

JOURNAL OF ENVIRONMENTAL MICROBIOLOGY AND TOXICOLOGY

Website: http://journal.hibiscuspublisher.com

Short communication

Antibacterial Activities of Agave angustifolia and Pittosporum ferrugineum

Ainil Farhan, M. U., Lee, P.C., How, S.E. and Jualang, A.G.,

School of Science and Technology, University Malaysia Sabah, Jalan UMS, 88999 Kota Kinabalu, Sabah, Malaysia.

Corresponding author: Jualang Azlan Gansau, Assoc. Prof. Dr., ; Tel No: +6 088 320000 5729; Fax No: +6 088 435324; email: azlanajg@ums.edu.my

HISTORY

Received: 30 September 2013 Recieved in revised form: 27 November 2013 Accepted: 26 December 2013 Available online: 3 January 2014

KEYWORD

Agave angustifolia Pittosporum ferrugineum Antibacteria Extraction

Abstract

Methanolic extracts and liquid – liquid partition extracts of Agave angustifolia and Pittosporum ferrugineum were tested against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Streptococcus pneumoniae (S. pneumoniae), Enterobacter aerogenes (E. aerogenes), Bacillus cereus (B. cereus), Pseudomonas aeruginosa (P. aeruginosa) and Salmonella typhi (S. typhi) for their antibacterial activity. Ethyl acetate extract (EAE) of Agave angustifolia exhibited strongest activities against S. aureus, S. pneumoniae, B. cereus, P. aeruginosa and S. typhi, while aqueous extract (AQE) of Pittosporum ferrugineum exhibited strongest antibacterial activities against S. aureus, S. pneumoniae, B. cereus, and P. aeruginosa.

INTRODUCTION

The history of natural product as antibacterial agents can be traced back during the end of World War II, where microbial derived secondary metabolites such as penicillin and streptomycin were being the notable examples known to the West [1]. Plants generally have bioactive compounds that serve mainly as self defense [2.3]. These bioactive compounds, also known as secondary metabolites or phytocomponents, were reported to possess therapeutic effects and were being manipulated by many researchers in producing useful drugs. Tropical rainforest is a vast reservoir of potential drug species as it provides valuable compounds and the potential for developing newer compounds is enormous [4].

Phytocomponents such as cardiac glycosides [5], terpenes [6], saponin [7] and flavonoids [5,8,9] were found in numerous species of Agave which exhibited biological activities as antioxidants [9], anti–inflammatory [10], and anticancer [11]. Various phytocomponents including carotenoids, sesquiterpenes glycosides, farnesyl glycosides, triterpenoid saponins and their derivatives were also hugely distributed among species in the genus Pittosporum, which contributed in activities such as cytotoxic and molluscidal [12]. In this study the antibacterial activity of Agave angustifolia and Pittosporum ferrugineum extracts against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), Streptococcus pneumoniae (S. pneumoniae), Enterobacter aerogenes (E. aerogenes), Bacillus cereus (B.

cereus), Pseudomonas aeruginosa (P. aeruginosa) and Salmonella typhi (S. typhi) were reported.

MATERIALS AND METHODS

Plant Materials

Agave angustifolia was collected in the compounds of Universiti Malayasia Sabah, Kota Kinabalu; while Pittosporum ferrugineum was collected from Ranau, Sabah. Plant samples were dried with the temperature not exceeding 50°C and were then grinded. Powdered samples were stored in air – tight containers in dry places. Specimen for herbarium was also prepared and selected plant samples were deposited at Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah.

Extracts preparation

For crude methanolic extracts (ME), powdered samples were soaked with absolute methanol (99.8% v/v, Fisher) with the ratio of 1:10 (w/v) (sample: solvent). Extracts were then filtered, concentrated and dried in vacuo. Standard solvent extraction methods for liquid – liquid extraction (LLE) were performed as outlined by Harbone, [13]. Six LLE partition extracts generated were ethyl acetate extract (EAE), hexane extract (HE), chloroform extract (CE), chloroform – methanol extract (CME), butanol extract (BE) and aqueous extract (AQE). Extracts were dried in vacuo. All dried extracts were reconstituted back into methanol with the concentration of 100mg/ml.

