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INTRODUCTION 
 
Pesticides may be of the broad-spectrum type that kills a wide 
range of organisms or the selective type, which destroys only one 
organism or a few specific organisms. In the early part of this 
century the increase in world population resulted in a greater 
demand for food. It has led to a substantial increase in the 
production and use for agrochemical such as pesticides and 
fertilizers [1–7]. 
 

Pesticides are very known to contribute significantly in 
reducing losses and thereby increasing food production and 
quality. Past trend indicates that most of the pesticides used in the 
developing countries have frequently been employed in the 
control of vectors of human disease and on industrial export 
crops. Roughly one thousand pesticide preparations are utilized 
around the world today. The yearly globally agriculture 
utilization of pesticides has been approximated to be in the order 
of five million tons and approximately seventy percent is utilized 
in farming and the rest by public health agencies and government 
departments for vector control and for household goals [5,6,8,9]. 
 

In the developing countries, particularly in North America, 
Western Europe and Japan, pesticides have come to play an 
extremely important role in the maintenance of high agriculture 
productivity. Despite the uses of pesticides, about 35% of the 
crops are lost from pests, diseases and weeds. Worldwide FAO 
estimates that an average of 38% of the cotton crop is saved from 
destruction by pests through the effective use of pesticides. 
However, pesticides have been known to affect a number of non-
target organisms. Many experts have approximated that only a 
small percentage roughly about 0.1% of the pesticides used on 
crops get to their target pests and most 99% of the utilized 
pesticides have an effect on non-target organisms [8,10–16]. 
 

A good example is the decline in paddy field fish 
populations due to increased pesticide usage, causing severe 
economic hardship and nutritional deficiencies among the poorer 
paddy farmers. The rice growing areas of central Thailand, 
farmers use the food irrigation method where when they drain the 
water from the rice paddies into the rivers and canals, carrying 
pesticides residues to nearby agricultural farms. In December 
1982, this practice resulted in the complete destruction of the 
aquaculture industry in central Thailand. Over US$10 million 
worth of fish were killed and about 5 million kilograms of fish 
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 ABSTRACT 
Pesticides are substances used for the destruction or control of pest. They include insecticides, 
herbicides, fungicides, rodenticides rats and mice, molluscides and others. Carbofuran is an 
insecticide that is very toxic pesticide often used to control pests in agricultural areas. Its usage 
is still being reported despite worldwide efforts to ban the pesticides. Reported deaths and illness 
due to indiscriminate and excessive use of carbofuran is still being reported in developing and 
third world countries prompting the call of more research on isolating microorganisms that are 
able to completely mineralize this toxic pesticide. The presence of toxic carbofuran in various 
soil types that can persist for many months can be remediated via the use of carbofuran-degrading 
microorganisms which is a more feasible and economical methods of remediation compared to 
various physicochemical methods. The aim of this review is to highlight the toxicity of 
carbofuran, especially in the Malaysian perspective and the current body of knowledge on 
carbofuran-degrading microorganisms that are able to remediate this toxic threat. 
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were lost due to pesticides poisoning. This affected people 
throughout the country because fish is a major source of cheap 
protein [17]. Pesticides induced chronic toxicity is emerging as a 
public health concern including cancers, reproductive 
impairment and irreversible neurotoxicity. According to the 
World Health Organization (WHO), over half a million people 
are poisoned each year by pesticides and five thousand of the 
victims die [18]. 
 
Toxicology of Pesticides in General 
Pesticides (whether insecticides, herbicides or fungicides) by 
their nature and purpose are poisons. Even if their amount is 
minimal in comparison to that of silt, their impact on the 
environment may be considerable. Since 1962, the use of 
pesticides in the Unites States has increased more than two-fold. 
It now endangers groundwater quality in most of the States [19]. 
Recently, concern about effects of pesticides on human health 
and on the ecosystem began to move beyond cancer. It appears 
that some chlorinated hydrocarbon pesticides exert a multitude 
of toxic effects. These pesticides are neurotoxic, mutagenic and 
teratogenic. They exert toxic effects on the reproductive system 
and suppressed the immune system. These compounds act by 
mimicking or inhibiting estrogen receptors. It also affects 
women’s health but also believed to be responsible for a decrease 
in sperm count and a rise in testicular cancer in human as well as 
abnormal sexual development in some wildlife species [20]. 

