Kinetic Models of Microbial Growth Inhibition of Pseudomonas sp. on Acrylamide

Authors

  • Mohd Badrin Hanizam Abdul Rahim Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Ezuan Khayat Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/jebat.v7i1.995

Keywords:

Substrate Inhibition, Kinetics models, Acrylamide, Haldane, Han-Levenspiel

Abstract

In this study, various secondary growth models, including Luong, Yano, Teissier-Edward, Aiba, Haldane, Monod, Han, and Levenspiel, were employed to model the inhibitory effect of high acrylamide concentrations on the growth rate of Pseudomonas sp. strain DrY135. Following thorough statistical analyzes, the ten bacterial growth models ranged from very poor fits, as observed with the Luong, Monod, and Webb models, to exceptionally good fits for the other models. The Han-Levenspiel model was superior, demonstrating minimal RMSE, BIC, HQC, and modified adj.R2 values, except for the MPSD and AICc statistics. Moreover, the model's Accuracy Factor (AF) and Bias Factor (BF) values were close to unity, indicating a good fit between predicted and observed data. Experimental research indicates that acrylamide is detrimental and impedes growth at elevated concentrations. The Han-Levenspiel constants, including the maximal degradation rate (max), half-saturation constant (Ks), maximal substrate concentration tolerated (Sm), and curve-fitting parameters (m and n), were determined to be 16.704 h−1, 3943.26 mg/L, 125.58 mg/L, 3.1469, and 0.9835, respectively. However, these values were accompanied by very large confidence intervals, likely due to the limited dataset. Similarly, the fitted parameters of other models also exhibited large 95% confidence intervals, likely for the same reason. Future remedies include incorporating additional data points to improve fitting accuracy. These enhanced constants can serve as significant inputs for future modeling projects. Furthermore, integrating substrate inhibition kinetics into risk assessment models can enhance the precision of hazard evaluation for toxic substrates at contaminated sites. This knowledge is vital for informed decision-making in environmental management.

References

Manogaran M, Othman AR, Shukor MY, Halmi MIE. Modelling the Effect of Heavy Metal on the Growth Rate of an SDS-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. Bioremediation Sci Technol Res. 2019 Jul 31;7(1):41-5.

Shukor MS, Shukor MY. Bioremoval of toxic molybdenum using dialysis tubing. Chem Eng Res Bull. 2015;18(1):6-11.

Sevinç P, Gündüz U, Eroglu I, Yücel M. Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus. Int J Hydrog Energy. 2012;37(21):16430-6.

McClure PJ, Cole MB, Davies KW. An example of the stages in the development of a predictive mathematical model for microbial growth: the effects of NaCl, pH and temperature on the growth of Aeromonas hydrophila. Int J Food Microbiol. 1994;23(3-4):359-75.

Dalgaard P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int J Food Microbiol. 1995;26(3):305-17.

Salikova N, Lovinskaya A, Kolumbayeva S, Bektemissova A, Urazbayeva S, Rodrigo-Clavero ME, et al. Evaluation of Microplastic Toxicity in Drinking Water Using Different Test Systems. Water. 2024 Nov 12;16:3250.

Cantos-Macías V, Sánchez-Piguave W, Ponce W, Riera M. Obtaining lactic acid through microbial fermentation from corn residues. Afinidad J Chem Eng Theor Appl Chem. 2023 Aug 24;80:114-24.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Khleifat KM, Tarawneh KA, Ali Wedyan M, Al-Tarawneh AA, Al Sharafa K. Growth kinetics and toxicity of Enterobacter cloacae grown on linear alkylbenzene sulfonate as sole carbon source. Curr Microbiol. 2008;57(4):364-70.

Choi NC, Choi JW, Kim SB, Kim DJ. Modeling of growth kinetics for Pseudomonas putida during toluene degradation. Appl Microbiol Biotechnol. 2008;81(1):135-41.

Kim DJ, Choi JW, Choi NC, Mahendran B, Lee CE. Modeling of growth kinetics for Pseudomonas spp. during benzene degradation. Appl Microbiol Biotechnol. 2005;69(4):456-62.

Saravanan P, Pakshirajan K, Saha P. Batch growth kinetics of an indigenous mixed microbial culture utilizing m-cresol as the sole carbon source. J Hazard Mater. 2009;162(1):476-81.

Agarry SE, Audu TOK, Solomon BO. Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol. 2009;6(3):443-50.

