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INTRODUCTION 
 
Acrylamide is the foundation for the polymer, polyacrylamide 
(PAM). The production of commercial polyacrylamide may very 
well be contaminated with acrylamide, its toxic monomer. 
Consequently, suggestions have already been focused on the 
quantity of acrylamide that is contained in polyacrylamide. As an 
example, a restriction of 500 ppm in polyacrylamide 
formulations is utilized in agriculture or water treatment method. 
Some other uses of acrylamide include as sewage-flocculating 
agent [1], as adhesives, and in tunnels and dams stabilization [2]. 
Incidentally, one of the identified cases of acrylamide toxicity is 
due to its application for stabilizing of tunnel in Sweden. In 
Hallandas village, Sweden, there is a case of cows and fish death 
caused by the acrylamide pollution resulted by the acrylamide 
that pumped to the surrounding soil [3]. 
 
 In our country, Malaysia, large amounts of polyacrylamide 
are used annually for drinking water treatment.  For instance, 
Kuching Water Board uses approximately 800kgs of 
polyacrylamide additive (Superfloc and Prestol 2530) yearly in 
the Sarawak state [4]. In agriculture field, acrylamide is 
introduced directly into agricultural soil via glyphosate 
application, where 20-30% polyacrylamide is added in 
commercial formulations as dispersing agent [5].  
 

 Research has shown that under environmental conditions, 
acrylamide is produced from polyacrylamide degradation and the 
half-life of acrylamide in soils and water bodies range from 
weeks to months [6]. In spite of well-known toxicity of 
acrylamide due to the acrylamide from the degradation of 
polyacrylamide and its presence as impurity in PAM, there is no 
investigation for acrylamide in the environment conducted by the 
Malaysian Department of Environment (DOE) and it is not part 
of the Interim National Quality Standards for Malaysia which 
listed maximum permit residual limits for aldrin, lindane, 
paraquat, chlordane, endosulfan and heptachlor.  
 

There is no acrylamide allowed to be present in drinking 
water by the US EPA Primary Drinking Water Standards whilst, 
for the 2003 World Health Organisation (WHO), the allowable 
residual limits of acrylamide for the drinking water quality are at 
maximum of 0.10 µg/l [7]. Acrylamide is used as the main resin 
component in laminated wood and also often use in the plastic 
and printing production and from such industries, acrylamide can 
be found abundance as high as 1000 mg/L in the waste water 
according to Rogacheva and Ignatov [8]. As acrylamide is a 
neurotoxicant, has some carcinogenic and teratogenic activities 
its presence in the environment is a hazard and its remediation 
must be sought [2,9–11].  
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 ABSTRACT 
Acrylamide has many chemical and environmental uses. The main or principle use of acrylamide 
is in the production of high molecular weight polyacrylamides with up to 99.9% of acrylamide is 
estimated used to produce polyacrylamide. Acrylamide, in the form of polyacrylamides are used 
as binders and retention supports for fibres and to retain pigments on paper fibres, to decrease 
soil erosion, in furrow irrigation systems and in the formulation for the herbicide glyphosate. 
Acrylamide is a neurotoxic agent and its pollution remains an important global awareness due to 
its acute toxicity. Due to its toxicity, the maximum permissible limit for acrylamide containing 
in drinking water of Malaysia is 0.0005 mg/L. Its uses, toxicity, pollution and bioremediation are 
the subject of this mini review.  
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Acrylamide 
The chemical formula of acrylamide is C3H5NO. Its other names 
include propenamide, acrylic amide, vinyl amide and 2-
propenamide. Acrylamide is a compound which is widely used 
in industry to make polymeric substance that is utilized in 
numerous items. In its polymeric form it is called 
polyacrylamide, and is nontoxic compared to its monomeric form  
[12]. It has many uses in our everyday life [13]. It exists in either 
liquid or crystalline forms. The solid pure form is colorless to 
white. Acrylamide is soluble in dimethyl ether, water, methanol, 
ethanol, but is insoluble in benzene and heptane.  The molecular 
mass of acrylamide is 71.08. its maximum solubility in water at 
30oC is 2155 g/L. Its boiling and melting points are 125oC and 
84.5oC, respectively at 1 atmospheric pressure [13]. The specific 
gravity of acrylamide at 30oC  is 1.122 g/cm3 [14]. 
 
