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Nonlinear growth modeling can offer a more robust approach in curve fitting exercises compared
to the traditional linear regression for modelling microbial growth processes. The models utilized
include Huang, Baranyi-Roberts, modified Gompertz, Buchanan-3-phase, modified Richards,
modified Schnute, modified Logistics, von Bertalanffy, MMF (Morgan Mercer Flodin), and the
study evaluated these primary growth models to describe a bacterial consortium growth on lindane,
with growth measured indirectly by chloride release. The results show that choosing the best model
using visual inspection is inadequate for distinguishing between models, as all evaluated models
demonstrated acceptable fits. A statistically and information-criterion-based discriminatory
approach demonstrated distinct performance disparities. The Huang model consistently
demonstrated superior performance compared to competing models, characterized by the lowest
error values, the highest explanatory power, favorable information criteria, and minimal systematic
bias. However, the modified Richards and modified Logistics models also exhibited competitive
performance under specific criteria. The MOORA multi-criteria decision-making approach was
utilized to mitigate the uncertainty associated with the majority voting approach. MOORA
demonstrates that the Huang model is the most robust overall, with the modified Richards and
modified Logistics models following closely behind. The parameters obtained from the Huang
model for the chloride release kinetics at 10 uM lindane were Lag period (d or day), Ymax, and um
values of -3.132 (d), 9.235, and 0.934 (d™"), respectively. The utilization of the modelling exercise
yielded important parameters for future secondary modelling exercises and preliminary prediction
of performance and limitations in field studies.

INTRODUCTION

Hexachlorocyclohexane (HCH)

contamination

agricultural use or inadequate disposal practices [2,3]. Due to
their chemical stability, HCH isomers persist for long periods and

remains a undergo long-range atmospheric transport, leading to their

persistent global environmental issue arising from the large-scale
application of this organochlorine insecticide during the mid-
20th century [1]. HCH exists in many isomers, but only one, y-
HCH, possesses the insecticidal activity. There are two
formulations of HCH, technical HCH (composed of all HCH
isomers), and lindane (only y -HCH), and both were historically
used in agriculture, vector control, and commodity protection.
Although regulatory bans and restrictions were introduced in
many industrialized nations decades ago, residues of HCH and
lindane continue to be detected in soils, sediments, and aquatic
environments, particularly in regions with a legacy of intensive

detection even in remote polar regions [4]. Accumulation of these
compounds in agricultural soils facilitates entry into food chains,
resulting in chronic exposure risks to wildlife and humans.
Epidemiological and toxicological studies associate prolonged
exposure to HCH isomers with endocrine disruption,
neurotoxicity, and carcinogenic outcomes, reinforcing their
classification as persistent organic pollutants of concern [5,6].

Natural attenuation of HCH in soil is typically slow and
incomplete, often producing toxic chlorinated intermediates
rather than full mineralization. Consequently, bioremediation has
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gained prominence as a sustainable alternative to
physicochemical treatment methods. Microbial degradation,
particularly under aerobic conditions, offers the potential for
complete dechlorination and detoxification when appropriate
catabolic pathways are present [5,6]. Since the initial discovery
of bacterial lindane degradation, numerous strains have been
shown to harbor conserved lin gene clusters responsible for
sequential dehydrochlorination and ring cleavage of y-HCH, and
they are predominantly within the Sphingomonadaceae [7].

Despite these advances, most reported isolates degrade only
selected isomers, exhibit low tolerance to high substrate
concentrations, or display limited activity under environmentally
relevant conditions. Mixed microbial consortia have therefore
attracted increasing attention, as metabolic cooperation,
functional redundancy, and adaptive resilience can enhance
degradation rates of recalcitrant pollutants [8,7]. However,
studies examining consortium-based lindane degradation under
aerobic conditions remain limited.

Growth curve modelling provides a quantitative framework
for describing microbial population dynamics through the lag,
exponential, and stationary phases. These primary models are
essential for interpreting how bacteria respond to defined
environmental and nutritional conditions before stressors or
toxicants are introduced. Establishing growth behaviour in
inhibitor-free systems is a critical prerequisite, as it generates
baseline kinetic parameters that allow meaningful comparison
when toxic substrates such as pesticides are present.

Primary growth models, including the modified Gompertz,
modified Logistic, Buchanan three-phase, Baranyi—Roberts, and
Richards models, have been widely applied to describe bacterial
growth under controlled conditions and to extract biologically
meaningful parameters such as maximum specific growth rate,
lag time, and carrying capacity. These models have also been
successfully used to characterise microbial growth during the
degradation of recalcitrant compounds, including lindane and
other organochlorine pesticides, where growth is closely coupled
to dehalogenation and chloride release kinetics, as demonstrated
for Sphingomonads and mixed consortia degrading [5,6].

