Kinetics Modelling of *Pseudomonas stutzeri* strain DN2 Growth Behaviour in Tributyltin Chloride

Abdussamad Abubakar1*, Garba Uba2 and Hadiza Aliyu Biu3

1Department of Microbiology, Faculty of Science, Bauchi State University, Gadau, PMB 65, Nigeria.
2Department of Science Laboratory Technology, College of Science and Technology, Jigawa State Polytechnic, Dutse, PMB 7040, Nigeria.

*Corresponding author: Abdussamad Abubakar, Department of Microbiology, Faculty of Science, Bauchi State University, Gadau, PMB 65, Nigeria.
Email: abdussamad277@gmail.com

**INTRODUCTION**

Organotin compounds are chemical compounds based on tin with hydrocarbon substituents. Organotin chemistry is part of the wider field of organometallic chemistry. Antifouling coatings for boats, wood preservatives, biocides, and plastic stabilizers are just a few of the industrial items that contain tributyltin chloride [1]. According to extensive study, tributyltin chloride is the most poisonous organotin compound known to aquatic ecosystems among the organotin compounds [2,3]. Organotin compounds’ biocidal qualities make tributyltin chloride a potential ecological danger to non-target organisms in aquatic habitats [4]. It has been discovered to be particularly poisonous to several aquatic creatures, causing imposex in female molluscs and hardening of shells in oysters, even at nanometre concentrations in water [5 - 6]. In humans, tributyltin chloride has been found as an immune system inhibitor and endocrine disruptor. Because of its high specific gravity, tributyltin chloride is swiftly evacuated from the water column and sticks to sediments in the aquatic environment (i.e. 1.2). Its low water solubility (less than 10 mg/L at 20°C and pH 7) explains its high binding to suspended particle organic and inorganic elements in aquatic sediment.

The rate of tributyltin chloride breakdown in sediments is shown to be much slower than in water columns. Tributyltin chloride has a half-life of 0.91 to 5.2 years in marine sediments, according to previous research [7]. Tributyltin chloride is known to be very toxic to both prokaryotes and eukaryotes, whereas the mono-, di-, and tetra-organotins are either non-toxic or slightly poisonous, and appear to cause toxicity through interacting with membrane lipids [8,9]. Abiotic mechanisms such as chemical cleavage, thermal cleavage, and UV irradiation have been described in nature to change tributyltin chloride into less hazardous molecules (DBTCl2 and MBTCl3). Although tributyltin chloride is highly toxic to the majority of microbes, some natural microbial strains can survive at very high...
concentrations of tributyltin chloride using a variety of protective biochemical and molecular genetic mechanisms [6,10]. Several mechanisms involved in tributyltin chloride resistance in bacteria include (i) exclusion of the compound from the cell mediated by the multidrug efflux pump (ii) degradation/metabolic utilization as a carbon source [11]; (iii) bioaccumulation into the cell without the compound being broken down [12] and (iv) unique morphological alteration in the form of long inter-connected chains of bacterial cells on exposure to TBTCl [13].

This distinguishes tributyltin chloride-resistant microbes, including bacteria, as an ideal biological tool for bioremediation of tributyltin chloride contaminated sites and thus for polluted environment restoration. Ayanda, Clark and Dowson et al., [14–16] believed that bacteria, algae, and fungi biotransform tributyltin chloride by sequential debutylation processes from tributyltin chloride, dibutyltin chloride MBTCl3 inorganic tin via β-hydroxylation with suitable dioxygenases [15,16]. Due to the fact that microbial degradation is the most common biological process for the breakdown of tributyltin chloride in coastal waters [12,14], it is critical and fascinating to investigate the transformation of tributyltin chloride mediated by bacteria that thrive in such environments.

In this study, the primary and secondary kinetics of Pseudomonas stutzeri strain DN2 growth behaviour in tributyltin chloride was explored.

**MATERIALS AND METHODS**

Data for the primary and secondary Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in tributyltin chloride was acquired from Dnyanada et al., (2014) using WebplotDigitizer [18], which helps to digitize scanned plots into table of data with good enough precision.

**Statistical analysis**

Statistical significant difference between the models was calculated through various methods including the adjusted coefficient of determination ($R^2$), accuracy factor (AF), bias factor (BF), Root-Mean-Square Error (RMSE) and corrected AICc (Akaike Information Criterion) as before [19].