Jahan K, Ordóñez R, Ramachandran R, Balzer S, Stern M. Modeling biodegradation of nonylphenol. Water Air Soil Pollut Focus. 2008 Aug 1;8(3):395-404.

Schröder M, Müller C, Posten C, Deckwer WD, Hecht V. Inhibition kinetics of phenol degradation from unstable steady-state data. Biotechnol Bioeng. 1997 Jun 20;54(6):567-76.

Banerjee A, Ghoshal AK. Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. J Hazard Mater. 2010;176(1-3):85-91.

Muloiwa M, Nyende-Byakika S, Dinka M. Comparison of unstructured kinetic bacterial growth models. South Afr J Chem Eng. 2020 Jul 1;33:141-50.

Szilveszter S, Fikó DR, Máthé I, Felföldi T, Ráduly B. Kinetic characterization of a new phenol degrading Acinetobacter towneri strain isolated from landfill leachate treating bioreactor. World J Microbiol Biotechnol. 2023 Jan 17;39(3):79.

Yahuza S, Dan-Iya BI, Sabo IA. Modelling the Growth of Enterobacter sp. on Polyethylene. J Biochem Microbiol Biotechnol. 2020 Jul 31;8(1):42-6.

Rusnam, Yakasai HM, Rahman MF, Gusmanizar N, Shukor MY. Mathematical Modeling of Molybdenum-Blue Production from Bacillus sp. strain Neni-. Bioremediation Sci Technol Res. 2021 Jul 31;9(1):7-12.

Yakasai MH, Manogaran M. Kinetic Modelling of Molybdenum-blue Production by Bacillus sp. strain Neni-10. J Environ Microbiol Toxicol. 2020 Jul 31;8(1):5-10.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289-300.

McKellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2000;54(3):171-80.

Kim HW, Lee SA, Yoon Y, Paik HD, Ham JS, Han SH, et al. Development of kinetic models describing kinetic behavior of Bacillus cereus and Staphylococcus aureus in milk. Korean J Food Sci Anim Resour. 2013;33(2):155-61.

Li MY, Sun XM, Zhao GM, Huang XQ, Zhang JW, Tian W, et al. Comparison of Mathematical Models of Lactic Acid Bacteria Growth in Vacuum-Packaged Raw Beef Stored at Different Temperatures. J Food Sci. 2013;78(4):M600-4.

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Buchanan RL, Whiting RC, Damert WC. When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14(4):313-26.

Aisami A, Manogaran M, Rahim M, Kh M. Primary Modeling of Microbial Growth under Toxic Conditions with the Modified Schnute Model. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2023 Dec 31;7:5-11.

Monod J. The Growth of Bacterial Cultures. Annu Rev Microbiol. 1949;3(1):371-94.

Boon B, Laudelout H. Kinetics of nitrite oxidation by Nitrobacter winogradskyi. Biochem J. 1962;85:440-7.

Teissier G. Growth of bacterial populations and the available substrate concentration. Rev Sci Instrum. 1942;3208:209-14.

Aiba S, Shoda M, Nagatani M. Kinetics of product inhibition in alcohol fermentation. Biotechnol Bioeng. 1968 Nov 1;10(6):845-64.

Yano T, Koga S. Dynamic behavior of the chemostat subject to substrate inhibition. Biotechnol Bioeng. 1969 Mar 1;11(2):139-53.

Han K, Levenspiel O. Extended Monod kinetics for substrate, product, and cell inhibition. Biotechnol Bioeng. 1988;32(4):430-7.

Luong JHT. Generalization of monod kinetics for analysis of growth data with substrate inhibition. Biotechnol Bioeng. 1987;29(2):242-8.

Moser A. Kinetics of batch fermentations. In: Rehm HJ, Reed G, editors. Biotechnology. VCH Verlagsgesellschaft mbH, Weinheim; 1985. p. 243-83.

Webb JLeyden. Enzyme and metabolic inhibitors [Internet]. New York: Academic Press; 1963. 984 p. Available from: https://www.biodiversitylibrary.org/bibliography/7320

Hinshelwood CN. The chemical kinetics of the bacterial cell. Clarendon Press, Gloucestershire, UK; 1946.

Akaike H. Making statistical thinking more productive. Ann Inst Stat Math. 2010;62(1):3-9.

Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995 Jun 1;90(430):773-95.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Zhou K, George SM, Métris A, Li PL, Baranyi J. Lag phase of Salmonella enterica under osmotic stress conditions. Appl Environ Microbiol. 2011;77(5):1758-62.

