Modelling the Inhibitory Effect of SiO₂-coated Zero-valent Iron/palladium Bimetallic Nanoparticles (SiO₂-nZVI/Pd) Reductant on Pseudomonas putida as the Biocatalyst for 2,2’,4,4’-tetrabromodiphenyl ether Degradation

Bilal Ibrahim Dan-Iya,¹,²* Ibrahim Alhaji Sabo³ and Salihu Yahuza⁴

¹Department of Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
²Pharmacy Technician Department, College of Health Sciences and Technology, Kano Nigeria.
³Department of Microbiology, Faculty of Pure and Applied Sciences, Federal University Wukari, P.M.B. 1020 Wukari, Taraba State Nigeria.
⁴Department of Microbiology and Biotechnology, Federal University Dutse, PMB 7156, Dutse, Jigawa State, Nigeria.

*Corresponding author: Bilal Ibrahim Dan-Iya
Pharmacy Technician Department, College of Health Sciences and Technology, Kano Nigeria.
Email: bidaniya@gmail.com

INTRODUCTION

Mathematical modeling has proved to be an effective method for researching viral pathogenesis and has provided understanding into the dynamics of intracellular viral and bacterial infections, the role of the immune system, the assessment of strategies involving treatment and the occurrence of resistance to drug [1]. Modeling may expand our knowledge on various scales: from the intracellular pathogen-host molecular scale interactions, to population-scale extracellular cell to cell invasion, to pathogen dissemination inside organs or entire species [1]. To quantitatively research at molecular level bacterial or viral growth and to examine host needs and constraints, Bacteriophages intracellular models, Baculovirus and Semliki forest virus have been firstly established. the human immunodeficiency virus offered understanding into the pathogenesis, strategies of treatment and virus monitoring by studying it’s cell to cell infection [1]. Mechanical mathematical

ABSTRACT

The used of linearization technique using natural logarithm transformation, though standard, is erroneous and can just give an estimated value for the sole parameter measured; the specific growth rate. in this paper, for the first time we model the effect of nZVI/Pd and SiO₂-nZVI/Pd nanoparticles on the growth of P. putida in MSM medium as modelled using models such as von Bertalanfly, Baranyi-Roberts, modified Schnute, modified Richards, modified Gompertz, modified logistics and the most recent Huang. The results show that the lag phases of P. putida cell at 4 h (0.5 g L⁻¹ of SiO₂-nZVI/Pd), 7.655 h (1.0 g L⁻¹ of SiO₂-nZVI/Pd), 11.76 h (0.5 g L⁻¹ of nZVI/Pd) and 22.03 h (1.0 g L⁻¹ of nZVI/Pd) respectively, which were longer than that of control, indicating the nanoparticles prolonged the exponential phase of cell growth. Moreover, in comparing the maximum growth 𝑦max, which was 1.23x10⁹, there was a decrease in the P. putida growth, i.e 1.20x10⁹ (0.5 g L⁻¹ of SiO₂-nZVI/Pd), 1.06x10⁹ (1.0 g L⁻¹ of SiO₂-nZVI/Pd), 1.04x10⁹ (0.5 g L⁻¹ of nZVI/Pd) and 8.59x10⁸ (1.0 g L⁻¹ of nZVI/Pd) respectively, with more decrease in growth at the P. putida growth with nZVI/Pd than SiO₂-nZVI/Pd. On the other hand, when comparing the 𝜇max, the control has a value of 0.08 while 0.073, 0.073, 0.089 and 0.86 are values at bacterial concentration of (0.5 g L⁻¹ of SiO₂-nZVI/Pd), (1.0 g L⁻¹ of SiO₂-nZVI/Pd), (0.5 g L⁻¹ of nZVI/Pd) and (1.0 g L⁻¹ of nZVI/Pd) respectively, indicating the specific growth rate decreases with both 0.5 g L⁻¹ of SiO₂-nZVI/Pd and 1.0 g L⁻¹ of SiO₂-nZVI/Pd and increases with 0.5 g L⁻¹ of nZVI/Pd and 1.0 g L⁻¹ of nZVI/Pd. It is clear from the results that coating of SiO₂ on nZVI/Pd might drastically decrease the toxicity to P. putida cells.

KEYWORDS
SiO₂-coated Bimetallic Nanoparticles
P. putida
Growth
Mathematical model
Buchanan-3-phase
models can be a crucial instrument in shaping our insight of multiplex biological systems. In recent years, various mathematical models of interaction amongst pathogens and immune responses of host have been established, with bacterial pathogens researched including *mycobacterium Tuber-culosis*, *Bacillus anthracis* and *Streptococcus pneumoniae* [2].