The RMSE was calculated according to Eq. (1), where $Pd$ are the values predicted by the model and $Ob$ are the experimental data, $n$ is the number of experimental data, and $p$ is the number of parameters of the assessed model.

$$RMSE = \sqrt{\frac{\sum_i (Pd_i-Ob_i)^2}{n-p}} \quad (Eqn. 1)$$

The adjusted $R^2$ is used to calculate the quality of nonlinear models according to the formula where RMS is Residual Mean Square and $S_i$ is the total variance of the $y$-variable and calculated as follows.

$$Adjusted \ (R^2) = 1 - \frac{RMSE^2}{S_y^2} \quad (Eqn. 2)$$

$$Adjusted \ (R^2) = 1 - \frac{(1-R^2)(n-1)}{(n-p-1)} \quad (Eqn. 3)$$

The Akaike information criterion (AIC) [20] was calculated as follows;

$$AICc = 2p + n \ln \left( \frac{RSS}{n} \right) + 2(p + 1) + \frac{2(p+1)(p+2)}{n-p-2} \quad (Eqn. 4)$$

Where $n$ is the number of data points and $p$ is the number of parameters of the model. The model with the smallest AICc value is highly likely correct [21].

Accuracy Factor (AF) and Bias Factor (BF) as suggested by Ross [22] were calculated as follows;

$$Bias \ factor = 10 \left( \frac{\sum_i log|Pd_i/ob_i|}{n} \right) \quad (Eqn. 5)$$

$$Accuracy \ factor = 10 \left( \frac{\sum_i log|Pd_i/ob_i|}{n} \right) \quad (Eqn. 6)$$

**Fitting of the data**

The data fitting of Pseudomonas stutzeri strain DN2 growth behaviour in tributyltin chloride using various growth models (Table 1 and 2), Curve Expert Professional software was used to fit the nonlinear equations to growth data using nonlinear regression with a Marquardt algorithm that minimizes sums of square residuals (Version 1.6). This is a strategy for minimizing the sum of squares of differences between predicted and measured values. The program calculates the steepest slope of the curve between four datum points (estimation of max), intersects this line with the x axis (estimation of), and uses the final datum point as an estimate for the asymptote (A). Because Huang’s model is a differential equation, it must be solved numerically.

**Table 1. Primary kinetic models used in this study.**

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Logistic</td>
<td>$y = \frac{1}{1 + \exp \left( \frac{\ln \mu_m}{A}(\lambda - e + 2) \right)}$</td>
</tr>
<tr>
<td>Modified Gompertz</td>
<td>$y = A \exp \left( \ln \mu_m \exp \left( \frac{\ln \mu_m}{A}(\lambda - e + 2) \right) \right)$</td>
</tr>
<tr>
<td>Modified Richards</td>
<td>$y = \left( 1 + \frac{1}{1 + \exp \left( \ln \mu_m \exp \left( \frac{\ln \mu_m}{A}(\lambda - e + 2) \right) \right)^2 \right)$</td>
</tr>
<tr>
<td>Baranyi-Roberts</td>
<td>$y = A \mu_m \exp \left( \ln \mu_m \exp \left( \frac{\ln \mu_m}{A}(\lambda - e + 2) \right) \right)$</td>
</tr>
<tr>
<td>Von Bertalanffy</td>
<td>$y = K \left[ 1 - \left( 1 - \frac{1}{(\lambda - e + 2)^2} \right) \exp \left( \frac{1}{(\mu_m/\lambda - e + 2) \lambda - e + 2} \right) \right] \exp \left( \frac{1}{(\mu_m/\lambda - e + 2) \lambda - e + 2} \right)$</td>
</tr>
<tr>
<td>Huang</td>
<td>$y = A + y \ln \left( e^x + \left( e^{\mu_m} - e^{-\mu_m} \right) \ln \left( \frac{1}{e^{\mu_m/\lambda - e + 2}} \right) \right)$</td>
</tr>
</tbody>
</table>

Note:

- $\mu$ = maximum growth behaviour in tributyltin chloride lower asymptote.
- $\mu_m$ = maximum growth behaviour in tributyltin chloride upper asymptote.
- $\mu_m$ = maximum specific growth rate in tributyltin chloride.
- $\mu_m$ = affects near which asymptote maximum growth behaviour in tributyltin chloride occurs.
- $\lambda$ = lag time
- $\gamma$ = exponent (2.718281828)
- $\lambda = \text{time the growth of Pseudomonas stutzeri strain DN2 was reported}$
- $\mu$ = curve fitting parameters
- $\gamma$ = a dimensionless parameter quantifying the initial physiological state of the reduction process.

