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INTRODUCTION 
 
Nonlinear regression of adsorption isotherm data presents 
significant challenges when working with small datasets (six 
points or fewer), particularly in assessing residual normality, 
heteroscedasticity, and randomness. Normality tests such as 
Shapiro-Wilk and Anderson-Darling typically require larger 
datasets (≥10 points) to provide meaningful results [1]. Their 
statistical power is often insufficient for small datasets, making it 
difficult to distinguish between normal and non-normal 
distributions. Even when normality is assumed, small sample 
sizes can skew residual distributions, leading to misinterpretation 
of model performance. Another prevalent issue in adsorption 
studies is heteroscedasticity, where residual variance is non-
constant, particularly when data spans a wide concentration 
range. Traditional tests such as Bartlett’s, Levene’s, and White’s 
are unreliable for small datasets, making visual methods like 
residual versus fitted value plots more commonly used, albeit 
subjective. If left unaddressed, heteroscedasticity can 

significantly distort nonlinear regression analysis, leading to 
misleading conclusions [2]. To assess residual randomness, the 
runs test is often employed, detecting systematic patterns in 
residuals that may indicate model misspecification. However, 
with datasets containing six or fewer points, the test produces 
limited runs, reducing statistical confidence. Small sample sizes 
elevate the risk of Type I and Type II errors, making the test 
unreliable in distinguishing true randomness [3]. Due to these 
limitations, traditional validation methods may not be robust 
enough for small adsorption datasets. To compensate, 
incorporating multiple error functions into model selection 
improves reliability despite dataset size constraints. This 
highlights the necessity for complementary statistical approaches 
to ensure model accuracy and reliability. 
 

Beyond these statistical challenges, selecting an appropriate 
adsorption isotherm or kinetic model remains difficult due to the 
vast number of available models and evaluation criteria. 
Conventional model selection methods primarily rely on a single 
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 ABSTRACT 
A remodeling evaluation was conducted on the sorption isotherm data for copper adsorption onto 
chitosan–silica composite aerogel (Vareda et al., 2024) using nonlinear regression due to the 
irregular manner in which the regression was done and reported. The remodelling exercise results 
showed that the top five were Koble-Corrigan, Brouers–Sotolongo, Fritz-Schlunder III, Hill, and 
Sips models. The Brouers–Sotolongo model was the most precise in estimating the maximum 
adsorption capacity (qm) because it considers the surface's heterogeneity and offers narrow 
confidence intervals. On the other hand, the Langmuir model chosen in the original publication 
had wide confidence intervals, which means that it was less precise. In addition, the study also 
stresses the need to use various error functions to improve the model selection and increase the 
validity of the models. In addition, for the first time, to the best of our knowldege, this study 
reported on the first use of Multiobjective Optimization by Ratio Analysis (MOORA) method for 
isothermal model selection and ranking in the adsorption field. This approach simplifies the 
selection process by systematically evaluating and ranking the numerous isotherm and kinetic 
models that are commonly used in adsorption research. Therefore, this study recommends using 
advanced and flexible isotherm models such as Brouers-Sotolongo for accurate adsorption 
modeling but also stresses the need for rigorous statistical validation in adsorption research. The 
results of this study can be used to enhance the accuracy of adsorption studies in wastewater 
treatment, environmental remediation, and material science applications. 

KEYWORDS 
 
Remodel 
Chitosan 
Isotherm 
Brouers-Sotolongo 
MOORA 

 

 
JOURNAL OF ENVIRONMENTAL MICROBIOLOGY 

AND TOXICOLOGY 
 

Website: http://journal.hibiscuspublisher.com/index.php/JEMAT/index 
 

JEMAT VOL 12 NO 2 2024 
SEM of S.  officinarum 

https://doi.org/10.54987/jebat.v5i2
mailto:mohdyunus@upm.edu.my


JEMAT 2024, Vol 12, No 2, 53-62 
https://doi.org/10.54987/jemat.v12i2.1026   

- 54 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

evaluation metric, such as the coefficient of determination (R²) 
or the sum of squared errors (SSE). However, these metrics alone 
fail to provide a holistic view of model performance across 
multiple dimensions [4,5].  
 

To improve model selection, multiple error functions can be 
used to assess model accuracy from different perspectives. The 
adjusted R² [6] accounts for model complexity, making it more 
reliable for comparing models with different parameter counts. 
However, it still does not penalize overfitting as effectively as 
information-theoretic criteria like the corrected Akaike 
Information Criterion (AICc) [7,8] and the Bayesian Information 
Criterion (BIC) [9]. AICc corrects for small sample sizes, 
preventing overfitting while maintaining a good data fit, whereas 
BIC imposes a stricter penalty on model complexity, favoring 
simpler, more generalizable models. Hannan and Quinn’s 
Criterion (HQ) [10] serves as a compromise between AICc and 
BIC, applying a logarithmic penalty to balance goodness-of-fit 
and complexity. 
 

Additional statistical functions further enhance model 
assessment. Root Mean Squared Error (RMSE) quantifies the 
average residual deviation, though it is sensitive to large errors. 
Marquardt’s Percent Standard Deviation (MPSD) ([11–13] 
normalizes errors based on model complexity, providing a more 
balanced metric. Bias Factor (BF) and Accuracy Factor (AF) 
(Ross, 1996) assess systematic deviation and predictive 
reliability, respectively. A BF value of 1 indicates an unbiased 
model, while an AF value close to 1 suggests high predictive 
accuracy. These error functions, widely reported in adsorption 
research, ensure that model selection accounts for overfitting 
risks, predictive power, and overall goodness-of-fit [14–17]. 
 

The Multiobjective Optimization by Ratio Analysis 
(MOORA) method provides a powerful methodology for 
handling this complexity by utilizing many objectives during 
decision-making. MOORA is one of the Multi-Criteria Decision-
Making (MCDM) and also include other methods such as 
Analytic Hierarchy Process (AHP) [18], Technique for Order 
Preference by Similarity to Ideal Solution (TOPSIS) [19], 
Preference Ranking Organization Method for Enrichment 
Evaluation (PROMETHEE) [20] and Weighted Sum Model 
(WSM) [21,22]. Of these, the MOORA method offers advantages 
in terms of simplicity and efficiency for small datasets as its 
direct ratio-based approach by aggregating normalized 
performance values removes subjective preference assignments 
or complex iterative calculations inherent in the other methods 
making it easier to apply in small datasets [23,24]. 
 

MOORA ranks adsorption models using a decision matrix 
that integrates multiple performance metrics. Weights are 
assigned to each criterion, and models are ranked based on 
normalized performance scores. Unlike conventional model 
selection, which may prioritize a high R² value despite large SSE 
deviations, MOORA considers multiple, often conflicting, 
indicators to ensure a well-rounded evaluation [25–29]. While 
MOORA has been applied in adsorption research for adsorbent 
selection in CO₂ capture [30], it has not yet been used to rank 
isotherm or kinetic models. Other MCDM methods, such as AHP 
and TOPSIS, have been applied in adsorption research, but these 
applications focused on selecting adsorbents based on cost, 
safety, accessibility, and reusability, rather than explicitly 
ranking nonlinear adsorption models based on error functions 
[31]. Integrating multiple criteria into model selection enhances 
objectivity, ensuring transparent and reproducible decisions. 
MOORA’s ability to balance multiple statistical measures, 
including error functions, model complexity penalties, and 

performance accuracy, makes it an ideal tool for adsorption 
studies. To date, MOORA has not been employed for adsorption 
isotherm or kinetic model ranking, making this study a 
pioneering effort. We demonstrate MOORA’s effectiveness in 
our remodeling of a previous adsorption study [32] , which relied 
on an inconsistent application of error function analysis for 
determining the best adsorption model for copper binding to 
chitosan–silica composite aerogels. By adopting MOORA for 
model selection, adsorption researchers can ensure more reliable 
and systematic progress in evaluating adsorption models, 
reducing subjectivity while maintaining computational 
efficiency, especially in small datasets. Future research should 
explore the integration of MCDM frameworks with traditional 
error functions to create a more comprehensive and objective 
model selection process in adsorption studies. 
 
