Beyond Culturing Approach for Accessing Hydrocarbon-Degrading Microbes in Petroleum Hydrocarbon Polluted Soils: A Perspective

Authors

  • Ibrahim I. Hussein Department of Microbiology, Faculty of Science, Gombe State University, PMB 127, Tudun Wada Gombe, 760001 Gombe State, Nigeria.
  • Habiba I. Atta Department of Microbiology, Faculty of Life Sciences, Ahmadu Bello University, Samaru Campus, Community Market, 810211, Zaria, Nigeria.
  • Salihu Ibrahim Centre for Biotechnology Research, Bayero University, PMB 3011, Gwarzo Road 700101 Kano, Nigeria.
  • Lazarus J. Goje Department of Biochemistry, Faculty of Science, Gombe State University, P.M.B 127, Tudun Wada, Gombe, Gombe State, Nigeria.

DOI:

https://doi.org/10.54987/jebat.v5i2.763

Keywords:

Petroleum hydrocarbon, Culturing method, Culture-independent approaches, Molecular techniques, Hydrocarbon-degrading bacteria

Abstract

Petroleum hydrocarbon-polluted environments contain massive diversity of microbes capable of transforming or reducing hydrocarbon concentrations, and this has consequently led to an interest in the cultivation screening for microbial potentials to remediate petroleum hydrocarbon-polluted lands. Conversely, the reliance singly on culturing approach for the discovery of various hydrocarbon-degrading bacteria without probing for its hydrocarbon degradative capabilities has now become rampant in some research communities, and in most cases may not be justifiable. Besides, vast microbial communities with hydrocarbon-degrading potentials are eluded with the conventional method. Opportunely, the advent of culture-independent approaches such as molecular techniques and next-generation sequencing (NGS) technology has shifted the paradigm of research, now focusing on contemporary and advanced trending ways to discover the uncultivable microbial communities and assess their functional roles in the environment. To ascertain that microorganisms cultured from polluted environmental samples are factual hydrocarbon-degrading strains, a microbiologist needs to investigate beyond just culturing and probe further for the hydrocarbon-degrading prowess by choosing from various arrays of the culture-independent approaches. Consequently, this counters the questionability of only the cultivation approach and explores the vast recompenses of the latter approach when coupled. This perspective review exposes the huge gap in the application of the lone conventional culturing technique for retrieving the uncultured communities, particularly the hydrocarbon-degrading group while hinting at complementary alternatives for improved research and scientific evidence-driven and justifiable study inference.

References

Anders JR, Lukas YW, Hauke H. Principles of microbial PAH-degradation in soil. Environ Poll. 2005;133 (1):71-84.

Estelmann S, Blank I, Feldmann A, Boll M. Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol. Microbiol. 2015;95(2):162-172.

Ravindra K, Sokhi R, Van GR. Atmospheric polycyclic aromatic hydrocarbons:Source attribution, emission factors and regulation. Atmos Environ. 2008;42(13):2895-2921.

Fuchs G, Boll M, Heider J. Microbial degradation of aromatic compounds-from one strategy to four. Nat Rev Microbiol. 2011;9(11):803-816.

Babangida H, Fatima AH, Umar I. Effect of Burning-fuel Emissions from Automobiles on Atmospheric Air around Arable Soils in Gombe Local Government Area, Gombe State-Nigeria. Int J Adv Res. 2017;5(11):1300-1304.

Sojinu OS, Wang J, Sonibare O, Zeng EY. Polycyclic aromatic hydrocarbons in sediments and soils from oil exploration areas of the niger delta, nigeria. J Hazard Mat. 2010;174(1-3):641-647.

Kadafa AA. Oil exploration and spillage in the niger delta of nigeria. Civil Environ Res. 2012;2(3):38-51.

Ambrosoli R, Petruzzelli L, Minati JL, Marsan FA. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere. 2005;60(9):1231-1236.

Adelowo OO, Alagbe SO Ayandele AA. Time-dependent stability of used engine oil degradation by cultures of Pseudomonas fragi and Achromobacter aerogenes. Afr J Biotech. 2006;5(24):2476-2479.

Doherty R, McIlwaine R, McAnallen L, Cox S. Assessment of polycyclic aromatic hydrocarbons in an urban soil dataset. Environ Forensics. 2015;92-103

Hussein II. Investigation of Naphthalene Degradation by Microbial Communities in PAH-Contaminated Urban Soils. Queen's University Belfast. Faculty of Medicine, Health and Life Sciences;2019.

Chris C. Implementing Phytoremediation of Petroleum Hydrocarbons, Methods in Biotechnology. 2007;23:99-108. Humana Press. ISBN 1588295419.

Brooijmans RJW, Pastink MI, Siezen RJ. Hydrocarbon-degrading bacteria:the oil spill clean-up crew Microbial Biotechnol. 2009;2(6):587-594.

Olajire AA, Essien JP. Aerobic Degradation of petroleum components by microbial consortia. J Pet Environ Biotechnol. 2014;5:195. doi:10.4172/2157-7463.1000195

Bewley RJ, Webb G. In situ bioremediation of groundwater contaminated with phenols, BTEX and PAHs using nitrate as electron acceptor. Land Contam Reclam. 2001;9(4):335-347.

