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INTRODUCTION 
 
A novel corona virus, 2019-nCoV, was identified as the cause 
of a respiratory disease outbreak that originated in Wuhan, 
China, and spread to several other countries around the world 
[1]. As the global death toll of COVID-19 continues to rise, 
there is an increasing awareness that SARS-COV-2 mortality is 
inequitably distributed among vulnerable populations. Such 
vulnerable groups include the elderly, densely populated, low 
socio-economic status, refugees and minorities. All groups are 
vulnerable. The rates of these classes are higher, placing them at 
a high risk of infection and for serious disease consequences 
[2,3]. At first, modelling studies centered on the Chinese 

epidemic, and in particular on the epidemic dynamics in Wuhan 
City and in Hubei Province[4]. Much effort has been made at 
this early stage to evaluate surveillance data from China in 
order to obtain parameter estimates such as basic reproduction 
number (R0), case fatality rate and incubation period [5]. For the 
first attempts at Susceptible-Exposed-Infectious-Recovered 
(SEIR) style dynamic models, parameter estimates were 
'borrowed' from what was known about other corona viruses 
(SARS-CoV and MERS-CoV)  and/or obtained by fitting the 
models to the monitoring data [6]. 

 
The growth curve of viruses and microorganisms on 

substrates such as nutrients or other organisms, including 
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 ABSTRACT 
In this paper, we present different growth models such as Von Bertalanffy, Baranyi-Roberts, 
Morgan-Mercer-Flodin (MMF), modified Richards, modified Gompertz, modified Logistics 
and Huang in fitting and analyzing the epidemic trend of COVID-19 in the form of total 
number of infection cases of SARS-CoV-2 in Brazil as of 15th of July 2020. The MMF model 
was found to be the best model with the highest adjusted R2 value with the lowest RMSE value. 
The Accuracy and Bias Factors values were close to unity (1.0). The parameters obtained from 
the MMF model include maximum growth rate (log) of 0.026  (95% CI from 0.024 to 0.028), 
curve constant (δ) that affects the inflection point of 1.094 (95% CI from 1.024 to 1.165) and 
maximal total number of cases (ymax) of 66,527,316 (95% CI from 35,156,044 to 143,548,943). 
The MMF predicted that the total number of cases for Brazil on the coming 15th of August and 
15th of September 2020 will be 2,993,850 (95% CI of 3,407,196 to 2,630,649) and 4,676,829 
(95% CI of 5,553,936 to 3,938,240), respectively. The predictive ability of the model utilized in 
this study is a powerful tool for epidemiologist to monitor and assess the severity of COVID-19 
in Brazil in months to come. However, as with any other model, these values need to be taken 
with caution due to the unpredictability of the COVID-19 situation locally and globally. 
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humans, typically followed a sigmoidal pattern, beginning with 
the lag section just after t = 0, preceded by the logarithmic 
segment and then entering the stationary period and eventually 
heading into the period of death or decreasing growth. There are 
various sigmoidal functions to define the growth curve of 
organisms, such as Von Bertalanffy, Baranyi-Roberts, modified 
Richards, modified Gompertz and modified Logistics [7] 
including Morgan-Mercer-Flodin (MMF) [8].  The growth 
curve valuable parameters include the maximum specific 
growth rate (μm), the lag period and the asymptotic values.  
 

COVID-19 pandemic analyzes can be performed using 
statistical models, including theoretical, quantitative and 
simulation. For the analysis of the COVID-19 pandemic [9], 
strong predictive ability was employed models, such as updated 
Gompertz and Bertalanffy and logistics. The purpose of the 
paper is to test many available models like: "Logistic" (Ricker 
1979[10]; [10], "Baranyi-Roberts" [11], "Von Bertalanffy"[12] ; 
[13] and "Margan" [14], "Baranyi Robert" [11]; [15] [11]" 
Morgan et al. and three-phase (Buchan 1993) recently Huang 
model [16] in fitting and analyzing the epidemic trend of 
COVID-19 in the form of total infection case of SARS-CoV-2 
in Brazil as of 15th of July 2020. 
 
MATERIALS AND METHODS 
 
Data were collected from Worldommeter (Worldometer 2020) 
for the total number of cases infected from Brazil as of 15 July 
2020. Data were first converted to logarithmic values, and the 
time after first infected was utilized for time zero. 
  