The lag time ($h^{-1}$) or ($d^{-1}$) can be calculated as $h = \frac{1}{\mu_m}$.
RESULT AND DISCUSSION

The primary Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in tributyltin chloride was presented in (Figs. 1 – 6), while the secondary kinetic modelling was presented in Figs. 7 – 11. All the seven primary models show best fitting for Pseudomonas strain DN2 growth behaviour in tributyltin chloride. The \( R^2 \) values which indicates the best fitting of a model for all the primary models was closer to unity (0.99). The modified logistics was considered to be the best model on the basis of adjusted \( R^2 \) values and low value of RMSE. The adjusted \( R^2 \) value for modified logistics 0.99 while the RMSE values was 0.14. The modified logistic model was then utilized to model the growth profile at various concentrations of tributyl tin chloride.

Table 2. Statistical analysis of the various fitting primary models.

<table>
<thead>
<tr>
<th>Model</th>
<th>( p )</th>
<th>RMSE</th>
<th>adjusted ( R^2 )</th>
<th>AF</th>
<th>BF</th>
<th>AICc</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang</td>
<td>4</td>
<td>0.18</td>
<td>0.98</td>
<td>1.32</td>
<td>1.03</td>
<td>1.49</td>
</tr>
<tr>
<td>Baranyi-Roberts</td>
<td>4</td>
<td>0.14</td>
<td>0.98</td>
<td>1.18</td>
<td>1.08</td>
<td>-2.45</td>
</tr>
<tr>
<td>Modified Gompertz</td>
<td>3</td>
<td>0.16</td>
<td>0.98</td>
<td>8.20</td>
<td>0.99</td>
<td>-12.97</td>
</tr>
<tr>
<td>Modified Richard</td>
<td>4</td>
<td>0.15</td>
<td>0.98</td>
<td>1.56</td>
<td>1.44</td>
<td>-1.34</td>
</tr>
<tr>
<td>modified Logistics</td>
<td>3</td>
<td>0.14</td>
<td>0.99</td>
<td>1.51</td>
<td>1.39</td>
<td>-15.22</td>
</tr>
<tr>
<td>von Bertalanffy</td>
<td>4</td>
<td>0.17</td>
<td>0.98</td>
<td>1.21</td>
<td>1.11</td>
<td>-11.46</td>
</tr>
</tbody>
</table>

Fig. 1. Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in TBTCl using the Huang model.

Fig. 2. Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in TBTCl using the Baranyi-Roberts model.

Fig. 3. Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in TBTCl using the modified Gompertz model.

Fig. 4. Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in TBTCl using the modified Richard model.

Fig. 5. Kinetics Modelling of Pseudomonas stutzeri strain DN2 growth behaviour in TBTCl using the modified logistics model.

This work is licensed under the terms of the creative commons attribution (CC By) (http://creativecommons.Org/Licenses/By/4.0/).
The accuracy and statistical analysis of all the secondary kinetic models used revealed that Monod, Haldane, Aiba, Yano and Luong were able to fit the data, with both the Aiba and Haldane being the best model with low RMSE and AICc (-12) values, highest adjusted $R^2$ values, closest to unity (1.0), (Table 4). Although many different growth rates formulae have been proposed in the literature, only a few are currently used.

The Haldane equation is the most popular rate expression for microorganisms in general [23–31] followed by the Aiba model [25,26]. Because most studies on the effects of toxic substrates on microbial growth use toxic substrates like aromatic and halogenated hydrocarbons, it’s safe to infer that at high concentrations, growth rate will be significantly impeded, and other non-fitting models like Monod will fail. The Haldane model has been used to forecast a range of bacterial growths on xenobiotics and has been widely used as a general-purpose model for understanding substrate inhibition kinetics. The highest concentration at which cultures can sustain shock doses is known as the inhibition constant ($K_i$). This is an extremely significant value.