Uses of acrylamide and polyacrylamide 
Since the last century, acrylamide and its analogues have been 
used for many chemical and environmental purposes. The main 
or principle use of acrylamide is in the production of high 
molecular weight polyacrylamides which are customized to 
construct various compounds with different physical and 
chemical properties to suit the industrial needed. Up to 99.9% of 
acrylamide is estimated used in the polyacrylamide manufacture 
in Europe Union. Acrylamide is often utilized in both industrial 
sectors and medical laboratories since it is extremely reactive and 
water soluble. In the production of paper and pulp, the polymeric 
forms i.e. polyacrylamides are utilized as retention supports and 
as binders for fibres and also to enhance the preservation of 
pigments on the fibres. Acrylamide is also utilized to lower the 
erosion of soil, which its usage has been increasing over the 
years. Polyacrylamides is added onto the irrigation system to 
avert the deterioration of agricultural furrows, which can reduce 
as much as 94% of furrow erosion.  [15]. 
 

In mines, great deal of acrylamide can be used on location 
to generate polyacrylamide gel which forms the grouting agent 
needed to seal mineshafts.  Polyacrylamides are utilized as 
flocculants to separate solids from aqueous solutions. 
Additionally it is utilized in the removal of commercial waste 
materials and in the purifying of water resources [16].  
Polyacrylamide permits a lot more concentrated sludge should 
they be utilized as dewatering or sludge conditioning materials 
and is more efficient than inorganic coagulants. The polymers 
form heavy aggregates when combining with particles and the 
resultant flocs rapidly settle out of solution as well as leaving a 
crystal-clear supernatant.  The higher the molecular weight of the 
cationic polyacrylamide used, the more effective the polymer is 
[17]. In water treatment process acrylamide remains in the 
supernatant after flocculation with polyacrylamides, as 
acrylamide has high-water solubility and it tends to be 
inefficiently absorbed by sludge or sediment and sludge. The 
degradation of polyacrylamide is minima as the polymer is 
recalcitrant and at best only 10% will be degraded per year 
through physicochemical and biological actions [18–24]. 
 

There is not any data concerning the use of acrylamide and 
polyacrylamide obtainable in Malaysia to date; even there exists 
a range of industries in Malaysia which use polyacrylamide. The 
industrial sectors which use by far the most polyacrylamide is in 
the treatment of waste water, paper, and pulp processing. golf 
courses in Malaysia uses polyacrylamide to strengthen the 
foundation of the man-made ponds. This is the main route or 
cause for the toxic contamination of subterranean water which 
has triggered a number of poisoning and problems of the nervous 
system. Numerous golfer, caddies, as well as inhabitants have 
been discovered to experience irritations, skin illnesses as well as 

other hypersensitive symptoms [2,9,13,25,26]. In Malaysia, 
glyphosate in the commercial form of Roundup© is used for the 
control of a wide range of broad-leaved weeds and grasses in 
agricultural estate crops such as rubber, oil palm and cocoa [27–
37] in the form of the glyphosate (Roundup™) formulation of 
which polyacrylamide is added as a dispersant and as a stabilizer 
(25-30% solutions). Estimated local usage gives rise to an 
estimated 2 million liters of polyacrylamide being dumped to the 
soil yearly and eventually runoffs into rivers and water bodies.  
 
 
Acrylamide as pollutant 
Industrially, acrylamide production uses a close system that 
allows very minimal pollution. This means that most of the 
pollution attributed to acrylamide comes from its uses in the 
mining, erosion control, tunneling works and agricultural sectors 
as herbicide’s formulation or in the stabilization of agricultural 
soils. Due to this, acrylamide presence in the environment 
continues to be detected and its presence is being reported 
frequently nowadays [38–49]. 
 

The low vapor pressure of acrylamide coupled with its high-
water solubility, makes it an uncommon source of air 
contaminant. Pollution of drinking-water by acrylamide is 
largely due to its use in the form of polyacrylamide flocculants 
of which acrylamide forms a significant residue [46]. Legislation 
has put a maximum acrylamide monomer in polyacrylamide for 
the use of potable water treatment at 0.05% (w/v) monomer. 
Acrylamide is stable in tap water for more than two months and 
will be present in drinking water. The recommended maximum 
permissible limit for drinking water for acrylamide in Malaysia 
is 0.0005 mg/L [50].  
 

In the agricultural sector where polyacrylamide is combined 
with the herbicide glyphosate as additive (25% to 30% solutions) 
is the source of acrylamide pollutant in agricultural soils and 
irrigation and drainage systems [18–24]. It has been 
demonstrated that glyphosate formulation can be more toxic than 
glyphosate alone. Roundup has been found to be thirty times 
more toxic to fish than the compound glyphosate itself [51]. The 
depolymerisation of polyacrylamide to acrylamide, according to 
Smith et al. studies ,is strongly affected by light [52].  
 