METHODS 
 
Data acquisition and fitting 
Figure 4b data from a previously published study [32] was 
digitized using the freeware Webplotdigitizer 2.5 [33]. The 
program's digitization capabilities have garnered accolades for 
their reliability [34]. Then, Curve-Expert Professional (Version 
2.6.5, copyright Daniel Hyams), a program for curve fitting, was 
used to perform nonlinear regression on the data. MATLAB 
software package (Mathworks, Massachusetts, USA) was used to 
resolve the implicit equations.   
 
Statistical analysis 
This study employed the following statistical discriminatory or 
error functions tests; HQ (Hannan and Quinn's Criterion) [10], 
Bias Factor (BF), Accuracy Factor (AF) [63], root-mean-squared 
error (RMSE), adjusted coefficient of determination (R²) [6], 
corrected Akaike Information Criterion (AICc) [7,8], 
Marquardt's percent standard deviation (MPSD) [11–13] and 
Bayesian Information Criterion (BIC) [9]. In general, n is the 
total number of observations, Obi and Pdi are the predicted and 
observed values, and p is the total number of parameters of the 
model [64]. 
 
RMSE was calculated using the following formula; 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
     (Eqn. 1) 

 
 
BF and AF were calculated using the following formula; 
 
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�   (Eqn. 2) 

 
𝐴𝐴𝑓𝑓𝑓𝑓𝐴𝐴𝑓𝑓𝐵𝐵𝑓𝑓𝐴𝐴 𝑓𝑓𝐵𝐵𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
� (Eqn. 3) 

 
AICc was calculated using the following formula; 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝑓𝑓 = 2𝑝𝑝 + 𝑛𝑛ln �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝+1)+2(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 4) 

 
BIC was calculated using the following formula; 
 
 
𝐵𝐵𝐴𝐴𝐴𝐴 = 𝑛𝑛In �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 𝑘𝑘In(𝑛𝑛)     (Eqn. 5) 

 
HQC was calculated using the following formula; 
 
𝐻𝐻𝐻𝐻𝐴𝐴 = 𝑛𝑛𝐴𝐴𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2𝑘𝑘In(In 𝑛𝑛)    (Eqn. 6) 
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Adjusted coefficient of determination (R²) was calculated using 
the following formula; 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑓𝑓𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑅𝑅𝑌𝑌
2          (Eqn. 7) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐵𝐵𝑓𝑓𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)

(𝑛𝑛−𝑝𝑝−1)
   (Eqn. 8) 

 
MPSD was calculated using the following formula; 
 

𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1    (Eqn. 9) 

 
Isotherms 
Due to the low number of data points, only models (Table 1) with 
parameters limited to three were deemed appropriate to prevent 
overfitting. 
 
Table 1. Mathematical models in the remodelling data [35,36]. 
 
Isotherm p Formula Ref. 
Henry's law 1 𝑞𝑞𝑒𝑒 = 𝐻𝐻𝐴𝐴𝑒𝑒 [37] 

Langmuir 2 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑏𝑏𝑚𝑚𝐴𝐴𝑒𝑒
1 + 𝑏𝑏𝑚𝑚𝐴𝐴𝑒𝑒

 
[35] 

Jovanovic 2 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚(1− 𝐴𝐴−𝐾𝐾𝑗𝑗𝐶𝐶𝑒𝑒) [38] 

Freundlich 2 𝑞𝑞𝑒𝑒 = 𝐾𝐾𝐹𝐹𝐴𝐴𝑒𝑒
1
𝑛𝑛𝐹𝐹 

[39] 

Dubinin-
Radushkevich 
 
 
 
 
 
 
 

2 
 
 
 
 
 
 
 

Incorrect form 

𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑅𝑅𝐴𝐴𝑒𝑒𝑝𝑝 �−𝐾𝐾𝑚𝑚𝑅𝑅 �𝑅𝑅𝑅𝑅𝑙𝑙𝑛𝑛 �1 +
1
𝐴𝐴𝑒𝑒
��
2

� 

correct form 

𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑅𝑅𝐴𝐴𝑒𝑒𝑝𝑝�−𝐾𝐾𝑚𝑚𝑅𝑅 �𝑅𝑅𝑅𝑅𝑙𝑙𝑛𝑛 ��
𝐴𝐴𝑠𝑠
𝐴𝐴𝑒𝑒
���

2

� 

[40,41] 
 
 
 
[42,43] 

    

Koble-Corrigan 3 𝑞𝑞𝑒𝑒 =
𝐴𝐴𝐴𝐴𝑒𝑒𝑛𝑛

1 + 𝐵𝐵𝐴𝐴𝑒𝑒𝑛𝑛
 

 

[44] 

Temkin 3 𝑞𝑞𝑒𝑒 =
𝑅𝑅𝑅𝑅
𝑏𝑏𝑇𝑇

{𝑙𝑙𝑛𝑛(𝐵𝐵𝑇𝑇𝐴𝐴𝑒𝑒)} [45,46] 

Redlich-Peterson 3 𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑅𝑅𝑃𝑃1𝐴𝐴𝑒𝑒

1 + 𝐾𝐾𝑅𝑅𝑃𝑃2𝐴𝐴𝑒𝑒
𝛽𝛽𝑅𝑅𝑅𝑅

 [47] 

Sips 3 𝑞𝑞𝑒𝑒 =
𝐾𝐾𝑠𝑠𝑞𝑞𝑚𝑚𝑅𝑅𝐴𝐴𝑒𝑒

1
𝑛𝑛𝑆𝑆

1 + 𝐾𝐾𝑠𝑠𝐴𝐴𝑒𝑒
1
𝑛𝑛𝑆𝑆

 

[48] 

Toth 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑇𝑇𝐴𝐴𝑒𝑒

�𝐾𝐾𝑇𝑇 + 𝐴𝐴𝑒𝑒
𝑛𝑛𝑇𝑇�𝑛𝑛𝑇𝑇

 [49] 

Hill 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝐴𝐴𝑒𝑒

𝑛𝑛𝐻𝐻

𝐾𝐾𝑚𝑚 + 𝐴𝐴𝑒𝑒
𝑛𝑛𝐻𝐻 

[50]  

Khan 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝐾𝐾𝑏𝑏𝐾𝐾𝐴𝐴𝑒𝑒

(1 + 𝑏𝑏𝐾𝐾𝐴𝐴𝑒𝑒)𝑎𝑎𝐾𝐾 
[51] 

BET 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝛼𝛼𝑚𝑚𝑚𝑚𝑇𝑇𝐴𝐴𝑒𝑒

(1 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑇𝑇𝐴𝐴𝑒𝑒)(1 − 𝛽𝛽𝑚𝑚𝑚𝑚𝑇𝑇𝐴𝐴𝑒𝑒 + 𝛼𝛼𝑚𝑚𝑚𝑚𝑇𝑇𝐴𝐴𝑒𝑒) [52] 

Vieth-Sladek 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚𝑅𝑅𝑏𝑏𝑚𝑚𝑅𝑅𝐴𝐴𝑒𝑒

(1 + 𝑏𝑏𝑚𝑚𝑅𝑅𝐴𝐴𝑒𝑒)𝑛𝑛𝑉𝑉𝑆𝑆 [53] 