Zhao J, Gao J, Chen F, Ren F, Dai R, Liu Y, et al. Modeling and predicting the effect of temperature on the growth of Proteus mirabilis in chicken. J Microbiol Methods. 2014;99(1):38-43.

Velugoti PR, Bohra LK, Juneja VK, Huang L, Wesseling AL, Subbiah J, et al. Dynamic model for predicting growth of Salmonella spp. in ground sterile pork. Food Microbiol. 2011;28(4):796-803.

McElroy DM, Jaykus LA, Foegeding PM. Validation and analysis of modeled predictions of growth of Bacillus cereus spores in boiled rice. J Food Prot. 2000;63(2):268-72.

Kowalik J, Lobacz A, Tarczynska AS, Ziajka S. Graphie validation of growth models for Listeria monocytogenes in milk during storage. Milchwissenschaft. 2012;67(1):38-42.

Jung SH, Park SJ, Chun HH, Song KB. Effects of combined treatment of aqueous chlorine dioxide and fumaric acid on the microbial growth in fresh-cut paprika (capsicum annuum L.). J Appl Biol Chem. 2014;57(1):83-7.

Huang L, Hwang CA, Phillips J. Evaluating the Effect of Temperature on Microbial Growth Rate-The Ratkowsky and a B?lehrádek-Type Models. J Food Sci. 2011;76(8):M547-57.

Najim AA, Ismail ZZ, Hummadi KK. Biodegradation potential of sodium dodecyl sulphate (SDS) by mixed cells in domestic and non-domestic actual wastewaters: Experimental and kinetic studies. Biochem Eng J. 2022 Mar 1;180:108374.

Begum SS, Radha KV. Biodegradation Kinetic Studies on Phenol in Internal Draft Tube (Inverse Fluidized Bed) Biofilm Reactor Using Pseudomonas fluorescens: Performance Evaluation of Biofilm and Biomass Characteristics. Bioremediation J. 2013 Oct 2;17(4):264-77.

Habibi A, Vahabzadeh F. Degradation of formaldehyde at high concentrations by phenol-adapted Ralstonia eutropha closely related to pink-pigmented facultative methylotrophs. J Environ Sci Health - Part ToxicHazardous Subst Environ Eng. 2013;48(3):279-92.

Begum SS, Radha KV. Biodegradation kinetic studies on phenol in internal draft tube (inverse fluidized bed) biofilm reactor using Pseudomonas fluorescens: Performance evaluation of biofilm and biomass characteristics. Bioremediation J. 2013;17(4):264-77.

Srinivasan R, Kathiravan MN, Gopinath KP. Degradation of Tectilon Yellow 2G by hybrid technique: Combination of sonolysis and biodegradation using mutant Pseudomonas putida. Bioresour Technol. 2011 Feb 1;102(3):2242-7.

Raghuvanshi S, Babu BV. Biodegradation kinetics of methyl iso-butyl ketone by acclimated mixed culture. Biodegradation. 2009;21(1):31-42.

Agarry SE, Solomon BO. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. Int J Environ Sci Technol. 2008;5(2):223-32.

Kumaran P a, Paruchuri YL b. Kinetics of phenol biotransformation. Water Res. 1997;31(1):11-22.

Meng F, Zhang G, Yang A, Li J, Zhang Y, Zou Z, et al. Bioconversion of wastewater by photosynthetic bacteria: Nitrogen source range, fundamental kinetics of nitrogen removal, and biomass accumulation. Bioresour Technol Rep. 2018 Dec 1;4:9-15.

Agarry SE, Audu TOK, Solomon BO. Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol. 2009;6(3):443-50.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Uba G, Abubakar A, Ibrahim S. Optimization of Process Conditions for Effective Degradation of Azo Blue Dye by Streptomyces sp. DJP15: A Secondary Modelling Approac. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Dec 31;5(2):28-32.

Habibi A, Mehrabi Z. Aerobic degradation of methylene blue from colored effluents by Ralstonia eutropha. Pollution. 2017 Jul 1;3(3):363-75.

Wang J, Wan W. Kinetic models for fermentative hydrogen production: A review. Int J Hydrog Energy. 2009;34(8):3313-23.

Downloads

Published

2024-07-31

How to Cite

Rahim, M. B. H. A. ., & Khayat, M. E. (2024). Kinetic Models of Microbial Growth Inhibition of Pseudomonas sp. on Acrylamide. Journal of Environmental Bioremediation and Toxicology, 7(1), 1–8. https://doi.org/10.54987/jebat.v7i1.995

Issue

Section

Articles