### Table 3. Secondary kinetic models used in this study.

<table>
<thead>
<tr>
<th>Model</th>
<th>Equation</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monod</td>
<td>$\frac{S}{K_s + S_{\text{max}}}$</td>
<td>[32]</td>
</tr>
<tr>
<td>Haldane</td>
<td>$\frac{\mu_{\text{max}} S}{S + K_s + \frac{S_{\text{max}}}{K_s}}$</td>
<td>[33]</td>
</tr>
<tr>
<td>Aiba</td>
<td>$\mu = \frac{S}{K_s + S_{\text{max}}} \exp\left(-K'\right)$</td>
<td>[19]</td>
</tr>
<tr>
<td>Yano</td>
<td>$\frac{\mu_{\text{max}}}{S + K_s} \left(1 + \frac{S}{S_{\text{max}}} \right)$</td>
<td>[34]</td>
</tr>
<tr>
<td>Luong</td>
<td>$\frac{\mu_{\text{max}} S}{S + K_s} \left(1 - \frac{S}{S_{\text{max}}} \right)$</td>
<td>[33]</td>
</tr>
</tbody>
</table>

### Table 4. Statistical analysis of the various fitting secondary models.

<table>
<thead>
<tr>
<th>Model</th>
<th>$p$</th>
<th>RMSE</th>
<th>ad$R^2$</th>
<th>AICc</th>
<th>BF</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Luong</td>
<td>4</td>
<td>0.0552</td>
<td>0.590</td>
<td>32</td>
<td>1.002</td>
<td>1.154</td>
</tr>
<tr>
<td>Yano</td>
<td>4</td>
<td>0.0552</td>
<td>0.590</td>
<td>32</td>
<td>1.002</td>
<td>1.154</td>
</tr>
<tr>
<td>Aiba</td>
<td>3</td>
<td>0.0478</td>
<td>0.726</td>
<td>-12</td>
<td>1.002</td>
<td>1.154</td>
</tr>
<tr>
<td>Haldane</td>
<td>3</td>
<td>0.0478</td>
<td>0.726</td>
<td>-12</td>
<td>1.002</td>
<td>1.154</td>
</tr>
<tr>
<td>Monod</td>
<td>2</td>
<td>0.0428</td>
<td>0.795</td>
<td>-8</td>
<td>1.002</td>
<td>1.154</td>
</tr>
</tbody>
</table>

**Fig. 6.** Kinetics Modelling of *Pseudomonas stutzeri* strain DN2 growth behaviour in TBTCl using the von Bertalanffy model.

**Fig. 7.** Kinetics Modelling of *Pseudomonas stutzeri* strain DN2 growth behaviour in TBTCl using the Luong model.

**Fig. 8.** Kinetics Modelling of *Pseudomonas stutzeri* strain DN2 growth behaviour in TBTCl using the Yano model.

**Fig. 9.** Kinetics Modelling of *Pseudomonas stutzeri* strain DN2 growth behaviour in TBTCl using the Haldane model.
Fig. 11. Kinetics Modelling of *Pseudomonas stutzeri* strain DN2 growth behaviour in TBTCl using the Aiba model.

CONCLUSION

Bacterial growth and degradation kinetics can be modelled using a variety of models available in the literature. A literature review revealed that multiple models for the same molecule have been shown to be optimal in different settings, hence a comprehensive modelling exercise involving primary and secondary model was carried based on existing published works to demonstrate this fact. In this paper, we show that the modified logistic and Monod modelling exercise involving primary and secondary model was shown to be optimal in different settings, hence a comprehensive variety of models available in the literature. A literature review revealed that multiple models for the same molecule have been shown to be optimal in different settings, hence a comprehensive modelling exercise involving primary and secondary model was carried based on existing published works to demonstrate this fact. In this paper, we show that the modified logistic and Monod models were the best fit for *Pseudomonas stutzeri* strain DN2 growth behaviour in tributyltin chloride.

REFERENCES


- 17 -

This work is licensed under the terms of the Creative Commons attribution (CC By) (http://Creativecommons.Org/Licenses/By/4.0/).