Radke-Prausnitz  3 𝑞𝑞𝑒𝑒 =
𝐴𝐴𝑅𝑅𝑃𝑃𝐵𝐵𝑅𝑅𝑃𝑃𝐴𝐴𝑒𝑒

𝛽𝛽

𝐴𝐴𝑅𝑅𝑃𝑃 + 𝐵𝐵𝑅𝑅𝑃𝑃𝐴𝐴𝑒𝑒
𝛽𝛽−1 

[54–56] 

Brouers–Sotolongo 3 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑚𝑚𝑅𝑅 �1 − �1 + (0.5) �
𝑓𝑓
𝜏𝜏�

𝛼𝛼
�
−2

� 
[57–59] 

Fritz-Schlunder-III 3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝐹𝐹𝑅𝑅𝐾𝐾𝐹𝐹𝑅𝑅𝐴𝐴𝑒𝑒

1 + 𝐾𝐾𝐹𝐹𝑅𝑅𝐴𝐴𝑒𝑒
𝑛𝑛𝐹𝐹𝑆𝑆 [60] 

Fowler-Guggenheim* 
 

3 

 

𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝐹𝐹𝑚𝑚
𝐾𝐾𝑚𝑚𝐴𝐴𝑒𝑒𝐴𝐴

𝛼𝛼𝑞𝑞𝑒𝑒
𝑞𝑞𝑚𝑚𝐹𝐹𝑚𝑚

1 + 𝐾𝐾𝑚𝑚𝐴𝐴𝑒𝑒𝐴𝐴
𝛼𝛼𝑞𝑞𝑒𝑒
𝑞𝑞𝑚𝑚𝐹𝐹𝑚𝑚

 

[61] 

Moreau 
3 𝑞𝑞𝑒𝑒 = 𝑞𝑞𝑚𝑚𝑅𝑅

𝑏𝑏𝐴𝐴𝑒𝑒 + 𝑙𝑙𝑏𝑏2𝐴𝐴𝑒𝑒2

1 + 2𝑏𝑏𝐴𝐴𝑒𝑒 + 𝑙𝑙𝑏𝑏2𝐴𝐴𝑒𝑒2
 

[62] 

Unilan  3 𝑞𝑞𝑒𝑒 =
𝑞𝑞𝑚𝑚𝑚𝑚

2𝑏𝑏𝑚𝑚
𝑙𝑙𝑛𝑛 �

𝐵𝐵𝑚𝑚 + 𝐴𝐴𝑒𝑒𝐴𝐴𝑂𝑂𝑈𝑈
𝐵𝐵𝑚𝑚 + 𝐴𝐴𝑒𝑒𝐴𝐴−𝑂𝑂𝑈𝑈

� 
 

Note *Implicit equation or function. 
 
 

Application of Multiobjective Optimization by Ratio 
Analysis (MOORA) in Modeling 
The Multiobjective Optimization by Ratio Analysis (MOORA) 
was employed for multi-criteria decision-making (MCDM) in the 
modeling exercise since a mixture of error function superiority is 
often found for the top models. This approach facilitates the 
selection of the optimal model by simultaneously evaluating 
multiple performance metrics [26,27]. The methodology consists 
of the 1st step of the normalization of the decision matrix to 
ensure comparability among different performance metrics; the 
decision matrix was normalized. Given that these metrics may 
have varying units and magnitudes, normalization needs to be 
carried out using the following equation: 
 
𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑋𝑋𝑖𝑖𝑗𝑗

�∑ 𝑋𝑋𝑖𝑖𝑗𝑗
2𝑛𝑛

𝑖𝑖=1

       (Eqn. 10) 

 
Where Xij is the original value of the jth metric for the ith model, 
and Xiij is the normalized value. 
 
Ratio System Analysis 
The normalized values were then aggregated using an approach 
of a ratio system. Beneficial criteria (those that should be 
maximized, adjR2) were summed up, while non-beneficial 
criteria (the rest of the error functions) or those that should be 
minimized were subtracted using the following formula: 
 
𝑌𝑌𝑖𝑖 = ∑ 𝑋𝑋𝑖𝑖𝑖𝑖′ −𝑂𝑂𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏 ∑ 𝑋𝑋𝑖𝑖𝑖𝑖′𝑛𝑛𝑛𝑛𝑛𝑛−𝑂𝑂𝑒𝑒𝑛𝑛𝑒𝑒𝑏𝑏𝑖𝑖𝑏𝑏𝑖𝑖𝑎𝑎𝑏𝑏   (Eqn. 11)  
 
Where Yi is the final score for the ith model 
 

In circumstances where certain criteria were deemed more 
crucial than others, weighted ratios are recommended to be 
incorporated into the analysis. The suggestion for incorporating 
Weighted Ratios is not carried out at this point in time as the 
consensus for which error functions listed above has priority over 
the other has not been documented in the literature. The final step 
is ranking models based on their aggregated performance scores. 
Higher scores indicated superior performance. The model with 
the highest value was considered the most optimal based on the 
given decision criteria. This methodology allowed for an 
objective and systematic comparison of kinetic models, 
facilitating the identification of the best-performing model while 
considering multiple performance metrics simultaneously. 
 
RESULTS AND DISCUSSION 
 
Several models were applied to the equilibrium data of [32] by 
nonlinear regression. Notably, as shown in Figs. 1–18, all of 
these models showed good data fits with the exception of the 
Henry and the Dubinin–Radushkevich model, of which the latter 
failed to converge. The error function analysis is shown in Table 
2. The Multiobjective Optimization on the Basis of Ratio 
Analysis (MOORA) approach was used to compare the 
adsorption isotherm models' effectiveness, which is presented in 
Table 3. The top five models in descending order were found to 
be the Koble-Corrigan, Brouers–Sotolongo, Fritz-Schlunder III, 
Hill, and Sips models ranked in the form of the SCO or the 
Standard Competition Order (1-2-2-4), where when two ranks are 
tied, they received the same rank and the next rank will be 
skipped one rank. MOORA’s uses the SCO as the basis of 
ranking and its uses in academia as a rank system is reported early 
in the year 2009 [65] based on a Google Scholar search for the 
term “Standard Competition Order” 1-2-2-4 rule.  
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The compared isotherms were found to show higher fitting 
capability than other evaluated isotherms. These models were 
then compared with the Langmuir and Freundlich models. The 
Langmuir, Brouers-Sotolongo, Sips, and Hill models were able 
to estimate the maximum adsorption capacity (qm) with relatively 
narrow confidence intervals. Conversely, the Langmuir model 
exhibited a wide confidence interval (Table 4), which may 
indicate a lower precision in the estimation. However, the Fritz–
Schlunder–III model was found to overestimate the qm 
significantly and gave a very high value. This inconsistency may 
be due to the model being overfitted, or the model might not have 
been able to properly capture the adsorption equilibrium data 
within the range of concentrations used in the study. 
Nevertheless, the Freundlich, Koble-Corrigan, and Brouers-
Sotolongo models were found to be unable to estimate the qm 
because they are more empirical or semi-empirical models which 
are often used to describe the adsorption process rather than 
estimating the saturation capacity.  
 

Out of the models assessed, the Brouers–Sotolongo 
isotherm was found to be the most accurate model for 
determining qm. This conclusion is drawn from the fact that it can 
produce a precise estimate with narrow confidence limits while 
taking into consideration the heterogeneity of the adsorption 
process. The Langmuir model, nevertheless, remains popular 
despite a higher level of uncertainty in its application.   

 
 

 
 
 
Fig. 1. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Henry model. 
 

 
 
Fig. 2. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Langmuir isotherm model. 

 
 
Fig. 3. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Freundlich isotherm model. 
 