Statistical analysis 
Statistical significant difference between the models was 
calculated through various methods including the adjusted 
coefficient of determination (R2), accuracy factor (AF), bias 
factor (BF), Root-Mean-Square Error (RMSE) and corrected 
AICc (Akaike Information Criterion) as before [17]. 
The RMSE was calculated according to Eq. (1), where Pdi are 
the values predicted by the model and Obi are the experimental 
data, n is the number of experimental data, and p is the number 
of parameters of the assessed model.  
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The adjusted R2 is used to calculate the quality of nonlinear 
models according to the formula where RMS is Residual Mean 
Square and Sy

2 is the total variance of the y-variable ad 
calculated as follows;  
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The Akaike information criterion (AIC) [18]  was calculated as 
follows; 
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Where n is the number of data points and p is the number of 
parameters of the model. The model with the smallest AICc 
value is highly likely correct [19]. 

Accuracy Factor (AF) and Bias Factor (BF) as suggested by 
Ross [20] were calculated as follows; 
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FITTING OF THE DATA 
 
Fitting of the bacterial growth curve using various growth 
models (Table 1) was carried out using GraphPad Prism (v 8.0 
trial version). 
 
Table 1. Models used in this study. 
 

Model p Equation 
 
Modified Logistic 
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Morgan-Mercer-
Flodin (MMF) 
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Baranyi-Roberts 
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Buchanan  
Three-phase 
linear model 

 
 
3 

 

 
 
Note: 
A= maximum no of cases lower asymptote; 
ymax= maximum no of cases upper asymptote; 
µm= maximum specific growth rate; 
v= affects near which asymptote maximum no of cases occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = time after first case is reported 
α,β,δ and k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the 
reduction process. The lag time (h-1) or (d-1) can be calculated as h0=µm 
When data at time zero is 0 (Day after 1st case log 1=0 for COVID-19) the MMF 
is reduced to a 3-parameter model 

Y = A, IF X < LAG 
Y=A + K(X ̶ λ), IF λ ≤ X ≥ XMAX 

Y = YMAX, IF X ≥ XMAX 
 



JEMAT, 2020, Vol 8, No 1, 16-20 
 

- 18 - 
 

RESULTS AND DISCUSSION 
 
The coefficient of these models are displayed in (Fig 1 to 8), 
their values determine the shape of the curves. All the curves 
tested show visually acceptable fitting with the exception of the 
Buchanan-3-phase model (Figs 3). The best performance was 
the MMF model (fig 2) with the lowest value for RMSE, AICc 
and the highest value for adjusted R2. The AF and BF values 
were also excellent for the model with their values which were 
the closest to 1.0. The worst performance among them was seen 
in fig 3 Buchnan-3- phase model (Table 2). This model proved 
to be unfit for data due to high residual variance and high 
nonlinearity values[21].The coefficients for the MMF model are 
shown in Table 3, a good agreement between experimental data 
and predicted values was obtained. 
 

The fitness order to actual data according to R2 values as 
well as MSE of all models explained the Total Number of 
COVID-19 Cases for Brazil in the following order; MMF˃ von 
Bertalanffy ˃ modified Gompertz ˃ modified Richards  ˃ 
Baranyi-Roberts  ˃ Huang ˃ modified Logistics. Thus, MMF 
was determined to be the best fitted models and Buchanan-3-
phase the worst[22]. 
 

 
Fig. 1. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the von Bertalanffy model. 
 

 
Fig. 2. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the MMF model. 
 
 
 
 

 
 
 
 

 
Fig. 3. Total no of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the Buchanan-3-phase model. 
 
 

 
Fig.4. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the modified Gompertz model. 
 

 
Fig. 5. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the Baranyi-Roberts model. 
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Fig. 6. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the Huang model. 
 
 

 
Fig. 7. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the modified Richard model. 
 
 

 
Fig. 8. Total number of SARS-CoV-2 cases in Brazil as of 15th of July 2020 as 
modelled using the modified logistics model. 
 
 
 
 
 
 
 
 
 

 
Table 2. Statistical tests for the various models utilized in modelling the total no 
of SARS-CoV-2 cases in Brazil as of 15th of July 2020. 
 