Normally, bacterial growth curve shows sigmoidal pattern, beginning with lag phase after t=0, then the logarithmic phase and then bacteria moves into the stationary section and finally enters the death section or bacterial growth declining phase. Different sigmoidal functions were used to describe bacterial growth curve, these sigmoidal functions include modified Gompertz, Modified logistics and Stannard, Von Bertalanfyy, Baranyi-Roberts, Stannard, von Bertalanfyy, Baranyi-Roberts, modified Schnute and Modified Richards [3]. Comprehensive statistical model that comprises of rest of other models was used to compare them (Schnute model). In the F test that was used, unfitness of the models was assessed (compared) with the measuring error while with the t test that was also used, intervals of confidence for issues can be projected and be used to differentiate models. Additionally, comparison between models was done by considering the flexibility of utilization. In a quest to comprise all relevant biological issues, sigmoidal functions were all amended. Richards, Stannard and Schnute models appeared to be fundamentally the same equation [4,5]. Viewing the tested cases, the growth data of caffeine was statistically explained by the Modified Gompertz equation. The important growth curve issues are the lag time, maximum specific growth rate (μ_{max}) and asymptotic value. During secondary models, maximum specific growth rate (μ_{max}) may be used to investigate the impacts of product on growth rate, substrate, pH and temperature.

Empirical and mechanistic properties are features that most bacterial growth models lie between them, however, the possibility of these two categories to occur in reality side by side is anticipated [6]. In this work, we present for the first time the applicability of the Huang model [6]. In this study, we show for the first time the applicability of the Huang model in modelling the inhibitory effect of SiO$_2$-coated zero-valent iron/palladium bimetallic nanoparticles (SiO$_2$-nZVI/Pd) reductant on *Pseudomonas putida* as the biocatalyst for 2,2',4,4'-tetrabromodiphenyl ether degradation.

Fitting of the Data

Fitting of the bacterial growth curve using various growth models (Table 1) was carried out using the Curve expert professional software (version 1.6) by nonlinear regression using the Marquardt algorithm. Modelling is done after converting data to logarithmic values. The μ_{max} of estimation was carried out by the steepest ascent rifle of the curve while the crossing of this line with the x-axis is an estimation of λ. The highest growth was chosen for the modelling exercise.

Table 1. Growth models used in this study.

<table>
<thead>
<tr>
<th>model</th>
<th>p</th>
<th>Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modified Logistic</td>
<td>3</td>
<td>$y = \frac{A}{1 + \exp \left(\frac{\mu_{\text{max}}}{A} (\lambda - t) + 2\right)}$</td>
</tr>
<tr>
<td>Modified Gompertz</td>
<td>3</td>
<td>$y = A \exp \left(\frac{\mu_{\text{max}}}{A} (\lambda - t) + 1\right) \right)$</td>
</tr>
<tr>
<td>Modified Richards</td>
<td>4</td>
<td>$y = A \left(1 + \exp(t + 1) \exp \left(\frac{\mu_{\text{max}}}{A} (\lambda - t)\right)\right)$</td>
</tr>
<tr>
<td>Modified Schnute</td>
<td>4</td>
<td>$y = \frac{\mu_{\text{max}}(1-\beta)}{\alpha} \left[1 - \beta \exp(\alpha x + 1 - \beta - \alpha)\right]^{-\frac{1}{\beta}}$</td>
</tr>
<tr>
<td>Baranyi-Roberts</td>
<td>4</td>
<td>$y = A + \mu_{\text{avg}} x + \frac{1}{\mu_{\text{avg}}} \ln \left{ e^{\beta x} + e^{\beta y} - e^{\beta y} e^{\beta x} \right}$</td>
</tr>
<tr>
<td>Von Bertalanfyy</td>
<td>3</td>
<td>$y = A + \mu_{\text{avg}} x + \left[e^{\beta x} \exp \left(e^{\beta x}\right)\right] \left[1 + e^{\beta x}\right]^{-\frac{1}{\beta}}$</td>
</tr>
<tr>
<td>Huang</td>
<td>4</td>
<td>$y = y_{\text{max}} - \ln \left{ e^{A + \mu_{\text{max}} - A} - e^{-\mu_{\text{max}} B(x)} \right}$</td>
</tr>
<tr>
<td>Buchanan</td>
<td>3</td>
<td>$y = A + \frac{B(x)}{t}$, if $0 \leq A + B(x) < 1$</td>
</tr>
</tbody>
</table>

Note:
- A = *P. putida* growth lower asymptote;
- y_{max} = *P. putida* growth upper asymptote;
- μ_{max} = maximum specific *P. putida* growth rate;
- v = lag time
- e^{-} = exponent (2.718281828)
- t = sampling time

Materials and Methods

Data from fig 2a. from [12] was processed using the software Webplotdigitizer 2.5 [13] which digitizes the scanned figure and has been utilized by many researchers and acknowledged for its reliability [14,15].