In this study, predictive growth models including the
modified Gompertz, modified Logistic, modified Richards,
Buchanan three-phase, Baranyi—Roberts, modified Schnute, von
Bertalanffy, Morgan—Mercer—Flodin, and Huang models are
applied to describe the growth of a lindane-degrading bacterium.
Understanding growth kinetics and dechlorination dynamics,
especially through chloride release measurements, provides
critical insight into metabolic performance and process
optimization prior to field application.

MATERIALS AND METHODS

Nonlinear curve fitting of the bacterial growth data
CurveExpert Professional (Version 1.6) software was utilized to
extract the numerical values from Figure 1a of [9]. This program
uses the Marquardt method to find the smallest sum of squares of
the differences between the predicted and actual values. The
Marquardt algorithm iteratively changes the values of the
parameters over and over again until the difference between
planned and observed data is as small as possible. This makes
sure that the data fits the growth curve as closely as possible in
order to find the primary model that best describes how the
bacterial consortia grow in lindane.

(Table 1).

Table 1. Mathematical modeling of growth on lindane by a bacterial
consortium.
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Note:

A= Microorganism growth upper asymptote;

No=Microorganism growth lower asymptote;

u»= maximum specific microorganism growth rate;

v= affects near which asymptote maximum growth occurs.

A=lag time

e =exponent (2.718281828)

t = sampling time

o,f,k, 6= curve fitting parameters

ho = a dimensionless parameter quantifying the initial physiological state of the
reduction process. For the Baranyi-Roberts model, the lag time (1) (h!) or (d"!) can
be calculated as ho=tin

For modified Schnute, 4 =¢/a

Statistical analysis

Finding the best model based on visual observation is never
accurate, and hence, a better method is to use statistical
discriminatory methods. The tests utilized in this study were the
Marquardt's percent standard deviation (MPSD) [10-12], HQ
(Hannan and Quinn's Criterion) [13], Bias Factor (BF), Accuracy
Factor (AF) [14], root-mean-squared error (RMSE), adjusted
coefficient of determination (R? [15], corrected Akaike
Information Criterion (AICc) [16,17], and Bayesian Information
Criterion (BIC) [18]. In general, n is the total number of
observations, Obi and Pdi are the predicted and observed values,
and p is the total number of parameters of the model [19].

RMSE was calculated using the following formula;

RMSE = Yie,(Pd;—0b;)?
N n-p

(Eqn. 1)
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BF and AF were calculated using the following formula;

Bias factor = 10 (2?:1 log M)

n

(Eqn. 2)

Accuracy factor = 10 ( . log M) (Eqn. 3)

AICc was calculated using the following formula;

_ RSS\ , 2(p+D)+2(p+2)
AlCc = 2p + nln (T) + W (Eqn 4)
BIC was calculated using the following formula;
RSS
BIC = nin (*2) + kin(n) (Eqn. 5)

HQC was calculated using the following formula;

RSS

HQC = nin (%) + 2kin(in n) (Eqn. 6)

Adjusted coefficient of determination (R?) was calculated using
the following formula;

RMS
st

Adjusted (R?) =1 — (Eqn. 7)
(1-R»)(n-1)

. 2N 1
Adjusted (R%) =1 D

(Eqn. 8)

MPSD was calculated using the following formula;

Obi—Pdi)z

ob, (Eqn. 9)

1
MPSD = 100\/H e (

Application of Multi-Objective Optimization by Ratio
Analysis (MOORA) in Modeling

Often, a non-unanimous result for the error function means it is
more difficult to choose the best model. A method to overcome
this issue is the modeling exercise's multi-criteria decision-
making (MCDM), specifically MOORA, which simultaneously
evaluates all of the error functions. This approach makes it easier
to identify the ideal model [20,21]. Initially, a standardization of
the decision matrix was carried out through a normalization
approach as the units and magnitudes of each of the error
functions usually differ.

x! = _Xu

5] Py
=1 Xij

Where Xj; is the original value of the j* metric for the i model,
and X' is the normalized value.

(Eqn. 10)

Ratio System Analysis

After that, a ratio method was used to figure out the combined
normalized numbers. We used the following formula that sums
all of the beneficial criteria (adjR2) and then subtracts the values
of the non-beneficial criteria (the other error functions) or error
functions that need to be kept to a minimum. Here, we use a cost
function for the error function bias factor (BF) or CBF=|1-BF| ,
whilst the cost function for the error function accuracy factor
(AF) or CAF=AF-1.

Y, = Zbeneficial Xi’j - Znon—beneficial Xi’j (Eqn. 11)

Where Y is the final score for the i model

Since there will be a certain criteria that are more important
than others, it is best to use weighted ratios. Exhaustive literature
search shows no evidence to support the suggestion to use
Weighted Ratios in the primary models as it is inconclusive and
probably not accurate to assign importance of one model above
another. Ultimately, the models are ranked in order based on their
overall performance ratings, with the higher score models
ranking higher. This method allows the comparison or selection
for the best kinetic models be done in a systematic and objective
way, which helped us find the one that worked best for all of our
performance criteria.