 
Pesticides in Soil 
Soil in the environment consist of numerous ecosystems where 
recycling of organic matter occurs. Soil microflora which consist 
of bacteria, fungi, protozoa and algae play a major role in nutrient 
cycle. This is because of the capability of using the organic matter 
as a source of nutrient. Examples of these process are 
nitrification, denitrification and carbon mineralization [21–27]. 
 

Several studies have shown that pesticides behavior in soil 
are influenced by the absorption, motility and degradation 
process. Adsorption of pesticides to soil particle is a vital course 
of action impacting on their migratory conduct in numerous soil 
environments. The characteristics absorption and desorption and 
the mobility of the pesticides 2,4-D, lindane, paraquat and 
glyphosate in the soils of two Malaysian agriculture show 
variability in absorption and desorption properties [28]. In the 
research, it was observed that the absorption-desorption 
attributes and leaching behavior of the above pesticides 
demonstrated little variations from the results documented in 
soils from other areas of world. The inclination of these 
pesticides to be absorbed by soil particles differs with their 
chemical and physical qualities. Absorption of paraquat in soil 
was very fast and binds tightly to the soil particle especially in 
clay and loam [29]. 
 

Pesticides absorption-desorption characteristics are 
measured by partition coefficient. Research carried out to the 
mobility of carbofuran in two soil types demonstrated only slight 
variations between adsorption coefficients. The study 
demonstrates that carbofuran exhibited a Kd value of 22.4 in clay 
loam (OC content 53%, pH 8.6) and a Kd value of 19.9 in silt 
loam (OC content 18%, pH 8.4). Therefore, higher adsorption of 
carbofuran occurs in the presence of a greater organic matter 
[30]. 
 

The absorption pesticides in soil are very important because 
it can lead to environmental problems. Pesticides that do not bind 
to the soil particle will be degraded to produce less toxic 
metabolites while in comparison, adsorbed pesticides will 
continue to be in the surroundings for a number of years and may 

build up into food chains many years after their use in soil [28]. 
Pesticides range of motion is important for pest management. For 
instance, particular pre emergence herbicides used on the soil 
surface area must shift several inches into the soil to arrive at the 
germinating weed seeds. There are actually five processes that 
may shift pesticides including runoff, volatilization, leaching, 
physical removal and absorption. Due to its good water solubility 
(351 mg/L at 25 oC), carbofuran is comparatively mobile in soil 
and in surface runoffs and is expected to partition into the water 
from soil [31]. As an example, it is estimated that carbofuran, 
which is widely utilized in paddy soil remains in the water at 
about 54% and in soil of about 46%. 
 
Pesticides Degradation 
During pesticides degradation, some of the metabolites can also 
become more toxic than the original compound. The vast 
majority of pesticides residues in the environment are turned into 
non-active or less poisonous or harmful chemical substances by 
means of primarily chemical degradation, photo degradation and 
microbial degradation [4,6,32–38]. 
 
Chemical Degradation 
Chemical degradation of pesticides is a degradation process 
which do not include living organisms. Examples of chemical 
degradation of carbofuran include oxidation-reduction, 
hydrolysis and ionization which can be generally associated with 
pH. Just about the most common pesticides breakdown is 
hydrolysis, a degradation process in which the pesticides interact 
with water. It might happen in both acid and alkaline conditions. 
As soil pH gets to be highly acidic or alkaline, microbial activity 
generally reduces, but such circumstances may lead to elevated 
chemical degradation [4,6,32,33,38]. 
.  
 
Hydrolysis 
The most crucial reaction involves hydrolysis, which is the 
splitting of a bond in a molecule by way of its reaction with a 
water molecule. Usually a compound is modified in a hydrolytic 
reaction by the replacing of chemical groups of the substance 
with a hydroxyl group. The hydrolytic reactions are generally 
catalyzed through the reactions of hydrogen or hydroxide ions 
and therefore the reaction rate is firmly determined by the pH of 
the environment.  A number of functional groups that are prone 
to this hydrolytic reactions include lactones, carboxylic acids 
ester, amides, epoxides, carbamates, phosphoric- and sulfonic 
acids esters  [4,6,38–40]. 
. 
 