Toxicity of acrylamide 
Acrylamide is toxic to the nervous system, carcinogen in 
laboratory animals, and also suspected to be carcinogen in 
humans [25]. In mouse, it has been shown that acrylamide binds 
to the DNA and mouse protamine at the spermiogenic stages and 
is suggested to cause genetic damage [53]. Acrylamide causes 
peripheral neurotoxicity, prenatal lethality, mutagenicity, 
clastogenicity, endocrine-related tumors and male reproductive 
toxicity in rodents, [26]. Yang et al. show the potential 
mutagenicity of acrylamide on Salmonella strains TA100 and 
TA98 [54]. An increase in the incidence of bone marrow’s 
chromosomal aberrations is seen in mice exposed to acrylamide 
at dose of ≥ 50 mg/kg via intraperitoneal injection. Yet, in mice 
that subjected to acrylamide intraperitoneally at doses of up to 
125 mg/kg shows no significant increases in the chromosomal 
aberrations frequency in the lymphocytes [55].  
 

Acrylamide also affect male rat’s reproductive system 
through causing several histopathological lesions in the 
seminiferous tubules. Human exposed to acrylamide via 
breathing the dust or absorption via skin, experience burning 
feeling or rash upon contact. Human’s nervous system is affected 
which leads to weakness and numbness in the feet and hands, 
cause heavy sweating, imbalance and slurred tongue [25]. 
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Due to its high-water solubility, acrylamide is absorbed 
through the lungs, intestinal tract, the placental barrier and the 
skin. A biomarker for acrylamide exposure is hemoglobin 
adducts which have been used to estimate the internal dose in the 
general population exposed to acrylamide though their 
occupations.  At an acrylamide manufacturing plant, 41 workers 
exhibiting neurotoxicity index that are correlated with the 
acrylamide biomarker hemoglobin adducts [56].  In a China 
acrylamide manufacturing factory, hemoglobin adduct levels 
have been found to increase indicating a very high exposure to 
acrylamide [57]. In Japan, several cases of acute acrylamide 
poisoning due to a contamination of the water supply with 
acrylamide has been reported. Igisu et al. [58] reported  that in a 
well-water where the waters are contaminated from a grouting 
operation 2.5 meters resulted in acrylamide levels as high as 400 
mg acrylamide/L. Five people that ingested the contaminated 
water well experienced acrylamide toxicity such as confusion, 
memory disturbances,  disorientation, hallucinations and truncal 
ataxia.  
 

Acrylamide enters body via inhalation with contaminated 
air or consumed with contaminated food or water. Besides that, 
it also can be absorbed through unbroken skin, lungs and mucous 
membranes and the gastrointestinal tract. But it will not remain 
in the body because in will be removed with urine [39,44,45]. 
The acrylamide action’s mechanism is greatly enhanced through 
its extensive allocation in body fluids and fairly even distribution 
throughout body organs. Even though acrylamide can be 
metabolized rapidly and excreted following exposure, the reason 
why it can possess hazards to workers and human is because of 
its high reactivity with proteins [59]. 
 
 
Degradation of polyacrylamide to acrylamide 
Specific usages of acrylamide polymers and copolymers include 
as soil conditioners, flocculants in the dewatering and thickening 
of sludge, as bone cement binder and in sugar refinery [19,22,23]. 
It is estimated that in the United States alone a total of 25-50 
million kilograms of polymer are utilized yearly. When 
acrylamide is released to the environment, depending on where 
the process occurs, acrylamide undergoes several of the 
degradation and removal processes producing the toxic 
acrylamide [48].  
 
Bioremediation of acrylamide 
Bioremediation is the use of plants or biologically active agents, 
microorganisms as a way to break down, sequester and conjugate 
ecological pollutants [60–70]. Usually the use of plants for this 
process is called phytoremediation. Certain microorganisms 
known to have the ability to degrade contaminants in the 
environment. Advantages of the bioremediation application 
include the easiness and timing of application and its ability to 
target specific pollutants. Besides that, bioremediation also can 
decrease sludge volume and ecological hazard. Even though the 
bioremediation is considered a new technology presently, the 
microorganisms have been used for no less than 100 years for the 
treatment and conversion of waste products.  
 

There are three types of bioremediation predominant in the 
industry today; first of all is natural attenuation; secondly is 
biostimulation and the last one is called bioaugmentation. Natural 
attenuation is the simplest method of bioremediation. For this 
method, monitoring of the contaminated site for determining the 
levels of pollutants as a passive way to ensure regulators that the 
natural removal processes are ongoing. In biostimulation, an 
alteration to the site in the form of adding nutrients is required in 
order to boost the local population of the microorganism leading 

to an effective remediation of the contaminants. Nutrients that are 
usually added include nitrogen, phosphorus as well as trace 
elements. In addition, the adjustment of the soil’s pH maybe 
necessary to make the site’s pH suitable for the growth of the 
bioremediating microorganisms [60–70]. Lastly, 
bioaugmentation is another bioremediation approach where the 
absence of native communities due to the overwhelming 
presence of the hazardous contaminants is augmented or fortified 
with nonnative microorganisms to kick start the bioremediation 
process before local microorganisms that are accustomed to the 
soils conditions take over [60,71–76]. 
 