 
Fig. 4. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Temkin isotherm model. 
 

 
Fig. 5. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Koble-Corrigan isotherm model. 
 

 
Fig. 6. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Jovanovic isotherm model. 
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Fig. 7. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Redlich-Peterson isotherm model. 

 
Fig. 8. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Sips isotherm model. 

 
Fig. 9. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Toth isotherm model. 

 
Fig. 10. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Hill isotherm model. 

 
Fig. 11. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Khan isotherm model. 

 
Fig. 12. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the BET isotherm model. 

 
Fig. 13. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Vieth-Sladek isotherm model. 

 
Fig. 14. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Radke-Prausnitz isotherm model. 
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Fig. 15. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Brouers-Sotolongo isotherm model. 
 

 
 
Fig. 16. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Fritz-Schlunder III isotherm model. 
 

 
 
Fig. 17. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Unilan isotherm model. 
 

 
 
Fig. 18. Copper adsorption onto chitosan–silica composite aerogel 
modelled using the Moreau isotherm model. 
 
 
 

 
 
Table 2. Error function analysis for the fitting of the isotherm of copper 
adsorption onto chitosan–silica composite aerogel. 
 
Model p MPSD RMSE adR2 AICc BIC HQC BF AF 
Henry 1 1678.6 16.786 -0.157 42.753 34.54 33.92 0.525 2.157 
Langmuir 2 776.7 7.767 0.217 44.167 25.75 24.50 0.986 1.174 
Freundlich 2 1002.3 10.023 -0.539 47.226 28.81 27.56 0.958 1.232 
Temkin 3 1010.2 10.102 -0.240 77.594 28.97 27.09 0.960 1.198 
Koble-Corrigan 2 249.72 2.497 0.96 30.549 12.13 10.88 0.901 1.059 
Jovanovic 2 664.17 6.642 0.442 42.288 23.87 22.62 0.999 1.143 
Redlich-Peterson 3 644.33 6.443 0.473 72.198 23.57 21.70 1.001 1.110 
Sips 3 275.28 2.753 0.943 61.993 13.37 11.49 1.006 1.042 
Toth 3 661.24 6.612 0.443 72.509 23.88 22.01 0.999 1.111 
Hill 3 275.28 2.753 0.943 61.993 13.37 11.49 1.006 1.042 
Khan 3 687.88 6.879 0.386 72.982 24.36 22.48 0.997 1.115 
BET 3 697.74 6.977 0.321 73.153 24.53 22.65 1.002 1.109 
Vieth-Sladek 3 713.44 7.134 0.346 73.420 24.80 22.92 0.993 1.121 
Radke-Prausnitz 3 687.88 6.879 0.386 72.982 24.36 22.48 0.997 1.115 
Brouers–Sotolongo 3 258.08 2.581 0.948 61.218 12.59 10.72 1.007 1.043 
Fritz-Schlunder III 3 258.08 2.581 0.948 61.218 12.59 10.72 1.007 1.043 
Unilan 3 897.25 8.972 -0.177 76.171 27.55 25.67 0.985 1.174 
Fowler-Guggenheim 3 316.29 3.163 0.926 63.659 15.03 13.16 0.994 0.994 
Moreau 3 607.54 6.075 0.581 71.492 22.87 20.99 1.008 1.008 
Note: 
RMSE Root mean Square Error 
adR2 Adjusted Coefficient of determination 
p no of parameters 
AF Accuracy factor 
BF Bias factor 
BIC Bayesian Information Criterion 
AICc Adjusted Akaike Information Criterion 
HQC Hannan–Quinn information criterion 
 
 
Table 3. Ranking of isothermal models based on MOORA.  
 

Model 
MOORA’s 
Ratio value 

Rank 

Koble-Corrigan -6.37 1 
Brouers–Sotolongo -16.60 2 
Fritz-Schlunder III -16.60 2 
Hill -17.36 4 
Sips -17.36 4 
Jovanovic -18.98 6 
Fowler-Guggenheim -19.10 7 
Langmuir -21.95 8 
Freundlich -27.77 9 
Moreau -29.50 10 
Redlich-Peterson -30.64 11 
Toth -31.16 12 
Radke-Prausnitz -31.97 13 
Khan -31.97 13 
BET -32.26 15 
Vieth-Sladek -32.73 16 
Unilan -38.07 17 
Henry -40.68 18 
Temkin -41.16 19 

 
Koble-Corrigan, Hill, and Sips models  
The Koble-Corrigan isotherm model is a 3-parameter adsorption 
model. The model combines the features of Langmuir and 
Freundlich models to fit data from heterogeneous surfaces with 
different energy sites. Since this model can designate both 
monolayer and multilayer adsorption, it is useful when the 
Freundlich model fits the data poorly at high surface site 
capacities, and the Langmuir model fits the data poorly at low 
surface site capacities. This model is used extensively in 
environmental and industrial adsorption studies in wastewater 
treatment, heavy metal removal, and dye adsorption [66–68]. It 
has an exponent parameter that better describes various systems' 
adsorption intensity and capacity. As a result, estimating model 
parameters is a nonlinear regression task, which is more time-
consuming than other simpler isotherm models. Nevertheless, its 
complexity is rewarded with a more realistic description of the 
adsorption behaviour on real-world heterogeneous adsorbents, 
which makes it a valuable tool in adsorption science and 
engineering. 
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Table 4: Isothermal models' constants for copper adsorption onto chitosan–silica composite aerogel .   
 
Model p Unit Value (95% confidence interval) 
Langmuir qmL  

bL  
mg g-1 
L mg-1 

39.329 
0.0328 

19.273 to 59.387 
-0.0293 to 0.0951 

Freundlich# KF 
nF  

(mg g−1.L mg−1)1/n(L mg-

1) 
6.996 
3.467 

-8.124 to 22.117 
-1.650 to 8.584 

Koble-Corrigan# A 
B 
n 

(mg g-1)(L mg-1)n 

(L mg-1)n 

dimensionless 

0.000017288 
0.0000005027 
4.51 

-0.00024 to 0.00028 
-0.000007 to 0.000008 
-0.155 to 9.174 

Koble-Corrigan (test for 
equivalence) 

A/B 
=qmKC 

mg g-1 34.3902924 (8 decimal points for values of A and B) 
17.000 (6 decimal points for values of A and B) 

 

     
Brouers-Sotolongo  
 

qmBS 
KBS 
nBS 

mg g-1 

mg-1/nBS L1/nBS 

dimensionless  

34.01 
0.00009 
0.29  

29.605 to 38.410 
-0.00006 to 0.00008 
0.073 to 0.498 

Sips qmS 
KS 
nS 

mg g-1 

(L mg-1)ns 

dimensionless 

34.114 
0.000000008504 
0.172861 

29.089 to 39.139 
-0.0000001 to 0.0000002 
-0.0302 to 0.376 

Sips (test for qeuivalence) 1/nS 
1/Ks 

 
L-n mgn 

5.78489 
117557243.87 

 

     
Hill qmH 

nH 
KH 

mg g-1 

dimensionless 
mg L-1 

34.114 
5.78489 
117557243.87 
 

29.09 to 39.14 
-1.01 to 12.58 
-2412930516.71 to 2648045004.45 

Fritz–Schluender–III qmFS 
KFS 
nFS 

mg g-1 

L mg-1 
dimensionless 

1217.68 
0.00066 
1.616 
 

-8572.67 to 11008.04 
-0.00513 to 0.00644 
0.173 to 3.058 

Note 
#Isotherms that have no direct way in estimating maximum adsorption capacity (mg g-1). Underlined values indicate the same values shared by more than one model. 
 