Oxidation –Reduction (Redox) 
Oxidation –Reduction (Redox) reactions involve the transfer of 
electrons from the reduced species to oxidized species. It has 
been shown that mixed function oxidase (MFO) enzymes are 
capable of catalyzing aromatic hydroxylation, dealkylation, 
deamination, desaturation, expoxidation and N-or-S oxidation. 
Several of these mechanisms occur sequentially to form 
degradation products. For example, the reaction of N- 
dealkylation can occur at the carbamate amine. The oxidative 
metabolic of the ring hydroxylation is important in the 
metabolism of carbaryl and carbofuran. In this process it 
probably proceeds through epoxidation to the hyroxy compound 
and then to the keto and eventually to ring cleavage. Some 
compounds in which redox reactions have been observed to be 
important include mercury, toxaphene and DDT [41,42]. 
 
Ionization 
The hydrogen ions in the water body determine the fate of toxic 
organics which are possibly acids or bases. The hydrogen ion 
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concentration influences the ionic species of many compound 
including pesticides. For example, the ionized species of an 
organic acid is to a much lesser degree absorbed by sediments 
than its neutral form [43]. 
 
Photo degradation 
The breakdown of pesticides by light especially sunlight is called 
photo degradation. It is a degradation process where energy in 
the form of photons smashes the bonds in a molecule (USEPA, 
1987). It can demolish pesticides on vegetation, on the soil 
surface as well as in the air. Normally, the factors that affect 
pesticides photo degradation range from the level of the sunlight, 
especially its intensity, qualities of the application sites, the 
method of application and the attributes of the pesticides. Mill 
and Mabey (1985) illustrate the types of photolysis reactions 
impacting on many different substances such as chloroaromatics, 
ketones and aldehydes.  
 

Research has shown that a quantity of pesticides is broken 
down at quantifiable rates of sunlight. Such is the situation that 
the number of pesticides not broken down by sunlight is very 
small. In fact, circumstances can be obtained to which almost all 
current day herbicides and plant - growth regulators will be 
decomposed by sunlight. Examples of herbicides that have been 
proved to be successfully degraded by sunlight involves 2,4-D, 
MCPA, 2,4,5-T, silvex and bromoxymil [44], simazine, monuron 
and diuron [45]. 
 
 
Microbial degradation 
The breakdown of pesticides by microorganisms usually results 
in the pesticides becoming food source for growth and energy. It 
is now naturally revealed that microorganisms not just break 
down natural organic materials, but they are also accountable for 
the the breakdown of many other xenobiotics. These substances 
include petroleum hydrocarbons, pesticides, and organic 
solvents. Transformation of contaminants to less dangerous 
materials via biodegradation is highly likely in the case of 
mineralization while in under certain situations more often seen 
under anaerobic transformation, toxic products can also be 
produced [46–62]. 
 
Microbial degradation as a tool for bioremediation 
Basically, the mineralization or total biodegradation of an 
organic molecule for example pesticides in soils is practically 
constantly a result of bacterial activity. As they transform the 
organic substrate to inorganic products, the accountable 
population utilizes a number of the carbon in the substrate and 
turns it to cellular components. Simultaneously, energy is 
produced, and the populations increase in quantities and biomass 
as they absorb a significant number of the carbon for energy and 
biomass. Carbofuran, like many other pesticides is a soil-
incorporated pesticide which has been confirmed to be affected 
by microbial degradation. The majority of pesticides at present is 
being used and have been found in the biosphere for more than 
forty years but a number of these substances are speedily 
microbially broken down in soil [60,63–73]. 
 
 
Pesticides contamination in the Malaysian environment  
Contamination of the Malaysian environment is becoming an 
escalating issue throughout the last one hundred year with the 
continuing development of industry and agriculture and with the 
advancement human population. Not long ago, there has been an 
increase reports of pesticides contamination from the agriculture 
use of fertilizers and pesticides. In Malaysia, pesticides are 
widely-used to manage pests that damage crops and broadcast 

diseases to people and animal [6,36,58,74–76]. At the moment, 
the effective use of pesticides is in depth and agriculture, 
horticulture, vector control and forestry and livestock production 
are the reason for the highest usage. The pesticide market in 
Malaysia is increasing over the years with herbicides still 
accounting for the highest rate at 75 % followed by insecticides 
at 16 percent, fungicides at 5.4% and rodenticides at 3.5 % [77]. 
The insecticides are used in Malaysia mainly for vegetables, rice, 
cocoa, fruits, oil palm and tobacco. The major insecticides used 
are BHC, endosulfan, chlorpyrifos, carbofuran and carbaryl in 
rice fields. The major herbicides used are gyphosate, paraquat, 
2,4-D and lindane [78–88]. 
 

