is present or 
whether there are inadequate runs overall. In order to assess 
whether or not there was evidence of nonrandomness, the runs 
test was applied to the regression residuals. It is possible to create 
a model with an ordered variance of the curve that is either larger 
or lower than the estimate. This is one of the many ways in which 
this is feasible.  

A comparison is made between a drug's typically negative 
sequence of residues and its generally positive sequence as part 
of the run test, which is used to determine whether or not a 
chemical poses a risk to human health. A movement or 
combination of shifts between the negative and positive residual 
values is frequently what distinguishes a remarkable event from 
other possible outcomes. A transformation or series of shifts is 
frequently the defining characteristic of a noteworthy conclusion 
[16]. A popular practice in this area is to use the largest 
proportion of indicators that can be counted. To determine 
whether a large number of sign passes are likely or a low number 
of sign passes are more likely, the run's test is used. Run signs 
may imply negative serial correlation, but it is also possible that 
residues are related with the same sign or that there are systemic 
biases that are influencing the results [22]. It is usual practise to 
apply the run method when testing time-series regression models 
to determine whether or not autocorrelation is present. According 
to the results of Monte Carlo simulation experiments, run-time 
testing produces uneven error rates in both tails of the 
distribution. This conclusion suggests that run-time 
autocorrelation research might not be stable, and it predicts that 
the Durbin-Watson methodology will become the most used 
approach to evaluating autocorrelation in the foreseeable future 
[36]. It has been demonstrated that the methodology utilised in 
this investigation, which was derived from earlier research that 
investigated the unpredictability of the residuals, is reliable. 
 

For example, modelling the growth curve of algae using the 
Baranyi-Roberts model, which demonstrates statistical 
sufficiency [37], Moraxella sp. B on monobromoacetic acid 
(MBA) [20] and the Buchanan-three-phase model used in the 
fitting the growth of Paracoccus sp. SKG on acetonitrile [38]. 
For lead (II) absorption by alginate gel bead, the runs tests on the 
residuals for the Sips and Freundlich models were found to be 
sufficient [39]. It was found in a previous study that a runs test 
on the residual series of data from the pseudo-1st order kinetic 
modelling of the adsorption of the brominated flame retardant 4-
bromodiphenyl ether onto biochar-immobilized Sphingomonas 
sp. showed that the residual series had sufficient runs after the 
test was carried out on the runs [40]. In the body of academic 
research, different applications of the runs test of residual may be 
found for the purpose of evaluating the validity of the nonlinear 
regression [41–45].  
 
CONCLUSION 
 
The Wald–Wolfowitz runs test was performed on the changed 
logistics that were utilized in the fitting of the growth curve of 
immobilized Pseudomonas putida on phenol. This test was 
carried out in order to determine whether or not the logistical 
changes were effective. The runs test revealed that there was a 
total of eight runs, despite the assumption that there would only 
be seven runs based on the unpredictability of the situation. This 
would seem to indicate that the collecting of residuals is 
something that should be done. The Z-value is a measure of the 
amount by which the actual number of runs deviates from the 
number of runs that was predicted, and the p-value that is 
associated with it is a measure of the extent to which this Z-value 
is statistically significant. The null hypothesis is not rejected 
since the p-value was greater than 0.05; this indicates that there 
is no convincing evidence of the non-randomness of the 
residuals; rather, the residuals represent noise in the data. Since 
the p-value was greater than 0.05, the null hypothesis is not 
rejected. As a result of the results of Grubb's test, which reveal 
that there is no outlier, the data do not need to be reanalyzed 
because the model that was utilized was sufficient. 
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