The Sips model integrates the highly utilized Langmuir and 
Freundlich isotherms and facilitates the prediction of 
heterogeneous adsorption systems. The Sips model addresses the 
limitations encountered in modeling elevated solute 
concentrations inherent to the Freundlich model. At low solute 
concentrations, it effectively converges to the Freundlich 
isotherm. At high solute concentrations, it simplifies the 
Langmuir model of monolayer sorption capacity [69]. The Sips 
model is found to be the best model in various sorption studies 
[70–75].  
 

The Hill model was introduced and is based on the notion of 
a mobile-first layer conforming to a two-dimensional van der 
Waals equation. Nonetheless, the Hill model was found to be the 
most effective in scenarios involving moderately elevated 
concentrations. It points towards the strength of attraction 
between an adsorbent and its intended adsorbates, which is 
demonstrated by the steepening of the isotherm curves at 
increasing values of KH. By modifying the values of nH, a range 
of isotherms can be deduced from the Hill model, which 
encompasses the S- and L-shaped curves. Chu et al. [76] recently 
demonstrated the mathematical equivalence of the Hill, Liu, Sips, 
and Koble–Corrigan isotherm models. However, to sustain these 
models' historical context and original conceptual 
individualisms, they will continue to be depicted in their 
traditional forms to preserve each of the model's theoretical 
interpretations while acknowledging their underlying 
similarities. An interesting observation regarding the MOORA’s 
ranking is that the Koble-Corrigan model is given the first rank 
whilst both the Sips and Hill model, each receive a rank of 2, 
confirming their mathematical equivalence as shown by Chu [76] 
and also demonstrated in the same values for the parameters in 
the (test for equivalence) row. The question is why does the 
Koble-Corrigan model does not receive the same rank? The 
analysis presented in Table 4 for the Koble-Corrigan model (test 
for equivalence) suggests that the observed discrepancy is likely 
due to the sensitivity of the calculated parameter values to the 
number of decimal places used in the computation. In certain 
datasets, such as the one used by Chu, the parameter qm is derived 

from the division of A by B (or A/B). In Chu et al., [76] these 
parameters are denoted as Q and bK, respectively, leading to a 
calculated value of qm=17.88/0.006=2980 qm= 17.88/0.006 = 
2980 mg/g. 
 

In Table 3 of Chu’s paper, the calculated qm value for the 
Sips, Liu, and Hill models was consistently reported as 2795 
mg/g. If the Koble-Corrigan model were to be considered 
mathematically equivalent to the Sips, Liu, and Hill models, the 
qm value should align accordingly. Additionally, the 
dimensionless parameter n was reported as 0.748 for the Koble-
Corrigan, Sips, Liu, and Hill models [76]. Given this 
equivalency, the other parameters should be determinable with 
precision, except for qm, which appears inconsistent. This 
discrepancy is likely due to the number of decimal places used in 
calculations for the Koble-Corrigan model. While it is 
mathematically equivalent to the Sips, Liu, and Hill models, the 
exact parameter values may differ slightly due to rounding and 
numerical precision in the computation process. 
 
Fritz-Schlunder III 
The Fritz Schlunder III isotherm is a model employed to explain 
the adsorption processes on surfaces having varying 
characteristics. It integrates the elements of the Langmuir and 
Freundlich isotherms, which renders it suitable for certain 
situations where adsorption sites display differences in energy 
levels and capacities. This model demonstrated significant 
efficacies in real-world data for limited adsorption systems. Its 
advantage is its ability to accommodate adsorption energies and 
capacities, and it is a valuable model for the prediction of the 
adsorption process in heterogeneous systems [60]. 
 
Brouers-Sotolongo  
The Brouers-Sotolongo (BS) model is an isotherm model whose 
development incorporates the principles of the classical models 
to describe the adsorption processes on heterogeneous surfaces. 
The BS model was developed by incorporating new parameters 
representing the variety and complexity of active sites on the 
adsorbent material. The BS model provides a generalised 
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approach to the description of adsorption isotherms. The 
superiority of the model has been shown in numerous 
applications.  
 

The BS model was found to be the best fit for the adsorption 
data in a study that involved the biosorption of Yellow Tartrazine 
dye using the agro-industrial wastes sugarcane bagasse and rice 
husk [77]. Another investigation for metal sorption on soils that 
utilizes models including Brouers-Sotolongo, Sips, Hill, and 
Langmuir-Freundlich models showed that the  BS model fitted 
the experimental data very well [78]. More recent work on the 
adsorption of mercury (II) ions (Hg2+) onto a novel porous 
organic polymer also showed the BS as the best model [79]. 
Another work on removing Gram negative enteric bacteria using 
a hybrid clay composite that is surface-modified with chitosan 
also showed the BS model as the best model [80]. 
 

MOORA distinguishes itself through its simplicity and 
computational efficiency, as it normalizes performance ratings 
across criteria, eliminating the need for complex pairwise 
comparisons or distance calculations. This approach is 
particularly advantageous when handling criteria with different 
units and scales, allowing for transparent and rapid evaluation. 
Although MCDM has been extensively applied in other model 
ranking exercises, such as evaluating Software Reliability 
Growth Models (SRGMs) [81], its application in adsorption 
model selection remains scarce. A significant limitation of 
nonlinear modeling is that small datasets (such as the six data 
points used in this study) may fail to adequately describe 
adsorption behavior. Limited data increases the likelihood of 
capturing random noise rather than true adsorption trends, 
leading to overfitting and unreliable parameter estimation. Small 
datasets also suffer from low statistical power, wider confidence 
intervals, and difficulty in model validation. To mitigate these 
challenges, statistical techniques such as Monte Carlo 
simulations, bootstrapping, and sensitivity analysis can improve 
model robustness and provide deeper insight into adsorption 
behavior [82]. 
 

In the original publication of [32], the values obtained in this 
study are similar, but the Langmuir choice as the better model 
based on AIN and BIC is premature as the difference in values is 
less than 5. In addition, extracted residual data for the sum of 
squared residuals (SSR) of the Hill model was 30.56, while for 
the Langmuir model, it was 266.26, suggesting a better fit for the 
Hill model. Since the Freundlich model was not shown in Figure 
4b despite the fitting parameter values are shown in Table 4 of 
[32], it was excluded from the analysis. Additionally, the 
coefficient of determination (R²) calculated by us for the 
extracted data for the Hill model was 0.9787, meaning it 
describes 97.87% of the variance in the experimental data, 
whereas, for the Langmuir model, it was 81.42% (R² = 0.8142). 
Even when accounting for model complexity using the adjusted 
R² that penalizes for the extra parameter of the Hill's model, the 
Hill model remains superior, with an adjusted R² of 0.9573 
compared to 0.7213 for the Langmuir model based on our 
calculations. These results uphold that the Hill model provides a 
significantly better representation of the adsorption activity, 
establishing it as the preferred model in contrast to the original 
findings of [32]. The R² value is reported for the Weber and 
Morris model but missing from the pseudo-first-order and 
pseudo-second-order models in Table 3 [32]. As R² is one of the 
most popular goodness-of-fit metrics, the lack of it makes it very 
difficult to justify why the pseudo-second-order model is better 
than the others. This inconsistency is further compounded by the 
isothermal model fitting where no R² values are reported for 
Figure 4b of [32], even though it was initially utilized to choose 

the best kinetics model. Since the comparison of models involves 
different parameters, the adjusted R² should have been used 
instead because it penalizes the number of parameters. We 
demonstrated that even using adjusted R², the Hill model is still 
the best compared to Langmuir. Without this correction, the 
preference of one model over the other may be misleading 
because of overfitting. Further, the application of AIC and BIC 
is not thorough because the authors do not present the delta 
values of AIC and BIC as Motulsky and Ranas (2006) 
recommended. As pointed out by statistical best practices, a 
ΔAIC > 5 is required to establish the difference between models 
firmly.  