In Malaysia, the main legal guidelines for the control of 
pesticides is the Pesticides Act of 1974. Normally the principal 
purpose of this act is the control of the production and import of 
pesticide by means of registration and licensing of premises 
marketing, storing, selling, labeling and management of the 
import of unregistered pesticides for research and academic 
applications [86]. 
 

The health impacts of pesticides on human and other 
organisms in Malaysia are expected to rise as the use of pesticides 
in the agriculture area increases. Nowadays, the use of pesticides 
in Malaysia is a cause of serious concern. Some pesticides have 
been shown to be toxic to the environment as well as human 
himself. Between the years 1970 and 1982 there were about one 
hundred cases of organophosphate poisoning needing admission 
to the University Hospital Intensive Care Unit in Kuala Lumpur 
[2]. Data from the Ministry on pesticides poisoning from 1979 to 
1986 were associated with the pesticide paraquat with 49.1% of 
the cases are intentional and the remaining 37.8% are accidental. 
In the paddy field areas in Tanjong Karang, it was reported that 
about 72% of rice farmers experienced poisoning signs and 
symptoms when dealing with pesticides. It has been found that in 
these places, proper attire and clothing including googles, shoes 
and respiratory masks were hardly ever worn [89].  

 
The levels of pesticide found in the blood serum of the 

general Malaysia population are much higher than that of the 
United States. The total mean DDT concentration in Malaysia 
farmers was 0.11 ppm, the level for rubber estate workers was 
0.09ppm and the level for the general population was 0.066 ppm. 
The impact of this unhealthy trend of excessive pesticides usage 
in Malaysia will result in adverse effects in the environment and 
the wellbeing of the people [81]. 
 

It was also observed that the high accidental and 
occupational exposure of workers and the general population to 
pesticides further confirm this unhealthy trend. Estate workers 
formed the majority of all pesticide’s poisonings in Peninsular 
Malaysia. There is a wide use of organophosphorus insecticides 
and rodenticides in the agricultural sector especially in oil palm 
plantations. Problem arise because estate workers are generally 
unaware or not made aware of the color coding of these 
hazardous chemicals.  

 
Long term exposure has led to several illnesses such as 

pulmonary, eye, skin, and neurological problems [90]. Various 
factors have contributed to the acute poisoning cases which 
include the use of pesticide (by farmers) in concentration in 
excess of requirements, poor knowledge and understanding of 
safe practices in pesticide use, lack of protective clothing suitable 
for tropical climates, the poor maintenance facilities of spray 
equipment, giving rise to hazardous contamination and the use of 
pesticide mixture [91]. 
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Carbofuran (C12H15NO3 ) 
Carbofuran (2,3-dihydro-2, 2-dimethyl-7-benzofuranol N 
methylcarbamate) is a broad-spectrum carbamate acaricide, 
insecticide and nematicide. It is widely used towards quite a few 
unwanted pests of agricultural products including rice, corn and 
on other agriculturally important plants. Carbofuran is utilized to 
manage soil-dwelling and foliar feeding pesky insects for 
example wireworms, corn rootworm, boil weevils, alfalfa weevil, 
mosquitoes, white grubs and aphids [3,7,92–94]. 
 
 

 
 
Fig. 1.  Chemical structure of carbofuran 
 
Carbofuran was initially utilized in a commercial sense in 1967 
and its particular use is continuing to grow speedily more than 
following years. Its half-life in soil is from thirty to one hundred 
and twenty days. In sandy soils, the half- life is approximately 
thirty days while the intermediate half-life in loamy soils is about 
forty days. Its half-life in muddy soil is about eighty days [94]. 
Its molecular weight is 221.25 with a melting point of between 
150 and 152oC. Under neutral or acidic conditions, it is 
comparatively stable but breakdowns rapidly in alkaline media. 
Carbofuran is soluble in water at concentrations of up to 700 
mg/L in water but in organic solvents its solubility reduces to less 
than 30 mg/L [93]. 
 
Sign and symptoms of poisoning 
Carbofuran is a highly toxic compound when inhaled and 
moderately toxic through dermal absorption. Symptoms of acute 
toxic exposure include nausea, excessive salivation, abdominal 
cramps, vomiting, sweating, weakness, diarrhea, imbalance, 
breathing difficulty, blurring of vision, increased blood pressure 
and incontinence. The rapidity, with which these symptoms 
appear, is dependent on the amount of toxicant administered, 
chemical structure of the toxicant, mode of entry into the body, 
biochemistry and physiology of the animal treated [95–101]. 
 