Statistical Analysis

Statistical significant difference between the models was calculated through various methods including the adjusted coefficient of determination (R^2), accuracy factor (AF), bias factor (BF), root-mean-square error (RMSE) and corrected AICc (Akaike information criterion) as before [14].

- h_{cr} = a dimensionless parameter quantifying the initial physiological state of the reduction process. the lag time (h$^{-1}$) or (d$^{-1}$) can be calculated as $h_{\text{cr}} = \mu_{\text{max}}$.

- λ = temperature.
RESULTS AND DISCUSSION

All of the curves tested show visually acceptable fitting (Figs 2 to 8). Growth data should be converted to log unit before modelling is carried out. The best performance was the Huang model with the lowest value for RMSE, AICc and the highest value for adjusted R^2. The AF and BF values were also excellent for the model with their values were the closest to 1.0. The poorest performance was the Modified Richard model (Table 2). the coefficients for the Huang model are shown in Table 3.

Fig. 1. Replotted data on the effect of nZVI/Pd and SiO_2-nZVI/Pd nanoparticles on the log growth of _P. putida_ in MSM medium.

Fig. 2. The effect of nZVI/Pd and SiO_2-nZVI/Pd nanoparticles on the growth of _P. putida_ in MSM medium as modelled using the Huang model.

Fig. 3. The effect of nZVI/Pd and SiO_2-nZVI/Pd nanoparticles on the growth of _P. putida_ in MSM medium as modelled using the modified Gompertz model.

Fig. 4. The effect of nZVI/Pd and SiO_2-nZVI/Pd nanoparticles on the growth of _P. putida_ in MSM medium as modelled using the buchanan-3-phase model.

Fig. 5. The effect of nZVI/Pd and SiO_2-nZVI/Pd nanoparticles on the growth of _P. putida_ in MSM medium as modelled using the modified Richard model.

Fig. 6. The effect of nZVI/Pd and SiO_2-nZVI/Pd nanoparticles on the growth of _P. putida_ in MSM medium as modelled using the modified logistics model.
Fig. 7. The effect of nZVI/Pd and SiO$_2$-nZVI/Pd nanoparticles on the growth of
P. putida in MSM medium as modelled using the von Bertalanffy model.

Fig. 8. The effect of nZVI/Pd and SiO$_2$-nZVI/Pd nanoparticles on the growth of
P. putida in MSM medium as modelled using the Baranyi-Roberts model.

Table 2. Statistical tests for the various models utilized in modelling the
effect of nZVI/Pd and SiO$_2$-nZVI/Pd nanoparticles on the growth of
P. putida in MSM medium.

<table>
<thead>
<tr>
<th>Model</th>
<th>P RMSE</th>
<th>R^2</th>
<th>ndR^2</th>
<th>AF</th>
<th>BF</th>
<th>AH$_c$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Huang</td>
<td>4.007</td>
<td>0.99</td>
<td>0.99</td>
<td>1.00</td>
<td>1.00</td>
<td>-48.98</td>
</tr>
<tr>
<td>Baranyi-Roberts</td>
<td>4.12</td>
<td>0.98</td>
<td>0.97</td>
<td>1.01</td>
<td>1.00</td>
<td>-33.88</td>
</tr>
<tr>
<td>Modified Gompertz</td>
<td>3.14</td>
<td>0.97</td>
<td>0.95</td>
<td>1.01</td>
<td>1.00</td>
<td>-35.45</td>
</tr>
<tr>
<td>Buchanan-3 phase</td>
<td>3.08</td>
<td>0.99</td>
<td>0.99</td>
<td>1.01</td>
<td>1.00</td>
<td>-51.32</td>
</tr>
<tr>
<td>Modified Richards</td>
<td>4.08</td>
<td>0.99</td>
<td>0.98</td>
<td>1.01</td>
<td>1.00</td>
<td>-42.61</td>
</tr>
<tr>
<td>Modified Schnute</td>
<td>3.11</td>
<td>0.98</td>
<td>0.97</td>
<td>1.01</td>
<td>1.00</td>
<td>-35.10</td>
</tr>
<tr>
<td>Modified Logistics</td>
<td>3.04</td>
<td>0.97</td>
<td>0.96</td>
<td>1.01</td>
<td>1.00</td>
<td>-36.42</td>
</tr>
<tr>
<td>Von Bertalanffy</td>
<td>4.04</td>
<td>0.75</td>
<td>0.67</td>
<td>1.03</td>
<td>1.00</td>
<td>-12.78</td>
</tr>
</tbody>
</table>

