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INTRODUCTION 
 
Hexachlorocyclohexane (HCH) contamination remains a 
persistent global environmental issue arising from the large-scale 
application of this organochlorine insecticide during the mid-
20th century [1]. HCH exists in many isomers, but only one, γ-
HCH, possesses the insecticidal activity. There are two 
formulations of HCH, technical HCH (composed of all HCH 
isomers), and lindane (only γ -HCH), and both were historically 
used in agriculture, vector control, and commodity protection. 
Although regulatory bans and restrictions were introduced in 
many industrialized nations decades ago, residues of HCH and 
lindane continue to be detected in soils, sediments, and aquatic 
environments, particularly in regions with a legacy of intensive 

agricultural use or inadequate disposal practices [2,3]. Due to 
their chemical stability, HCH isomers persist for long periods and 
undergo long-range atmospheric transport, leading to their 
detection even in remote polar regions [4]. Accumulation of these 
compounds in agricultural soils facilitates entry into food chains, 
resulting in chronic exposure risks to wildlife and humans. 
Epidemiological and toxicological studies associate prolonged 
exposure to HCH isomers with endocrine disruption, 
neurotoxicity, and carcinogenic outcomes, reinforcing their 
classification as persistent organic pollutants of concern [5,6]. 
 

Natural attenuation of HCH in soil is typically slow and 
incomplete, often producing toxic chlorinated intermediates 
rather than full mineralization. Consequently, bioremediation has 
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 Abstract 
Nonlinear growth modeling can offer a more robust approach in curve fitting exercises compared 
to the traditional linear regression for modelling microbial growth processes. The models utilized 
include Huang, Baranyi-Roberts, modified Gompertz, Buchanan-3-phase, modified Richards, 
modified Schnute, modified Logistics, von Bertalanffy, MMF (Morgan Mercer Flodin), and the 
study evaluated these primary growth models to describe a bacterial consortium growth on lindane, 
with growth measured indirectly by chloride release. The results show that choosing the best model 
using visual inspection is inadequate for distinguishing between models, as all evaluated models 
demonstrated acceptable fits. A statistically and information-criterion-based discriminatory 
approach demonstrated distinct performance disparities. The Huang model consistently 
demonstrated superior performance compared to competing models, characterized by the lowest 
error values, the highest explanatory power, favorable information criteria, and minimal systematic 
bias. However, the modified Richards and modified Logistics models also exhibited competitive 
performance under specific criteria. The MOORA multi-criteria decision-making approach was 
utilized to mitigate the uncertainty associated with the majority voting approach. MOORA 
demonstrates that the Huang model is the most robust overall, with the modified Richards and 
modified Logistics models following closely behind. The parameters obtained from the Huang 
model for the chloride release kinetics at 10 μM lindane were Lag period (d or day), Ymax, and μm 
values of -3.132 (d), 9.235, and 0.934 (d-1), respectively. The utilization of the modelling exercise 
yielded important parameters for future secondary modelling exercises and preliminary prediction 
of performance and limitations in field studies. 
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gained prominence as a sustainable alternative to 
physicochemical treatment methods. Microbial degradation, 
particularly under aerobic conditions, offers the potential for 
complete dechlorination and detoxification when appropriate 
catabolic pathways are present [5,6]. Since the initial discovery 
of bacterial lindane degradation, numerous strains have been 
shown to harbor conserved lin gene clusters responsible for 
sequential dehydrochlorination and ring cleavage of γ-HCH, and 
they are predominantly within the Sphingomonadaceae [7]. 
 

Despite these advances, most reported isolates degrade only 
selected isomers, exhibit low tolerance to high substrate 
concentrations, or display limited activity under environmentally 
relevant conditions. Mixed microbial consortia have therefore 
attracted increasing attention, as metabolic cooperation, 
functional redundancy, and adaptive resilience can enhance 
degradation rates of recalcitrant pollutants [8,7]. However, 
studies examining consortium-based lindane degradation under 
aerobic conditions remain limited. 
 