Table 1. Antibacterial activities of Agave angustifolia and Pittosporum ferrugineum extracts.

Samples (mg/ml)		S. aureus	S. pneumoniae	B. ereus	E.coli	S. Typhi	P. Aeruginosa	E. Aerogenes
Agave angustifolia	Crude Methanolic Extract							
	100	8.75±0	8.5±0	7.5±0	0	0	11.5±0	6±0
	50	8.5±0	8.5±0	6.75±0	0	0	11.5±0	0
	40	8.5±0	8.5±0	6.5±0	0	0	11.25±0	0
	30	8.5±0	8.5±0	6±0	0	0	11±0	0
	20	8.5±0	8±0	0	0	0	10.5±0	0
	10	8±0	8±0	0	0	0	9±0	0
	Liquid-Liquid Partition Extract Of Crude Methanolic							
	CE	9.5±0	8.5±0	7.5±0	0	9±0	8±0	0
	CME	0	0	7±0	0	9±0	8.5±0	0
	HE	10.5±0	9.5±0	8±0	0	8±0	13±0	0
	EAE	13.5±0	8±0	9±0	0	7.5±0	13.75±0	0
	AQE	0	0	0	0	7.75 ± 0	8±0	0
	BE	0	7.5±0	0	0	0	8±0	0
Pittosporum ferrugineum	Crude Methanolic Extract							
	100	10.5 ± 0	9.5 ± 0	7.5 ± 0	-	-	11.75 ± 0	-
	50	10.5 ± 0	9.5 ± 0	7.5 ± 0	-	-	11.5 ± 0	-
	40	9.5 ± 0	8 ± 0	6.5 ± 0	-	-	10.75 ± 0	-
	30	9.5 ± 0	7.5 ± 0	6.5 ± 0	-	-	10.5 ± 0	-
	20	-	-	-	-	-	9 ± 0	-
	10	-	-	-	-	-	9± 0	-
	Liquid-Liquid Partition Extract Of Crude Methanolic							
	CE	8 ± 0	8 ± 0	8.5 ± 0	-	-	9 ± 0	8 ± 0
	CME	7 ± 0	7 ± 0	7 ± 0	-	-	9 ± 0	7.5 ± 0
	HE	8 ± 0	7.5 ± 0	-	-	-	7.5 ± 0	8 ± 0
	EAE	6.5 ± 0	7 ± 0	6.5 ± 0	-	-	-	7.5 ± 0
	AQE	9.5 ± 0	9± 0	-	-	-	-	8±0
	BE	7.5 ± 0	7.5 ± 0	-	-	-	-	8± 0
Control		-	-	-	-	-	-	-
Ampicillin		28.2±1.4	32.6±6.4	11.5±0.5	13.2±0. 8	16.7±0.7	3.7±0.7	8.4±0.6

Notes: CE - chloroform extract; CME - chloroform-methanol extract; HE - hexane extract; EAE - ethyl acetate extract; AQE - aqueous extract; BE - butanol extract

Test Organisms

Three gram – positive bacteria (S. aureus, S. pneumoniae and B. cereus) and four gram – negative bacteria (E. coli, E. aerogenes, P. aeruginosa and S. typhi) were used in this study.

Disc Diffusion Assay

Screening for antibacterial was performed using disc diffusion assay. Whatmann papers No 3 discs (6mm in diameter) impregnated with extracts were placed on agar, which was inoculated with the specific bacteria used in every screening test. Approximately 20µl of each samples were pipetted on the disc with final concentration of 10-100 mg/ml. Ampicillin (0.25ug/ul) was used as the positive control while the extraction solvents were used as negative control. Plates were then incubated overnight at 37°C. Observations were carried out based on the diameter of the inhibition zones (mm) on the media. All tests were performed in triplicates; the mean and standard deviation of the inhibition zones recorded were calculated.