Mode of action cholinesterase inhibition by carbofuran 
Generally speaking, carbofuran successfully manages insects by 
means of its action on as an anticholinesterase activity. 
Acetylcholinesterase (AchE) inhibition by carbofuran is 
substantially studied in the past years. In both invertebrates and 
vertebrates, carbofuran act by suppressing the enzyme 
acetylcholinesterase (AchE), which is an enzyme important for 
regular nerve functionality inside the peripheral and central 
nervous systems. Cholinesterases are the enzymes that carry out 
neuromuscular and interneuron transmission and switch on 
various intracellular reactions in a number of tissues and cell 
varieties [102–107]. Death can happen consequently coming 
from asphyxiation resulting from extreme activation in nerves 
due to the buildup of acetylcholine at the nerve synapses of the 
central nervous system and resulting in the subsequent failure of 
the respiratory process [31,96,108,109]. 
 
Other effects of carbofuran toxicity 
Organophosphate and organocarbamate pesticides including 
carbofuran can cause oxidative stress in erythrocytes. As the 
erythrocytes harbor polyunsaturated fatty acids and hemoglobin, 
they are prone to oxidative stress where the latter increase may 

correlate with an increased osmotic fragility of erythrocytes.  
[110]. In female Swiss albino mice, the interruption of estrous 
cycle and follicular toxicity caused by carbofuran exposure has 
been documented [111] where the estrous cycle was effected with 
a significant decrease in the duration of each phases of the estrous 
cycle  and its number as well as a concomitant significant 
increase in the diestrus phase [112] 
 
 
Bioremediation 
Bioremediation is using microorganisms or plants to clean or 
detoxify the environment. It is an option which offers a solution 
to detoxify or at least lessen the toxicity of the substances in the 
environment. It is a natural process using living organism, 
primarily microorganisms to remediate the environment 
contaminants into less harmful forms. It is a course of treatment 
that employs microorganisms to degrade substance that are 
detrimental to human health and environmental surroundings. 
Typically, microorganisms make use of organic compounds to 
produce energy and nutrients for their growth. Bioremediation 
can happen under aerobic and anaerobic circumstances.  
 

In aerobic situation, microorganisms make use of 
atmospheric oxygen and will transform numerous organic 
pollutants to CO2 and H2O. Whilst under anaerobic condition, 
reactions take place solely without molecular oxygen 
[26,27,62,113–120]. Bioremediation can be performed either ex-
situ or in-situ. The ex-situ process requires excavation of 
contaminated soil before they can be treated. While, in the in-situ 
process, remediation is carried out in the location without 
excavation or removal of contaminated soil. In the case of in-situ 
bioremediation several successful cases have been reported and 
the target pollutants remediated include chlorinated pesticides, 
halogenated aliphatics, nitroaromatics, polychlorinated 
biphenyls, and polycyclic aromatics  [26,27,62,116–118]. 
  

Bioremediation can be carried out by four basic techniques. 
To begin with, the microbes may end up being immediately 
employed to degrade pollutants. Secondly, in-situ spiking 
nutrients may be utilized to stimulate the growth of indigenous 
microbes capable of decontamination. Thirdly, cell extracts or 
purified enzyme products of microbial origin could be used for 
decontamination. Finally, plants can often be used to eliminate or 
transform pollutants. Presently, scientific studies are being 
carried out on the utilization of microorganisms to break down 
chemicals.  
 

Methods and resources for the design of new microbes are 
already been created. Included in this are the design of regulated 
gene expression circuits that limit catabolic activities and the 
assemblage of gene blocks coding for chosen metabolic modules 
to produce new metabolic routes. As with many chemicals, 
pesticides are subject to both biotic and abiotic transformation 
process. Many of the abiotic transformations result in partial 
degradation to products that can be further degraded by 
microorganisms. Hydrolytic reactions are the most significant 
abiotic transformations. The reactions can be base or acid and 
occurred through interactions surface, reactive organic 
compounds and inorganics metal such as Cu2+ [26,27,62,113–
120]. 
 