Acrylamide may contaminate groundwater as it is extremely 
mobile in aqueous environments. Acrylamide has a lower 
degradation rate in sandy soils than clay soils. Despite this, 
acrylamide degradation is water is considerably slower than soil 
[43]. Many species of microorganisms have the ability to degrade 
acrylamide under dark or light, aerobic or anaerobic conditions. 
To date numerous acrylamide-degrading microorganisms have 
been isolated and characterized [4,77–92] and some of the 
characteristics of these microorganisms is shown in Table 1. 
Many of these microorganisms can degrade aliphatic nitriles and 
amides and a majority found difficulty in degrading aromatic 
amides or nitriles.  
 
Table 1. Acrylamide-degrading microorganisms. 
 
Microorganism Optimal 

conditions for 
growth 

Other substrates Ref. 

Pseudomonas 
putida 

pH 7.0 and 25 °C 
 

Acetonitrile, glutaronitrile, 
butyronitrile, propionitrile,  
isobutyronitrile, methacrylonitrile, 
valeronitrile, succinonitrile, and amides 
such as butyramide, acetamide,  
propionamide, isobutyramide, 
succinamide and methacrylamide 
 

[77] 

Cupriavidus 
oxalaticus  

pH 7.0 and 30 °C 
 

Toerant to 60 mM (4,264 mg/L) 
acrylamide. Other amides such as 
formamide, acetamide, isobutyramide 
and urea (aliphatic amide), support 
growth while there was no activity on 
benzamide and nicotinamide (aromatic 
amide) 
 

[92] 

Rhodococcus 
sp. 

pH 7.0 and 30°C Acrylamide (62.8 mM or 4,463 mg/L) 
was supplied as 
the sole growth substrate. Can grow on 
aliphatic amides such as acetamide, 
butyramide, propionamide, and 
isobutyramide 
 

[78] 

Klebsiella 
pneumoniae 

pH 7.5 and 28 oC aliphatic nitriles containing 1 to 5 
carbon atoms including acrylonitrile 
and aromatic nitriles such as 
benzonitrile as the sole source of 
nitrogen and  
propionamide and acetamide as the sole 
source of both nitrogen and carbon 
 

[93] 

Paracoccus sp. pH 7.0 30 oC acetonitrile, aceylonitrile, propionitrile, 
valeronitrile, benzonitrile and the 
amides dimethylformamide, N,N-
dimethylacetamide, N,N-
dimethylfulfoxide, dimethylamine, 
methylamine, methanolamide, 
ethanolamide, acetamide, 
propionamide, valeramide, formamide, 
valeramide and acrylamide supported 
the growth of 
the culture with the release of 
ammonia, while aromatic amides did 
not support the growth of Paracoccus 
sp. 

[94] 
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Table 1. Acrylamide-degrading microorganisms-continue. 
 
Klebsiella 
pneumoniae 
NCTR 1 

pH 7.2 and 30 oC aliphatic amides such as acetamide, 
butyramide,  methacrylamide, 
propionamide and succinamide) as the 
sole nitrogen source. Amidase enzyme 
is a monomer with an apparent 
molecular weight of 62,000. The 
temperature and pH for optimal 
enzyme activity were 65 °C and 7.0, 
respectively.  
 

[79] 

Rhodotorula 
sp. strain 
MBH23 KCTC 
11960BP 

between 27 and 
30 °C and 

between pH 6.0 
and 8.0 

Tolerant acrylamide concentration is 
1500 mg/L. Amides 
such as nicotinamide, 2-
chloroacetamide, methacrylamide, 
propionamide and acetamide 
supported growth as nitrogen source. 
Growth inhibited by mercury, 
chromium, and cadmium 
 

[95] 

Pseudomonas 
sp. strain 
DRYJ7 

At 15 oC and 
between pH 7.5 

and 8.5. 
 

Antarctic bacterium. Tolerant to 2500 
mg/L acrylamide.  

[4] 

Bacillus cereus 
strain DRY135 

between 25 and 
30°C and between 

pH 6.8 and 7.0 

Tolerable acrylamide concentration is 
1500 mg/L. Can grow on other amides 
such as nicotinamide, methacrylamide, 
propionamide, acetamide and urea. 
Cannot grow on 2-chloroacetamide. 
  

[4] 

Burkholderia 
sp. strain 
DR.Y27 

between pH 6.0 
and 8.0. and at 

30°C 

Can grow on aliphatic amides such as 
2-chloroacetamide, nicotinamide, 
methacrylamide, propionamide, 
acetamide and urea  

[96] 
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