 
This paper  [32] shows that the reported AIC and BIC values 

show only small differences; hence, the conclusions based on 
these criteria may not be statistically significant. Thus, the lack 
of a correct assessment of ΔAIC and ΔBIC makes it doubtful to 
choose the best kinetic and isotherm models. Our application of 
MOORA demonstrated superior performance in ranking 
adsorption models, overcoming the inconsistencies of previous 
analyses. The original conclusions by Vareda et al. [32] can be 
strengthened by incorporating additional error functions and a 
structured MCDM approach, reinforcing the reliability of 
adsorption model selection. 
 
CONCLUSION 
 
The equilibrium adsorption data from a published work were 
reanalyzed using several nonlinear regression models, and it was 
found that most of the models fitted the data well except for the 
Henry and Dubinin-Radushkevich models. The Multiobjective 
Optimization on the Basis of Ratio Analysis (MOORA) was 
applied to develop a systematic or objective approach for ranking 
the adsorption isotherms, and the ranking result showed that the 
order of isotherms is Koble-Corrigan, Brouers-Sotolongo, Fritz-
Schlunder III, Hill and Sips. The Brouers-Sotolongo model was 
discovered to be the most accurate in the estimation of maximum 
adsorption capacity (qm) because it could incorporate the 
phenomenon of surface heterogeneity while maintaining 
accuracy with narrow confidence intervals. These results show 
that the Langmuir model is not without its limitations; even 
though it is one of the most popular models, it has a wide 
confidence interval and low precision. Furthermore, the Fritz-
Schlunder III model was discovered to overestimate qm 
significantly, which may be attributed to overfitting. It was thus 
possible to establish that the Koble-Corrigan, Sips, Hill, and Liu 
models are equivalent mathematically, but the slight 
disagreements in the calculated parameter values were accredited 
to rounding of the decimal points.   The main weakness of this 
and many isothermal studies was the size of the dataset which 
can affect the accuracy of the model fitting and possible 
mechanistic interpretation of adsorption processes. In order to 
address this, it is suggested that in future work, more data should 
be collected and analyzed, and statistical procedures such as 
Monte Carlo simulations and bootstrapping should be used to 
increase the stability of the models.  Furthermore, the result of 
this study stresses the importance of using statistical criteria, such 
as adjusted R² and ΔAIC/BIC, for model identification and to use 
and report them nonselectively. The use of MOORA in the 
ranking of adsorption models has been found to be a better and 
more systematic way of making the analysis than what has been 
done previously. These results support the previous findings, 
which suggest that it is necessary to employ multiple evaluation 
criteria for the adsorption systems in order to gain a fuller 
understanding of the adsorption processes. 
 
 

https://doi.org/10.54987/jebat.v5i2


JEMAT 2024, Vol 12, No 2, 53-62 
https://doi.org/10.54987/jemat.v12i2.1026   

- 61 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

REFERENCES 
 
1.  Shukor MY. Outlier and Normality Testing of the Residuals from 

the Carreau-Yasuda Model in Fitting the Rheological Behavior of 
the Non-Newtonian fluid TF2N. Bioremediation Sci Technol Res. 
2021 Jul 31;9(1):20–6.  

2.  Shukor MY. Bartlett and the Levene’s tests of homoscedasticity of 
the modified Gompertz model used in fitting of Burkholderia sp. 
strain Neni-11 growth on acrylamide. Bioremediation Sci Technol 
Res. 2016 Jul 31;4(1):18–9.  

3.  Huitema BE, McKean JW, Zhao J. The runs test for autocorrelated 
errors: unacceptable properties. J Educ Behav Stat. 
1996;21(4):390–404.  

4.  Foo KY, Hameed BH. Insights into the modeling of adsorption 
isotherm systems. Chem Eng J. 2010;156(1):2–10.  

5.  Wang Y, Wang C, Huang X, Zhang Q, Wang T, Guo X. Guideline 
for modeling solid-liquid adsorption: Kinetics, isotherm, fixed bed, 
and thermodynamics. Chemosphere. 2024 Feb 1;349:140736.  

6.  Ezekiel M. The Sampling Variability of Linear and Curvilinear 
Regressions: A First Approximation to the Reliability of the Results 
Secured by the Graphic “Successive Approximation” Method. Ann 
Math Stat. 1930;1(4):275–333.  

7.  Akaike H. A New Look at the Statistical Model Identification. IEEE 
Trans Autom Control. 1974;19(6):716–23.  

8.  Burnham KP, Anderson DR. Multimodel inference: Understanding 
AIC and BIC in model selection. Sociol Methods Res. 
2004;33(2):261–304.  

9.  Schwarz G. Estimating the Dimension of a Model. Ann Stat. 
1978;6(2):461–4.  

10.  Hannan EJ, Quinn BG. The Determination of the Order of an 
Autoregression. J R Stat Soc Ser B Methodol. 1979;41(2):190–5.  

11.  Marquardt DW. An Algorithm for Least-Squares Estimation of 
Nonlinear Parameters. J Soc Ind Appl Math. 1963;11(2):431–41.  

12.  Seidel A, Gelbin D. On applying the ideal adsorbed solution theory 
to multicomponent adsorption equilibria of dissolved organic 
components on activated carbon. Chem Eng Sci. 1988 Jan 
1;43(1):79–88.  

13.  Porter JF, McKay G, Choy KH. The prediction of sorption from a 
binary mixture of acidic dyes using single- and mixed-isotherm 
variants of the ideal adsorbed solute theory. Chem Eng Sci. 
1999;54(24):5863–85.  

14.  Vilardi G, Di Palma L, Verdone N. Heavy metals adsorption by 
banana peels micro-powder: Equilibrium modeling by nonlinear 
models. Chin J Chem Eng. 2018 Mar 1;26(3):455–64.  

15.  Manjunatha CR, Nagabhushana BM, Naryana A, Usha P, Raghu 
MS, Adrsha JR. Adsorption of fluoride and DB-53 dye onto 
PLA/rGO nanoparticles: Mathematical modeling and statistical 
studies. J Water Process Eng. 2021 Dec 1;44:102447.  

16.  Asha PK, Deepak K, Prashanth MK, Parashuram L, Devi VSA, 
Archana S, et al. Ag decorated Zn-Al layered double hydroxide for 
adsorptive removal of heavy metals and antimicrobial activity: 
Numerical investigations, statistical analysis and kinetic studies. 
Environ Nanotechnol Monit Manag. 2023 Dec 1;20:100787.  

17.  Khayat ME, Shukor MY. A Fixed-Bed Study on the Feedsorption 
of BSA Using PKC: Toward the Sustainable Agrisorption of 
Protein-rich Waste for Enhancing Low Nutritional-value Feed. 
Bioremediation Sci Technol Res E-ISSN 2289-5892. 2023 Dec 
31;11(2):1–9.  

18.  Saaty TL. The Analytic Hierarchy Process: Planning, Priority 
Setting, Resource Allocation. New York: McGraw-Hill; 1980. 287 
p.  

19.  Hwang CL, Yoon K. Multiple Attribute Decision Making: Methods 
and Applications A State-of-the-Art Survey. 1st edition. Berlin 
Heidelberg: Springer; 1981. 280 p.  

20.  Brans JP. L’ingénierie de la décision; elaboration d’instruments 
d’aide à la décision. La méthode PROMETHEE [Decision 
engineering; development of decision support tools. The 
PROMETHEE method]. In: Nadeau R, Landry M, editors. L’aide à 
la décision: nature, instruments et perspectives d’avenir. Québec, 
Canada: Presses de l’Université Laval; 1982. p. 183-213.  