Model p RMSE     R2 adR2 AF BF AICc 
Huang 4 0.330 0.970 0.968 1.046 0.99 -95.73 
Baranyi-Roberts 4 0.330 0.971 0.968 1.046 0.99 -95.74 
modified Gompertz 3 0.279 0.978 0.976 1.062 1.00 -115.73 
Buchanan-3-phase 3 0.433 0.948 0.945 1.062 0.99 -72.01 
modified Richards 4 0.282 0.978 0.976 1.034 1.00 -111.25 
MMF 3 0.116 0.996 0.996 1.013 1.00 -203.74 
modified Logistics 3 0.382 0.956 0.953 1.045 0.99 -84.45 
von Bertalanffy 3 0.232 0.985 0.984 1.029 1.00 -134.16 
Note: p is no of parameter 
         
        
        
Table 3. Coefficients as modelled using the MMF model. 
 
Parameters Value 95% Confidence interval 
µm 0.026 0.024 to 0.028 
δ 1.094 1.024 to 1.165 
ymax  66,527,316 35,156,044 to 143,548,943 

 
Table 4. Predictions of COVID-19 pandemic for Brazil based on the 
MMF model. 
 
Prediction Mean 95% Confidence interval 
Maximum number of total cases 
by the end of COVID-19 66,527,316 

 
35,156,044 

 

 
to 143,548,943 

 
Maximum number of total cases 
by 15th of August 2020 

2,993,850 
 

3,407,196 
 
to 2,630,649 

 
Maximum number of total cases 
by 15th of September 2020 4,676,829 

 
5,553,936 

 

 
to 3,938,240 

 
 

The parameters obtained from the MMF model include 
maximum growth rate (log) of 0.026  (95% CI from 0.024 to 
0.028), curve constant (δ) that affects the inflection point of 
1.094  (95% CI from 1.024 to 1.165) and maximal total 
number of cases (ymax) of 66,527,316 (95% CI from 35,156,044 
to 143,548,943). The MMF model predicted that COVID-19 
will end about 720 days (95% CI of 498 to 942) days from 15th 
of July 2020 based on the lower bound of the 95% CI from the 
calculated maximum number of total cases (ymax) while the 
mean and upper 95% CI bound values failed to be predicted by 
the software for their number of days. The MMF predicted that 
the total number of cases for Brazil on the coming 15th of 
August and 15th of September 2020 will be 2,993,850 (95% CI 
of 3,407,196 to 2,630,649) and 4,676,829 (95% CI of 5,553,936 
to 3,938,240), respectively.This prediction has to be taken with 
caution since the model failed to predict the number of days for 
the mean and upper 95% CI values and the number of days for 
COVID-19 to end may be much larger.  
 

The MMF was initially developed as a model to describe 
nutrient-response relationships in a variety of organisms 
especially higher ones [8]. It has been utilized to model a 
variety of growth rates of animals including sheep, rabbit, horse 
and even microorganisms [23–27], palm oil’s yield [28], 
ethanol [29] and even in economics [30]. If the predicted data is 
right, this will depend on case by case and includes lockdown 
effectiveness. Viral mutations that increase the infectivity rate 
of the virus will change the course of the model outcome. 
Probably, the models should be revisited every few months to 
restructure the data and have a stronger forecasting ability.  
 
 
 
 
 
 
 

0

1

2

3

4

5

6

7

0 25 50 75 100 125
Day after 1st case

Lo
g 

no
 o

f c
as

es

EXP

HG

0

1

2

3

4

5

6

7

0 25 50 75 100 125 150
Day after 1st case

Lo
g 

no
 o

f c
as

es

EXP

MR

0

1

2

3

4

5

6

7

0 25 50 75 100 125 150
Day after 1st case

Lo
g 

no
 o

f c
as

es

EXP

ML



JEMAT, 2020, Vol 8, No 1, 16-20 
 

- 20 - 
 

CONCLUSION 
 
In conclusion, the MMF model was the best model and first in 
modelling the number of total infected case of Covid-19 based 
on statistical tests such as corrected AICc (Akaike Information 
Criterion), bias factor (BF), adjusted coefficient of 
determination (R2) and root-mean-square error (RMSE). 
Parameters obtained from the fitting exercise were maximum 
growth rate (µm), the curve constants (δ) and maximal total 
number of cases (Ymax). The model predicts the total number of 
cases in Brazil and varies according to different numbers of 
factors. Notwithstanding this, an important method for 
epidemiologists in this study to track and determine the extent 
of COVID-19 in Brazil in the upcoming months is the 
predictive ability of a sample. 
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