Carbofuran-degrading microorganisms 
Carbamates and organophosphates are currently, the most 
employed insecticides for indoor and agricultural purposes. Even 
though they are biodegradable, they display neurotoxicity in 
mammals. Carbofuran, a class of carbamates is usually applied at 
the time of planting to control numerous insects in various 
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agricultural plants. It is important that the carbofuran persist in 
the soil for 3-5 weeks after planting to control the feeding larvae 
[98,101,121–125]. Microbial deterioration of this compound 
continues to be analyzed and the effectiveness of carbofuran in 
the field is diminished and reapplication needs to be carried out 
as a result of the phenomenon of increased microbial 
degradation. It was suggested that bacteria contained in the area 
have the ability to make use of the bacteria as a substrate for 
growth [98,123–125]. 
 

It has become increasingly possible to isolate microorganisms 
that are capable of degrading xenobiotic and recalcitrant 
compounds from environments polluted with toxic chemicals. 
Several microorganisms are responsible for the metabolism 
pesticides in soil. The degradation of several carbamates 
including carbofuran in soil is mediated by  several 
microorganisms that play major roles in degrading and utilizing 
carbamates as a  sole source of carbon and included 
Achromobacter spp. [63,126,127], Arthrobacter sp. [128], 
Sphingomonas spp. [65,129,130], Pseudomonas  spp. and 
Chrysobacterium spp. [131,132], Bacillus brevis [133], 
Gliocladium sp. [134], Novosphingobium sp. FND-3 [67], 
Burkholderia cepacia PCL3 [135], Rhodococcus sp., 
Sphingobium sp., Bosea sp. and Microbacterium sp. [136] and 
Cupriavidus sp. ISTL7 [73]. 
 
 
Carbofuran hydrolase 
Chaudhry et al. [137] isolated and purified from Pseudomonas 
sp. 50432 a soluble carbamate hydrolase that had a wide 
specificity. The best characterized carbamate hydrolyzing 
enzyme was obtained by Kearney and Kaufman when they 
isolated a strain of Pseudomonas striata from soil which could 
metabolize phenylcarbamate chlorpropham (isopropyl m -
chlorocarbamate) as a sole source of carbon and energy [138]. 
The enzyme isolated from Achromobacter sp. WM111 appeared 
to be a hydrolase after numerous purification and dialysis steps 
[126]. This carbofuran hydrolase was detected based on their 
activity and ability of Achromobacter sp. WM111 to utilize 
carbofuran as a nitrogen source [63]. Chaudhry et al. showed that 
the hydrolase has a wide substrate range can be potentially useful 
for the decontamination of wastes containing mixtures of 
hazardous compounds than those enzymes with a narrow 
substrate range  [137] and the carbofuran hydrolase activity was 
found to be present predominantly in the cytoplasmic fraction 
(86%) and only a minor activity was associated with membranes 
(14%)  [137].  
 

Ultracentrifugation was a method used in separating the 
cytoplasmic proteins from the membrane fraction. Upon 
ultracentrifugation, 86.5% of the total carbofuran activity in a 
crude cell extract of Achromobacter sp. WM111 was found in the 
supernatant fraction while the remaining 13.5% of the activity 
was contained in the unwashed membrane pellet [126]. 
Hydrolase is stable at 4 oC for 1 week and its activity is lost 
completely after 1 month. To overcome from losing enzyme 
activity, Chaudhry suggest the enzyme being stored at –20o C or 
–70o C in the presence of 20% glycerol. It may remain for a 
period of 1 month [137]. The enzyme was also stable in Triton-
X-100 and other detergents such as CHAPS. The enzyme showed 
only 10% of the activity in the presence of 0.1%2-
mercaptoethanol and 0.1% DTT. Almost 58% of the active 
enzyme is trapped in Triton-X-100, which separated as a floating 
layer. The optimum pH was broad (9.0 to 10.5) and the optimum 
temperature was between 45o C and 53oC. [126]. The presence of 
2-mercaptoethanol and DDT will inactivate the hydrolase. 

Hydrolase activity was determined to be optimum at pH 8.5 and 
37oC [137]. 
 

In conclusion, carbofuran, an important pesticide has many 
uses in agricultural and nonagricultural purposes. Bioremediation 
can provide a cost-effective method compared to existing 
physicochemical methods provided that a suitable 
microorganism can be found to completely mineralize carbofuran 
completely. The purified enzyme shows diverse substrate 
specificity and stability conditions also varied considerably. 
Novel carbofuran-degrading enzymes need to be isolated and 
characterized specifically from developing and underdeveloped 
countries where carbofuran is still being used despite worldwide 
ban. 
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