Note: p is no. of parameter

The choice of the Buchanan as the best model is apt since the model is the simplest amongst the eight and it is a three-parameter model giving it a higher degree of freedom compared to four- or five-parameter models. This is important when a growth curve having a smaller number of points is used. In addition, all three parameters have biological meaning due to the highly mechanistic property of the model. The Buchanan three-phase model has been successfully used to model growth of bacteria (Abou-zeid et al., 2007; Baranyi, 1998; Caleb, Mahajan, Al-said, & Opara, 2013; Singh & Srivastava, 2014), algae [16] and worm [17].

Nonlinear regression of the Baranyi-Roberts model could be problematic in some cases as it is rather sensitive to the number and distribution of data points (Buchanan et al., 1997; Baranyi, 1997). Buchanan et al. (1997) developed a simpler three-phase linear model to overcome this problem, the assumptions of the Buchanan model were as follows:

(i) That the specific growth rate is equal to zero during the lag phase,
(ii) The logarithm of the bacterial cells increases linearly with respect to time during the exponential phase and
(iii) The specific growth rate is zero during the stationary phase.

These assumptions can be expressed as follows:

lag phase:

$$n_t = n_0$$

for $t \leq t_{lag}$,

Exponential growth phase:

$$n_t = n_0 + \mu (t - t_{lag})$$

for $t_{lag} < t < t_{max}$,

Stationary phase:

$$n_t = n_{max}$$

for $t \geq t_{max}$,

Where $n_0 = \log$ of initial population density (optical density) or bacterial cell number (CFU/ml); $n_t = \log$ population density (optical density) or bacterial cell number (CFU/ml) at time t; $n_{max} = \log$ of the maximal population density (optical density) or bacterial cell number (CFU/ml); $t =$ elapsed time (h); $t_{max} = $ time (h) when the maximum population density (optical density) or bacterial cell number (CFU/ml) is reached; $t_{lag} = $ time (h) at the end of the lag phase and $\mu = $ specific growth rate (log (CFU/ml)/h).
The Buchanan model greatest advantage is its straightforwardness. Additionally, it supplies an approximation to the mathematical means microbiologists have usually used to calculate growth kinetic graphically (Buchanan et al., 1997). Its disadvantage include the fact that it could only fit growth curves having an abrupt transition from the lag phase to exponential phase [18].

It has been suggested that when a three-parameter model is sufficient to describe the data, experts recommend over a four-parameter model given that the three-parameter model is much simpler and as a consequence much easier to use and solution is more stable considering that the parameters are much less correlated. On top of that, every time a three-parameter model is employed, the estimates have more degrees of freedom, and this can be crucial every time a growth curve or generation curve with a small number of measured points is employed. In addition, it is essential that all three parameters may be given a biological interpretation.

Table 3. Growth coefficients as modelled using the Huang model.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Control (no particle)</th>
<th>0.5 g/L SiO₂-nZVI/Pd</th>
<th>1.0 g/L SiO₂-nZVI/Pd</th>
<th>0.5 g/L nZVI/Pd</th>
<th>1.0 g/L nZVI/Pd</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>95% CI</td>
<td>Value</td>
<td>95% CI</td>
<td>Value</td>
<td>95% CI</td>
</tr>
<tr>
<td>lag (h)</td>
<td>2.26</td>
<td>-0.72 to 5.24</td>
<td>0.794 to 5.52</td>
<td>9.485 to 20.34</td>
<td>9.795 to 20.34</td>
</tr>
<tr>
<td>yMax</td>
<td>1.23×10⁹</td>
<td>1.48×10⁹</td>
<td>1.20×10⁹</td>
<td>1.06×10⁹</td>
<td>1.43×10⁹</td>
</tr>
<tr>
<td>µMax</td>
<td>0.08</td>
<td>0.091</td>
<td>0.073</td>
<td>0.088</td>
<td>0.076</td>
</tr>
</tbody>
</table>