21.  Fishburn PC. Additive Utilities with Incomplete Product Sets: 
Application to Priorities and Assignments. Oper Res. 1967 May 
1;15:537.  

22.  Triantaphyllou E. Multi-criteria Decision Making Methods: A 
Comparative Study. 2000th edition. Dordrecht: Springer; 2000. 320 
p.  

23.  Hamurcu M, Eren T. Applications of the MOORA and TOPSIS 
methods for decision of electric vehicles in public transportation 
technology. Transport. 2022 Nov 18;37:251–63.  

24.  Homayounfar M, Fadaei M, Gheibdoust H, Rezaee Kelidbari H. A 
Systematic Literature Review on MOORA Methodologies and 
Applications. Iran J Oper Res. 2022 Jan 1;13:164–83.  

25.  Brauers WK. Multiobjective optimization (moo) in privatization. J 
Bus Econ Manag. 2004 Jan 1;5(2):59–65.  

26.  Brauers W. Multi-objective seaport planning by MOORA decision 
making. Ann Oper Res. 2013 Jul 1;206.  

27.  Karel W, Brauers W, Zavadskas E. The MOORA method and its 
application to privatization in a transition economy. Control 
Cybern. 2006 Jan 1;35.  

28.  Rahim R, Siahaan APU, Farta Wijaya R, Hantono H, Aswan N, 
Thamrin S, et al. Technique for Order of Preference by Similarity 
to Ideal Solution (TOPSIS) method for decision support system in 
top management. Int J Eng Technol. 2018 Jan 1;7:290–3.  

29.  Barik T, Parida S, Pal K. Optimizing Process Parameters in Drilling 
of CFRP Laminates: A Combined MOORA–TOPSIS–VIKOR 
Approach. Fibers Polym. 2024 May 1;25(5):1859–76.  

30.  Turan E, Özkan A. Prioritization of amine-based solid sorbents for 
post-combustion CO2 capture using different multi-criteria 
decision-making tools. Int J Environ Sci Technol [Internet]. 2024 
Dec 16 [cited 2025 Feb 17]; Available from: 
https://doi.org/10.1007/s13762-024-06181-8 

31.  Azari A, Nabizadeh R, Mahvi AH, Nasseri S. Integrated Fuzzy 
AHP-TOPSIS for selecting the best color removal process using 
carbon-based adsorbent materials: multi-criteria decision making 
vs. systematic review approaches and modeling of textile 
wastewater treatment in real conditions. Int J Environ Anal Chem. 
2022 Dec 28;102(18):7329–44.  

32.  Vareda JP, Matias PMC, Paixão JA, Murtinho D, Valente AJM, 
Durães L. Chitosan–Silica Composite Aerogel for the Adsorption 
of Cupric Ions. Gels. 2024 Mar;10(3):192.  

33.  Tawfik GM, Dila KAS, Mohamed MYF, Tam DNH, Kien ND, 
Ahmed AM, et al. A step by step guide for conducting a systematic 
review and meta-analysis with simulation data. Trop Med Health. 
2019 Aug 1;47(1):46.  

34.  Khare KS, Phelan FR. Quantitative Comparison of Atomistic 
Simulations with Experiment for a Cross-Linked Epoxy: A Specific 
Volume-Cooling Rate Analysis. Macromolecules. 2018;51(2):564–
75.  

35.  Langmuir I. THE ADSORPTION OF GASES ON PLANE 
SURFACES OF GLASS, MICA AND PLATINUM. J Am Chem 
Soc. 1918;40(2):1361–402.  

36.  Schirmer W. Physical Chemistry of Surfaces. Z Für Phys Chem. 
1999;210(1):134–5.  

37.  Ridha FN, Webley PA. Anomalous Henry’s law behavior of 
nitrogen and carbon dioxide adsorption on alkali-exchanged 
chabazite zeolites. Sep Purif Technol. 2009;67(3):336–43.  

38.  Jovanović DS. Physical adsorption of gases - I: Isotherms for 
monolayer and multilayer adsorption. Kolloid-Z Amp Z Für Polym. 
1969;235(1):1203–13.  

39.  Carmo AM, Hundal LS, Thompson ML. Sorption of hydrophobic 
organic compounds by soil materials: Application of unit equivalent 
Freundlich coefficients. Environ Sci Technol. 2000;34(20):4363–9.  

40.  Radushkevich LV. Potential theory of sorption and structure of 
carbons. Zhurnal Fiz Khimii. 1949;23:1410–20.  

41.  Dubinin MM. Modern state of the theory of volume filling of 
micropore adsorbents during adsorption of gases and steams on 
carbon adsorbents. Zh Fiz Khim. 1965;39(6):1305–17.  

42.  Mahanty B, Behera SK, Sahoo NK. Misinterpretation of Dubinin–
Radushkevich isotherm and its implications on adsorption 
parameter estimates. Sep Sci Technol. 2023 May 3;58(7):1275–82.  

43.  Mudhoo A, Pittman CU. The Dubinin-Radushkevich models: 
Dissecting the ps/p to cs/ce replacement in solid-aqueous interfacial 
adsorption and tracking the validity of E = 8 kJ mol–1 for assigning 
sorption type. Chem Eng Res Des. 2023 Oct 1;198:370–402.  

44.  Koble RA, Corrigan TE. Adsorption isotherms for pure 
hydrocarbons. Ind Eng Chem. 1952 Feb 1;44(2):383–7.  

45.  Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted 
iron catalysts. Acta Physicochim USSR. 1940;12(3):327–56.  

https://doi.org/10.54987/jebat.v5i2


JEMAT 2024, Vol 12, No 2, 53-62 
https://doi.org/10.54987/jemat.v12i2.1026   

- 62 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

46.  Chu KH. Revisiting the Temkin Isotherm: Dimensional 
Inconsistency and Approximate Forms. Ind Eng Chem Res 
[Internet]. 2021 Aug 16 [cited 2022 Sep 1]; Available from: 
https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c01788 

47.  Redlich O, Peterson DL. A Useful Adsorption Isotherm. Shell Dev 
Co Emeryv Calif. 1958;63:1024.  

48.  Sips R. On the structure of a catalyst surface. J Chem Phys. 
1948;16(5):490–5.  

49.  Tóth J. Uniform interpretation of gas/solid adsorption. Adv Colloid 
Interface Sci. 1995;55(C):1–239.  

50.  Hill AV. The possible effects of the aggregation of the molecules 
of haemoglobin on its dissociation curves. J Physiol. 1910;40:iv–
vii.  

51.  Khan AA, Singh RP. Adsorption thermodynamics of carbofuran on 
Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf. 
1987;24(1):33–42.  

52.  Brunauer S, Emmett PH, Teller E. Adsorption of Gases in 
Multimolecular Layers. J Am Chem Soc. 1938;60(2):309–19.  

53.  Vieth WR, Sladek KJ. A model for diffusion in a glassy polymer. J 
Colloid Sci. 1965;20(9):1014–33.  

54.  Radke CJ, Prausnitz JM. Adsorption of Organic Solutes from Dilute 
Aqueous Solution of Activated Carbon. J Am Chem Soc. 
1972;11(4):445–51.  

55.  Liu Y, Liu YJ. Biosorption isotherms, kinetics and 
thermodynamics. Sep Purif Technol. 2008;61(3):229–42.  

56.  Tran HN, Bollinger JC, Lima EC, Juang RS. How to avoid mistakes 
in treating adsorption isotherm data (liquid and solid phases): Some 
comments about correctly using Radke-Prausnitz nonlinear model 
and Langmuir equilibrium constant. J Environ Manage. 2023 Jan 
1;325(Pt A):116475.  