Growth curve modelling provides a quantitative framework 
for describing microbial population dynamics through the lag, 
exponential, and stationary phases. These primary models are 
essential for interpreting how bacteria respond to defined 
environmental and nutritional conditions before stressors or 
toxicants are introduced. Establishing growth behaviour in 
inhibitor-free systems is a critical prerequisite, as it generates 
baseline kinetic parameters that allow meaningful comparison 
when toxic substrates such as pesticides are present.  

 
Primary growth models, including the modified Gompertz, 

modified Logistic, Buchanan three-phase, Baranyi–Roberts, and 
Richards models, have been widely applied to describe bacterial 
growth under controlled conditions and to extract biologically 
meaningful parameters such as maximum specific growth rate, 
lag time, and carrying capacity. These models have also been 
successfully used to characterise microbial growth during the 
degradation of recalcitrant compounds, including lindane and 
other organochlorine pesticides, where growth is closely coupled 
to dehalogenation and chloride release kinetics, as demonstrated 
for Sphingomonads and mixed consortia degrading [5,6]. 
 

In this study, predictive growth models including the 
modified Gompertz, modified Logistic, modified Richards, 
Buchanan three-phase, Baranyi–Roberts, modified Schnute, von 
Bertalanffy, Morgan–Mercer–Flodin, and Huang models are 
applied to describe the growth of a lindane-degrading bacterium. 
Understanding growth kinetics and dechlorination dynamics, 
especially through chloride release measurements, provides 
critical insight into metabolic performance and process 
optimization prior to field application.  
 
MATERIALS AND METHODS 
 
Nonlinear curve fitting of the bacterial growth data 
CurveExpert Professional (Version 1.6) software was utilized to 
extract the numerical values from Figure 1a of [9]. This program 
uses the Marquardt method to find the smallest sum of squares of 
the differences between the predicted and actual values. The 
Marquardt algorithm iteratively changes the values of the 
parameters over and over again until the difference between 
planned and observed data is as small as possible. This makes 
sure that the data fits the growth curve as closely as possible in 
order to find the primary model that best describes how the 
bacterial consortia grow in lindane. 
(Table 1).  
 

Table 1. Mathematical modeling of growth on lindane by a bacterial 
consortium. 
 
Model p Equation 
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Note: 
A= Microorganism growth upper asymptote; 
N0= Microorganism growth lower asymptote; 
um= maximum specific microorganism growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = sampling time 
α,β,k,δ = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the 
reduction process. For the Baranyi-Roberts model, the lag time (𝜆𝜆) (h-1) or (d-1) can 
be calculated as h0=µm 

For modified Schnute, A =µ/α 
 
Statistical analysis 
Finding the best model based on visual observation is never 
accurate, and hence, a better method is to use statistical 
discriminatory methods. The tests utilized in this study were the 
Marquardt's percent standard deviation (MPSD) [10–12], HQ 
(Hannan and Quinn's Criterion) [13], Bias Factor (BF), Accuracy 
Factor (AF) [14], root-mean-squared error (RMSE), adjusted 
coefficient of determination (R²) [15], corrected Akaike 
Information Criterion (AICc) [16,17], and Bayesian Information 
Criterion (BIC) [18]. In general, n is the total number of 
observations, Obi and Pdi are the predicted and observed values, 
and p is the total number of parameters of the model [19]. 
 