RESULTS AND DISCUSSION

For many years, scientists have used linear regression to find the
slope of a growth curve or the parameters of a xenobiotic
transformation after manually estimating the part of the curve
that is almost linear. A better way to do this would be to use a
nonlinear regression growth model to describe the whole dataset
and then use the model to estimate the values of the zim, A, and A
[22]. The parameter i can then be used for further secondary
modeling like Monod, Haldane, Aiba, and Teissier [23,24]. All of
the models appear to fit the original data (Fig. 1) adequately
(Figs. 2 to 10), and it is quite difficult to choose the best model
based on visual observation.

Ln Cl releas %

0 2 4 6 8 10 12
Time of incubation (h)
Fig. 1. Natural logarithm converted data on the percentage chloride

release from the y-hexachlorocyclohexane-degrading microbial
consortia.
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Fig. 2. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the
Huang model.
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Fig. 3. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the

Baranyi-Roberts model.
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Fig. 4. Modeling of the chloride release kinetics of the v-
hexachlorocyclohexane-degrading microbial consortia based on the

modified Gompertz model.
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Fig. 5. Modeling of the chloride release kinetics of the -
hexachlorocyclohexane-degrading microbial consortia based on the

Buchanan-3-phase model.
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Fig. 6. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the

modified Richards model.

10 -
S
2 94
Q
2 g
o
S 71 e EXP
MS
6.
5 T T T T T \
0 2 4 6 8 10

Time of incubation (h)

12

Fig. 7. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the

modified Schnute model.
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Fig. 8. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the

modified Logistics model.

10 -
2
& 9
[}
R
o e EXP
5 71 VB
6.
5 . . \
0 5 10

Time of incubation (h)

15

Fig. 9. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the von

Bertalanffy model.
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Fig. 10. Modeling of the chloride release kinetics of the y-
hexachlorocyclohexane-degrading microbial consortia based on the

MMF model.
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Table 2. Statistical analysis of the various fitted models.

Model p RMSE R2 adR2 AF BF AlCc BIC HQC MPSD
Huang 4 0.102 0.993 0.990 1.007 1.000 -43.138 -58.082 -60.875 10.197
Baranyi-Roberts 4 0.242 0.960 0.942 1.019 1.001 -18.907 -33.851 -36.644 24.226
modified Gompertz 3 0.288 0.940 0.922 1.013 1.000 -19.770 -30.297 -32.392 28.817
Buchanan-3-phase 3 0.159 0.981 0.976 1.013 1.000 -36.401 -46.929 -49.023 15.910
modified Richards 4 0.102 0.993 0.990 1.007 1.000 -43.019 -57.963 -60.755 10.240
modified Schnute 4 0.230 0.965 0.950 1.007 1.000 -20.417 -35.361 -38.154 22.954
modified Logistics 3 0.113 0.991 0.988 1.008 1.000 -46.038 -56.566 -58.660 11.277
von Bertalanffy 3 0.128 0.988 0.984 1.009 1.000 -42.441 -52.968 -55.063 12.823
MMF 4 0.115 0.967 0.952 1.009 1.000 -39.767 -54.710 -57.503 11.501

Note: p is parameter

The modelling results show a relatively good fit for all of
the primary growth models utilized in this study. The Huang
model did the best overall because it did the best on most of the
error-based and information-based criteria (Table 2). It exhibited
the lowest SSE (0.1040), MSE (0.0104), RMSE (0.1020), and
MPSD (10.20), the highest R? (0.9931) and adjusted R’ (0.990).
It also had the best BIC (-58.08) and HQC (-60.87) scores, and
AF and BF were closest to unity (AF 1.01, BF 1.00), which
indicates minimal systematic bias. The modified Richards model
came in a very close second, with R? and adjusted R’ values that
were close (0.9931 and 0.990) and error values that were also
very low (SSE 0.1049, RMSE 0.1024, MPSD 10.24).

However, the values for the information criterion were a
little weaker than Huang's. The modified Logistics model was
also competitive and had the lowest value for AICc (-46.04),
indicating its preference according to that standard. However, it
did not do better than Huang on other error functions (SSE,
RMSE, MPSD) or on BIC and HQC. The modified Gompertz
model was the worst because it had the largest values of errors
(SSE 0.9134, RMSE 0.2882, MPSD 28.82) and the lowest values
for R? 0.9398, and adjustedR? 0.922). This means it was the least
accurate to fit the growth curve measured as chloride release.