RESULTS AND DISCUSSION

Crude methanolic extracts of Agave angustifolia and Pittosporum ferrugineum were able to inhibit the growth of *S. aureus*, *S. pneumoniae*, *B. cereus*, and *P. aeruginosa*. *E. aerogenes* was only

inhibited by *A. angustifolia* but only at the concentration of 30-100mg/ml. Both extracts however, failed to inhibit the growth of *E. coli* and *S. typhi* (Table 1). Similar results were observed with the screening of LLE extracts. For *A. angustifolia*, the most potential LLE extract was ethyl acetate extract (EAE) which exhibited the highest inhibition zones especially against *S. aureus* (13.5 \pm 0mm) and *P. aeruginosa* (13.75 \pm 0mm). But for *P. ferruguineum*, the most potential LLE extract was chloroform extract which exhibited larger inhibition zones (8 \pm 0 to 9 \pm 0mm) and more bacteria can be inhibited if compared with other LLE extracts.

CONCLUSION

Both *Agave angustifolia* and *Pittosporum ferrugineum* have phytocomponents which possess antibacterial activities. In A. angustifolia, the components are likely to be non – polar, while in P. ferrugineum, the components are likely to be moderately polar.

ACKNOWLEDGEMENT

This study was supported by Ministry of Science, Technology and Inovation, Malaysia (MOSTI) under Science Fund grant (02-01-10-SF0107).

REFERENCES

- [1] Newman D, and Cragg G. Natural product as drugs and leads to drugs: the historical perspective in Natural Product Chemistry for Drug Discovery, Buss, A. and Butler, M. (eds) RSC Biomolecular Science, UK. 2010
- [2] Pickett J, Birkett M, Bruce T, Chamberlain K, Gordon Weeks R, Matthes M, Napier J, Smart L, and Woodcock C. Developments in aspects of ecological phytochemistry: the role of cis – jasmine in inducible defence systems in plants, Phytochemistry. 2007; 68: 2937 – 2945
- [3] Bednarek P. Chemical warfare or modulators of defense responses – the function of secondary metabolites in plant immunity, Current Opinion in Plant Biology. 2012; 15(4): 407 – 414
- [4] Ishola I, Agbaje O, Narender T, Adeyemi O, and Shukla R. Bioactivity guided isolation of analgesic and anti – inflammatory constituents of Cnestis ferruginea Vahl ex DC (Connaraceae) root, Journal of Ethnopharmacology. 2012; 142: 383 – 389
- [5] Adey Ajayi A, Ezeayanaso H, Ogabiela E, Udiba U, Anyim B, and Olabanji O. Preliminary phytochemical and antimicrobial screening of Agave sisalana Perrine juice (waste), Journal of Environmental Chemistry and Ecotoxicology. 2011; 3(7): 180 183
- [6] Peña Alvarez A, Diaz L, Medina A, Labastida C, Capella S, and Vera L. Characterization of three Agave species by gas chromatography and solid phase microextraction gas chromatography mass spectrometry, Journal of Chromatography A. 2004; 1027: 131 136
- [7] Sparg S, Light M, and Van Staden J. Biological activities and distribution of plant saponins, Journal of Ethnopharmacology. 2004; 94: 219
- [8] Almaraz Abarca N, Delgado Alvarado E, Hernandez Vargas V, Ortega – Chavez M, Orea – Lara G, De Leon A, Avila – Reyes V, and Munez – Martinez R. Profiling of phenolic compounds of somatic and reproductive tissues of Agave durangensis Gentry (Agavaceae), American Journal of Applied Sciences. 2009; 6(6): 1076 – 1085
- [9] Rizwan K, Muhammad Zubair, Rasool N, Muhammad Riaz, Muhammad Zia-Ul-Haq, and de Feo V. Phytochemical and biological studies of Agave attenuate, International Journal of Molecular Sciences. 2012; 13: 6440 – 6451
- [10] Da Silva B, and Parente J. A new bioactive steroidal saponin from Agave brittoniana, Z. Naturforsch. 2007; 62: 1193 – 1198
- [11] Yokosuka A, Mimaki Y, Kuroda M, and Sashida Y. A new steroidal saponin from the leaves of Agave americana, Planta Med. 2000; 66: 393 – 396
- [12] Chou TH, Chen IS, Hwang TL., Wang TC, Lee TH, Chen, LY, Chang YC, Cho JY, and Chen JJ. Phtallides from Pittosporum illicioides var illicioides with inhibitory activity on superoxide generation and elastase release by neutrophils, Journal of Natural Product. 2008; 71: 1692 – 1695
- [13] Harborne JB. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis. Chapman and Hall, England. 1998