RMSE was calculated using the following formula; 
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𝑛𝑛−𝑝𝑝
     (Eqn. 1) 

 
 
 
 

Y = N0, IF X < LAG 
Y= N0+ K(X  ̶λ), IF λ ≤ X ≥ XMAX 

Y = A, IF X ≥ XMAX 
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BF and AF were calculated using the following formula; 
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AICc was calculated using the following formula; 
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BIC was calculated using the following formula; 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛In �𝑅𝑅𝑅𝑅𝑅𝑅
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HQC was calculated using the following formula; 
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Adjusted coefficient of determination (R²) was calculated using 
the following formula; 
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(𝑛𝑛−𝑝𝑝−1)
    (Eqn. 8) 

 
MPSD was calculated using the following formula; 
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Application of Multi-Objective Optimization by Ratio 
Analysis (MOORA) in Modeling 
Often, a non-unanimous result for the error function means it is 
more difficult to choose the best model. A method to overcome 
this issue is the modeling exercise's multi-criteria decision-
making (MCDM), specifically MOORA, which simultaneously 
evaluates all of the error functions. This approach makes it easier 
to identify the ideal model [20,21]. Initially, a standardization of 
the decision matrix was carried out through a normalization 
approach as the units and magnitudes of each of the error 
functions usually differ. 
 
𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑋𝑋𝑖𝑖𝑖𝑖

�∑ 𝑋𝑋𝑖𝑖𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

        (Eqn. 10) 

 
Where Xij is the original value of the jth metric for the ith model, 
and Xiij is the normalized value. 
 
Ratio System Analysis 
After that, a ratio method was used to figure out the combined 
normalized numbers. We used the following formula that sums 
all of the beneficial criteria (adjR2) and then subtracts the values 
of the non-beneficial criteria (the other error functions) or error 
functions that need to be kept to a minimum. Here, we use a cost 
function for the error function bias factor (BF) or CBF=∣1−BF∣ , 
whilst the cost function for the error function accuracy factor 
(AF) or CAF=AF−1. 
 
𝑌𝑌𝑖𝑖 = ∑ 𝑋𝑋𝑖𝑖𝑖𝑖′ −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∑ 𝑋𝑋𝑖𝑖𝑖𝑖′𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏   (Eqn. 11)  
 
Where Yi is the final score for the ith model 

Since there will be a certain criteria that are more important 
than others, it is best to use weighted ratios. Exhaustive literature 
search shows no evidence to support the suggestion to use 
Weighted Ratios in the primary models as it is inconclusive and 
probably not accurate to assign importance of one model above 
another. Ultimately, the models are ranked in order based on their 
overall performance ratings, with the higher score models 
ranking higher. This method allows the comparison or selection 
for the best kinetic models be done in a systematic and objective 
way, which helped us find the one that worked best for all of our 
performance criteria. 
 
RESULTS AND DISCUSSION 
 
For many years, scientists have used linear regression to find the 
slope of a growth curve or the parameters of a xenobiotic 
transformation after manually estimating the part of the curve 
that is almost linear. A better way to do this would be to use a 
nonlinear regression growth model to describe the whole dataset 
and then use the model to estimate the values of the µm, λ, and A 
[22]. The parameter µm can then be used for further secondary 
modeling like Monod, Haldane, Aiba, and Teissier [23,24]. All of 
the models appear to fit the original data (Fig. 1) adequately 
(Figs. 2 to 10), and it is quite difficult to choose the best model 
based on visual observation.  
 
 

 
 
Fig. 1. Natural logarithm converted data on the percentage chloride 
release from the γ-hexachlorocyclohexane-degrading microbial 
consortia. 
 
 
 

 
 
Fig. 2. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
Huang model. 
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Fig. 3. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
Baranyi-Roberts model. 
 

 
 
Fig. 4. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
modified Gompertz model. 
 

 
 
Fig. 5. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
Buchanan-3-phase model. 
 

 
 
Fig. 6. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
modified Richards model. 

 
Fig. 7. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
modified Schnute model. 
 

 
 
Fig. 8. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
modified Logistics model. 
 

 
 
Fig. 9. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the von 
Bertalanffy model. 
 

 
 
Fig. 10. Modeling of the chloride release kinetics of the γ-
hexachlorocyclohexane-degrading microbial consortia based on the 
MMF model. 
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Table 2. Statistical analysis of the various fitted models. 
 