The method of selecting the optimal growth model through
majority voting based on error functions and information criteria
usually introduces uncertainty, as the results can be unanimous
with one model exhibiting the best values for a selected error
function and the rival models offer better values for the remaining
error functions. The relationships among SSE, MSE, and RMSE,
all of which are mathematically related, can indicate that a model
exhibiting strong performance in one metric typically
demonstrates favorable results in the other error functions. This
can potentially lead to an overemphasis on a singular aspect of
model fit. Moreover, the classical error functions prioritize
distinct objectives, including how closely the predicted data obey
the observed data, while modern error functions based on
information criteria such as AICc, BIC, and HQC impose varying
penalties for the number of parameters a model has.

A model like modified Logistics may demonstrate
superiority under AICc, whereas an alternative model may
perform better under BIC or RMSE (Table 2). Minor numerical
differences can lead to a practical conclusion of nonsignificance
in the absence of confidence intervals, residual diagnostics, or
validation using independent data. MOORA, by consolidating
multiple criteria into a singular composite score, mitigates this
ambiguity following normalization and weighting (Table 3). This
approach filters trade-offs and thwarts "double counting" of
closely related error function values. The MOORA ranking
indicates that the Huang model is the highest rated overall (score
1.49351, rank 1). This is closely followed by the modified
Richards model (1.48904, rank 2) and the modified Logistics

model (1.45304, rank 3). The Huang model can offer a
continuous and biologically precise depiction of bacterial growth
throughout the phases of the Lag, exponential, and stationary.
The use of classical first-order kinetics can effectively describe
exponential growth parts; however, they cannot model the Lag
and stationary phases. To address this limitation, many nonlinear
growth kinetic models incorporate a maximum carrying capacity,
which facilitates a smooth transition from the exponential growth
phase to the stationary phase.

Table 3. MOORA ranking of the error functions.

No  Model MOORA Rank
Score
1 Huang 1.49351 1
5 modified Richards 1.48904 2
7 modified Logistics 1.45304 3
9 MMF 1.34535 4
8 von Bertalanffy 1.31077 5
4 Buchanan-3-phase 1.05178 6
6 modified Schnute 0.47606 7
2 Baranyi-Roberts 0.38590 8
3 modified Gompertz ~ 0.15704 9

Huang and colleagues integrate the lag and growth phases
into a singular continuous equation and proposed a unified
framework. The integration of a transition function that alleviates
abrupt and discontinuous phase switching is the key to the
success of this model. Near the lag time, the transition function
incrementally shifts from zero to one. This thereby maintains
mathematical continuity and biological interpretation. One of the
hallmarks of the Huang model is it can demonstrate robustness
despite the unavailability of data governing the lag phase data,
and convergence in nonlinear regression can occur relatively
rapidly and remains stable. Growth proceeds according to the
classical exponential kinetics after the completion of the lag
phase, until the stationary phase is attained.

The integration of attributes, including continuity,
interpretability, and numerical stability, is a testament to the
Huang model's applicability in analyzing microbial growth and
also for predictive uses in bioremediation and environmental
biotechnology. The parameters obtained from the Huang model
for the chloride release kinetics at 10 uM lindane is Lag (d), Ymax
and pm values of -3.132 day (95% C.I too wide), 9.235 (95% C.1.
from 9.043 to 9.427), and 0.934 d!' (95% C.I. from0.710 to
1.158). In the original published works [9], no modelling was
carried out. The utility of the Huang model to model growth
processes is evident in its use in modelling biological processes
in the microorganisms Cronobacter sakazakii, Escherichia coli
O157:H7, Pseudomonas spp., Listeria monocytogenes,
Salmonella spp., and Streptomyces lividans [25-31]. The model's
applicability is its having excellent fitting capability, and its lag
period predictive ability, with most of the model parameters
exhibiting biological meaning [32,33].
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CONCLUSION

This study demonstrates the applicability of nonlinear primary
growth models to provide a more comprehensive and objective
framework for analyzing a microbial consortium's growth on
lindane biodegradation. It is discovered that the various models,
although adequately aligned with the experimental data, have
issues when over-reliance on individual error functions or visual
assessments introduces uncertainty due to overlapping and
correlated performance metrics. The MOORA method reduced
this ambiguity by its ability to integrate these various criteria into
one unified ranking. MOORA designates the Huang model as the
best model. The Huang model's continuous structure, its ability
to provide an explicit representation of the lag phase, and its
numerical robustness have enabled biologically relevant
interpretations to be obtained despite some constraints in the lag-
phase data. The estimated parameters obtained from the
modelling exercise for chloride release kinetics allow future
secondary inhibition models integration. The results in this study
demonstrate the importance of a combination of robust nonlinear
modeling with multi-criteria decision analysis for obtaining the
best growth models. This dual approach method can improve
predictive accuracy and can support the systematic design and
enhancement of bioremediation strategies in field studies on
environments contaminated by pesticides.
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