57.  Brouers F, Sotolongo O, Marquez F, Pirard JP. Microporous and 
heterogeneous surface adsorption isotherms arising from Levy 
distributions. Phys Stat Mech Its Appl. 2005 Apr 1;349(1):271–82.  

58.  Hamissa AMB, Brouers F, Mahjoub B, Seffen M. Adsorption of 
Textile Dyes Using Agave Americana (L.) Fibres: Equilibrium and 
Kinetics Modelling. Adsorpt Sci Technol. 2007 Jun 1;25(5):311–
25.  

59.  Brouers F, Al-Musawi TJ. Brouers-Sotolongo fractal kinetics 
versus fractional derivative kinetics: A new strategy to analyze the 
pollutants sorption kinetics in porous materials. J Hazard Mater. 
2018 May 15;350:162–8.  

60.  Fritz W, Schluender EU. Simultaneous adsorption equilibria of 
organic solutes in dilute aqueous solutions on activated carbon. 
Chem Eng Sci. 1974;29(5):1279–82.  

61.  Chu KH, Tan B. Is the Frumkin (Fowler–Guggenheim) adsorption 
isotherm a two- or three-parameter equation? Colloid Interface Sci 
Commun. 2021 Nov 1;45:100519.  

62.  Martucci A, Braschi I, Bisio C, Sarti E, Rodeghero E, Bagatin R, et 
al. Influence of water on the retention of methyl tertiary-butyl ether 
by high silica ZSM-5 and Y zeolites: A multidisciplinary study on 
the adsorption from liquid and gas phase. RSC Adv. 
2015;5(106):86997–7006.  

63.  Ross T. Indices for performance evaluation of predictive models in 
food microbiology. J Appl Bacteriol. 1996;81(5):501–8.  

64.  Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear 
regression: a practical and nonmathematical review. FASEB J. 
1987;1(5):365–74.  

65.  Mishra SK. The Most Representative Composite Rank Ordering of 
Multi-Attribute Objects by the Particle Swarm Optimization 
[Internet]. Rochester, NY: Social Science Research Network; 2009 
[cited 2025 Feb 20]. Available from: 
https://papers.ssrn.com/abstract=1326386 

66.  Kumar PS, Vasanthakumar  sathya selva bala, Kirupha S, P. V, 
Sivanesan S. Adsorption equilibrium studies on copper (II) ions 
removal by natural waste using nonlinear approach. Environ Eng 
Manag J. 2011 Feb 1;10:285–95.  

67.  Długosz O, Szostak K, Matysik J, Matyjasik W, Banach M. 
Fabrication of ZnO/Ag and ZnO/Fe nanoparticles with immobilised 
peroxidase as a biocatalyst for photodegradation of ibuprofen. 
Sustain Mater Technol. 2023 Dec 1;38:e00763.  

68.  Melo JM, Lütke SF, Igansi AV, Franco DSP, Vicenti JRM, Dotto 
GL, et al. Mass transfer and equilibrium modelings of phenol 
adsorption on activated carbon from olive stone. Colloids Surf 
Physicochem Eng Asp. 2024 Jan 5;680:132628.  

69.  Sivarajasekar N, Baskar R. Adsorption of basic red 9 onto activated 
carbon derived from immature cotton seeds: isotherm studies and 
error analysis. Desalination Water Treat. 2014 Dec 6;52(40–
42):7743–65.  

70.  Veličković ZS, Marinković AD, Bajić ZJ, Marković JM, Perić-
Grujić AA, Uskokovic PS, et al. Oxidized and ethylenediamine-
functionalized multi-walled carbon nanotubes for the separation of 
low concentration arsenate from water. Sep Sci Technol. 2013 Sep 
2;48(13):2047–58.  

71.  Mondal S, Sinha K, Aikat K, Halder G. Adsorption 
thermodynamics and kinetics of ranitidine hydrochloride onto 
superheated steam activated carbon derived from mung bean husk. 
J Environ Chem Eng. 2015 Mar 1;3(1):187–95.  

72.  Anirudhan TS, Deepa JR, Christa J. Nanocellulose/nanobentonite 
composite anchored with multi-carboxyl functional groups as an 
adsorbent for the effective removal of Cobalt(II) from nuclear 
industry wastewater samples. J Colloid Interface Sci. 2016 Apr 
1;467:307–20.  

73.  da Rosa ALD, Carissimi E, Dotto GL, Sander H, Feris LA. 
Biosorption of rhodamine B dye from dyeing stones effluents using 
the green microalgae Chlorella pyrenoidosa. J Clean Prod. 2018 
Oct 10;198:1302–10.  

74.  Torres-Caban R, Vega-Olivencia CA, Alamo-Nole L, Morales-
Irizarry D, Roman-Velazquez F, Mina-Camilde N. Removal of 
copper from water by adsorption with calcium-alginate/spent-
coffee-grounds composite beads. Materials. 2019 Jan;12(3):395.  

75.  Zhang M, Zhu L, He C, Xu X, Duan Z, Liu S, et al. Adsorption 
performance and mechanisms of Pb(II), Cd(II), and Mn(II) removal 
by a β-cyclodextrin derivative. Environ Sci Pollut Res. 2019 Feb 
1;26(5):5094–110.  

76.  Chu KH, Debord J, Harel M, Bollinger JC. Mirror, Mirror on the 
Wall, Which Is the Fairest of Them All? Comparing the Hill, Sips, 
Koble–Corrigan, and Liu Adsorption Isotherms. Ind Eng Chem 
Res. 2022 May 18;61(19):6781–90.  

77.  Micheletti DH, Andrade JGS, Porto CE, Barros BCB, Rosa SLF, 
Sakai OA, et al. Valorization of agro-industrial wastes of sugarcane 
bagasse and rice husk for biosorption of Yellow Tartrazine dye. An 
Acad Bras Ciênc. 2024 Dec 9;96:e20231308.  

78.  Sipos P. Searching for optimum adsorption curve for metal sorption 
on soils: comparison of various isotherm models fitted by different 
error functions. SN Appl Sci. 2021 Feb 27;3(3):387.  

79.  Zuo S, Sun Y, Zheng Y, Sun X, Hu J. Efficient selective uptake of 
Hg(Ⅱ) using a porous organic polymer rich in N and S atoms. J 
Environ Chem Eng. 2024 Feb 1;12(1):111924.  

80.  Unuabonah EI, Adewuyi A, Kolawole MO, Omorogie MO, 
Olatunde OC, Fayemi SO, et al. Disinfection of water with new 
chitosan-modified hybrid clay composite adsorbent. Heliyon 
[Internet]. 2017 Aug 1 [cited 2025 Feb 17];3(8). Available from: 
https://www.cell.com/heliyon/abstract/S2405-8440(17)30813-7 

81.  Gupta A, Gupta N, Garg R, Kumar R. Evaluation, Selection and 
Ranking of Software Reliability Growth Models using Multi 
criteria Decision making Approach. In: 2018 4th International 
Conference on Computing Communication and Automation 
(ICCCA) [Internet]. 2018 [cited 2025 Feb 18]. p. 1–8. Available 
from: https://ieeexplore.ieee.org/abstract/document/8777644 

82.  Lambert RJW, Mytilinaios I, Maitland L, Brown AM. Monte Carlo 
simulation of parameter confidence intervals for nonlinear 
regression analysis of biological data using Microsoft Excel. 
Comput Methods Programs Biomed. 2012 Aug 1;107(2):155–63.  

 
 
 
 

https://doi.org/10.54987/jebat.v5i2

	INTRODUCTION