Model  p RMSE R2 adR2 AF BF AICc BIC HQC MPSD 
Huang 4 0.102 0.993 0.990 1.007 1.000 -43.138 -58.082 -60.875 10.197 
Baranyi-Roberts 4 0.242 0.960 0.942 1.019 1.001 -18.907 -33.851 -36.644 24.226 
modified Gompertz 3 0.288 0.940 0.922 1.013 1.000 -19.770 -30.297 -32.392 28.817 
Buchanan-3-phase 3 0.159 0.981 0.976 1.013 1.000 -36.401 -46.929 -49.023 15.910 
modified Richards 4 0.102 0.993 0.990 1.007 1.000 -43.019 -57.963 -60.755 10.240 
modified Schnute 4 0.230 0.965 0.950 1.007 1.000 -20.417 -35.361 -38.154 22.954 
modified Logistics 3 0.113 0.991 0.988 1.008 1.000 -46.038 -56.566 -58.660 11.277 
von Bertalanffy 3 0.128 0.988 0.984 1.009 1.000 -42.441 -52.968 -55.063 12.823 
MMF 4 0.115 0.967 0.952 1.009 1.000 -39.767 -54.710 -57.503 11.501 

 
Note: p is parameter 

 
The modelling results show a relatively good fit for all of 

the primary growth models utilized in this study. The Huang 
model did the best overall because it did the best on most of the 
error-based and information-based criteria (Table 2). It exhibited 
the lowest SSE (0.1040), MSE (0.0104), RMSE (0.1020), and 
MPSD (10.20), the highest R2 (0.9931) and adjusted R2 (0.990). 
It also had the best BIC (-58.08) and HQC (-60.87) scores, and 
AF and BF were closest to unity (AF 1.01, BF 1.00), which 
indicates minimal systematic bias. The modified Richards model 
came in a very close second, with R2 and adjusted R2 values that 
were close (0.9931 and 0.990) and error values that were also 
very low (SSE 0.1049, RMSE 0.1024, MPSD 10.24).  

 
However, the values for the information criterion were a 

little weaker than Huang's. The modified Logistics model was 
also competitive and had the lowest value for AICc (-46.04), 
indicating its preference according to that standard. However, it 
did not do better than Huang on other error functions (SSE, 
RMSE, MPSD) or on BIC and HQC. The modified Gompertz 
model was the worst because it had the largest values of errors 
(SSE 0.9134, RMSE 0.2882, MPSD 28.82) and the lowest values 
for R2 0.9398, and adjustedR2 0.922). This means it was the least 
accurate to fit the growth curve measured as chloride release. 
 

The method of selecting the optimal growth model through 
majority voting based on error functions and information criteria 
usually introduces uncertainty, as the results can be unanimous 
with one model exhibiting the best values for a selected error 
function and the rival models offer better values for the remaining 
error functions. The relationships among SSE, MSE, and RMSE, 
all of which are mathematically related, can indicate that a model 
exhibiting strong performance in one metric typically 
demonstrates favorable results in the other error functions. This 
can potentially lead to an overemphasis on a singular aspect of 
model fit. Moreover, the classical error functions prioritize 
distinct objectives, including how closely the predicted data obey 
the observed data, while modern error functions based on 
information criteria such as AICc, BIC, and HQC impose varying 
penalties for the number of parameters a model has.  

 
A model like modified Logistics may demonstrate 

superiority under AICc, whereas an alternative model may 
perform better under BIC or RMSE (Table 2). Minor numerical 
differences can lead to a practical conclusion of nonsignificance 
in the absence of confidence intervals, residual diagnostics, or 
validation using independent data. MOORA, by consolidating 
multiple criteria into a singular composite score, mitigates this 
ambiguity following normalization and weighting (Table 3). This 
approach filters trade-offs and thwarts "double counting" of 
closely related error function values. The MOORA ranking 
indicates that the Huang model is the highest rated overall (score 
1.49351, rank 1). This is closely followed by the modified 
Richards model (1.48904, rank 2) and the modified Logistics 