In general, for nonlinear regression, overlapping of the 95% confidence intervals indicate no significant differences while nonoverlap confidence interval indicates the opposite [19,20]. Compared with control which was 2.26 h, lag phases of P. putida cell were 4 h (0.5 g L⁻¹ of SiO₂-nZVI/Pd), 7.655 h (1.0 g L⁻¹ of SiO₂-nZVI/Pd), 11.76 h (0.5 g L⁻¹ of nZVI/Pd) and 22.03 h (1.0 g L⁻¹ of nZVI/Pd) respectively, which were longer than that of control, indicating the nanoparticles prolonged the exponential phase of cell growth. Moreover, in comparing the maximum growth ymax, which was 1.23×10⁹, there is decrease in the P. putida growth, i.e 1.20×10⁹ (0.5 g L⁻¹ of SiO₂-nZVI/Pd), 1.06×10⁹ (1.0 g L⁻¹ of SiO₂-nZVI/Pd), 1.04×10⁹ (0.5 g L⁻¹ of nZVI/Pd) and 8.59×10⁸ (1.0 g L⁻¹ of nZVI/Pd) respectively, with more decrease in growth at the P. putida growth with nZVI/Pd than SiO₂-nZVI/Pd. On the other hand, when comparing the µMax, the control has a value of 0.08 while 0.073, 0.089 and 0.086 are values at bacterial concentration of (0.5 g L⁻¹ of SiO₂-nZVI/Pd), (1.0 g L⁻¹ of SiO₂-nZVI/Pd), (0.5 g L⁻¹ of nZVI/Pd) and (1.0 g L⁻¹ of nZVI/Pd) respectively, indicating the specific growth rate decreases with both 0.5 g L⁻¹ of SiO₂-nZVI/Pd and 1.0 g L⁻¹ of SiO₂-nZVI/Pd and increases with 0.5 g L⁻¹ of
nZVI/Pd and 1.0 g L\(^{-1}\) of nZVI/Pd. It is clear from the results that coating of SiO\(_2\) on nZVI/Pd might drastically decrease the toxicity to \(P.\putida\) cells.

Parameters obtained from the fitting exercise were maximum growth rate (\(\mu_{\text{max}}\)), lag time (\(\lambda\)) and maximal growth (\(\lambda_{\text{max}}\)). The three biologically meaningful coefficients can be later used for secondary modelling using model such as the two-parameter Monod model or other more complex models “secondary models” such as Haldane, Aiba, Yano and others. These mechanistic models are used in basic research and are aimed to reach a better understanding of the physical, chemical and biological processes that lead to the growth profile seen. All other things being equal, mechanistic models are more powerful since they tell you about the underlying processes driving patterns. They are more likely to work correctly when extrapolating beyond the observed conditions [21].

CONCLUSION

In conclusion, the Buchanan-3-phase model was the best model based on statistical tests such as corrected AICc (Akaike information criterion), bias factor (BF), adjusted coefficient of determination (\(R^2\)) and root-mean-square error (RMSE). The results show that the lag phases of \(P.\putida\) cells were longer than that of control, indicating the nanoparticles prolonged the exponential phase of cell growth. Moreover, in comparing the maximum growth rate (\(\mu_{\text{max}}\)), lag time (\(\lambda\)) and maximal growth (\(\lambda_{\text{max}}\)), a decrease in growth of \(P.\putida\) occurs more with nZVI/Pd than SiO\(_2\)-nZVI/Pd. On the other hand, when comparing the \(\mu_{\text{max}}\), the specific growth rate decreases with both 0.5 g L\(^{-1}\) of SiO\(_2\)-nZVI/Pd and 1.0 g L\(^{-1}\) of SiO\(_2\)-nZVI/Pd and increases with 0.5 g L\(^{-1}\) of nZVI/Pd and 1.0 g L\(^{-1}\) of nZVI/Pd. It is clear from the results that coating of SiO\(_2\) on nZVI/Pd might drastically decrease the toxicity to \(P.\putida\) cells. The use of bacterial growth models to obtained exact growth rate is advantageous for further development of secondary model and this work has revealed the capability of such models.

ACKNOWLEDGEMENT

The authors wish to acknowledge the hard work of their academic mentor, Professor Dr. Mohd Yunus Abd Shukor and Petroleum Technology Development Fund (PTDF) and the Tertiary Education Trust Fund (TETFund) for funding their researches.

REFERENCES