model (1.45304, rank 3). The Huang model can offer a 
continuous and biologically precise depiction of bacterial growth 
throughout the phases of the Lag, exponential, and stationary. 
The use of classical first-order kinetics can effectively describe 
exponential growth parts; however, they cannot model the Lag 
and stationary phases. To address this limitation, many nonlinear 
growth kinetic models incorporate a maximum carrying capacity, 
which facilitates a smooth transition from the exponential growth 
phase to the stationary phase.  
 
Table 3. MOORA ranking of the error functions. 
 
No Model MOORA 

Score 
Rank 

1 Huang 1.49351 1 
5 modified Richards 1.48904 2 
7 modified Logistics 1.45304 3 
9 MMF 1.34535 4 
8 von Bertalanffy 1.31077 5 
4 Buchanan-3-phase 1.05178 6 
6 modified Schnute 0.47606 7 
2 Baranyi-Roberts 0.38590 8 
3 modified Gompertz 0.15704 9 
 

Huang and colleagues integrate the lag and growth phases 
into a singular continuous equation and proposed a unified 
framework. The integration of a transition function that alleviates 
abrupt and discontinuous phase switching is the key to the 
success of this model. Near the lag time, the transition function 
incrementally shifts from zero to one. This thereby maintains 
mathematical continuity and biological interpretation. One of the 
hallmarks of the Huang model is it can demonstrate robustness 
despite the unavailability of data governing the lag phase data, 
and convergence in nonlinear regression can occur relatively 
rapidly and remains stable. Growth proceeds according to the 
classical exponential kinetics after the completion of the lag 
phase, until the stationary phase is attained.  

 
The integration of attributes, including continuity, 

interpretability, and numerical stability, is a testament to the 
Huang model's applicability in analyzing microbial growth and 
also for predictive uses in bioremediation and environmental 
biotechnology. The parameters obtained from the Huang model 
for the chloride release kinetics at 10 μM lindane is Lag (d), Ymax 
and μm values of -3.132 day (95% C.I too wide), 9.235 (95% C.I. 
from 9.043 to 9.427), and 0.934 d-1 (95% C.I. from0.710 to 
1.158). In the original published works [9], no modelling was 
carried out. The utility of the Huang model to model growth 
processes is evident in its use in modelling biological processes 
in the microorganisms Cronobacter sakazakii, Escherichia coli 
O157:H7, Pseudomonas spp., Listeria monocytogenes, 
Salmonella spp., and Streptomyces lividans [25–31]. The model's 
applicability is its having excellent fitting capability, and its lag 
period predictive ability, with most of the model parameters 
exhibiting biological meaning [32,33].  
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CONCLUSION 
 
This study demonstrates the applicability of nonlinear primary 
growth models to provide a more comprehensive and objective 
framework for analyzing a microbial consortium's growth on 
lindane biodegradation. It is discovered that the various models, 
although adequately aligned with the experimental data, have 
issues when over-reliance on individual error functions or visual 
assessments introduces uncertainty due to overlapping and 
correlated performance metrics. The MOORA method reduced 
this ambiguity by its ability to integrate these various criteria into 
one unified ranking. MOORA designates the Huang model as the 
best model. The Huang model's continuous structure, its ability 
to provide an explicit representation of the lag phase, and its 
numerical robustness have enabled biologically relevant 
interpretations to be obtained despite some constraints in the lag-
phase data. The estimated parameters obtained from the 
modelling exercise for chloride release kinetics allow future 
secondary inhibition models integration. The results in this study 
demonstrate the importance of a combination of robust nonlinear 
modeling with multi-criteria decision analysis for obtaining the 
best growth models. This dual approach method can improve 
predictive accuracy and can support the systematic design and 
enhancement of bioremediation strategies in field studies on 
environments contaminated by pesticides. 
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