Hutchins SR, Sewell GW, Kovacs DA, Smith GA. Biodegradation of aromatic hydrocarbons by aquifer microorganisms under denitrifying conditions. Environ Sci Technol. 1991;25:68-76.

Guerra AB, Oliveira JS, Silva-Portela RC, Araujo W, Carlos AC, Vasconcelos ATR., et al. Metagenome enrichment approach used for selection of oil-degrading bacteria consortia for drill cutting residue bioremediation. Environ Pollut. 2018;235:869-880. doi:10.1016/j.envpol.2018.01.014

Hussein II, Mansur A, Ahmed FU, Nicolas R, Siti AA. Optimisation and Dose Responses of Bioluminescent Bacterial Biosensors Induced with Target Hydrocarbons. Rev. Mex. Ing. Quim. 2020;19, Sup. 1:187-199.

Ibrahim IHussein. Metagenomics:Unravelling the Uncultured Microbial Community. BIMA J Sci Technol. 2020;3(2):48-58.

Adegoroye G. Environmental Considerations in Property Design, Urban Development and Renewal:In Akinjide O (Ed). Dimensions of Environmental Problems in Nigeria. Friedrich Ebert Foundation. 1997;12-25.

Onuoha SC. Stimulated Biodegradation of spent lubricating motor oil in soil amended with animal droppings. J Nat Sci Res. 2013;3(12):106-116.

Okonokhua B, Ikhajiagbe B, Anoliefo G, Emede T. The effects of spent engine oil on soil properties and growth of maize ( Zea mays L.) J Appl Sci Environ Manage. 2007;11(3):147-152.

Musa SI. Isolation and Identification of Diesel oil-degrading Bacteria in used engine oil contaminated soil. J Appl Sci Environ. Manage. 2019;23(3):431-435

Klamann D. Lubricants and Related Products, Verlag Chemie, Weinheim, Deerfield Beach (Florida) and Basel. 1984;Available at https://lib.ugent.be/en/catalog/rug01:000701193. (Accessed on 4th November, 2017).

Hagwell IS, Delfino LM, Rao JJ. Partitioning of Polycyclic Aromatic Hydrocarbons from Oil into Water. Environ Sci Technol. 1992;26:2104-2110.

Butler CS, Mason JR. Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol. 1997;38:47-84.

Corsico G, Mattei L, Roselli A, Gommellini C. Poly (internal olefins) - Synthetic Lubricants and High-Performance Functional Fluids. Marcel Dekker, Chapter 2, 1999;p. 53-62, ISBN 0-8247-0194-1.

Mohammed.MB, Shiv S, Shikha, Mohammad Y, Shukai RN. Remediation of hydrocarbon contaminated soil through microbial degradation-FTIR based prediction. Adv Appl Sci Res. 2011;2(2):321-326.

Adeleye AO, Nkereuwem ME, Omokhudu GI, Amoo AO, Shiaka GP, Yerima MB. Effect of Microorganisms in the Bioremediation of Spent Engine Oil and Petroleum Related Environmental Pollution. J Appl Sci Environ Manag. 2018;22(2):157-167.

United States Environmental Protection Agency (USEPA). Recycling Used Oil:What Can You Do? Cooperation Extension Services ENRI-317:1996;1-2.

Irwin RJ, Van-Mouwerik M, Stevens L, Seese MD, Basham W. Environmental Contaminants Encyclopedia. National Park Service, Water Resources Division, Fort Collins, Colorado. 1997.

Agarry SE, Oladipupo OO. Box-Behnken design application to study enhanced bioremediation of artificially contaminated soil with spent engine oil using biostimulation strategy. Int J energy and Environmental Engineering. 2012;3(31):1-14.

Odjegba VJ, Sadiq AO. Effects of Spent Engine Oil on Growth Parameters, Chlorophyll and Protein Level of Amaranthus hybrious. The Environment. 2002;22:23-28.

Okonokhua BO, Ikhajiagbe B, Anoliefo GO, Emede TO. The effects of spent engine oil on soil properties and growth of maize (Zea mays L.). J Appl Sci Environ Manage. 2007;11(3):147 - 152.

Sabate J, Vinas M, Solanas AM. Laboratory- scale bioremediation experiments on hydrocarbon- contamined soil. Int Biodeterior Biodeg. 2004;54(3):19-25.

Ugoh SC, Moneke LU. Isolation of bacteria from engine oil contaminated soils in Auto mechanic workshops in Gwagwalada, Abuja,FCT-Nigeria. Academia Arena. 2011;3(5):28-33.

Seth-Smith H. 'Slick'operation. Nature. 2010;8:538.

Margesin R, Moertelmaier C, Mair J. Low-temperature biodegradation of petroleum hydrocarbons (n-alkanes, phenol, anthracene, pyrene) by four actinobacterial strains. Int Biodeterior Biodegrad. 2013;84:185-191. doi:10.1016/j.ibiod.2012.05.004

Singleton DR, Powell SN, Sangaiah R, Gold A, Ball LM, Aitken MD. Stable-isotope probing of bacteria capable of degrading salicylate, naphthalene, or phenanthrene in a bioreactor treating contaminated soil. Appl Environ Microbiol. 2005;71:1202-9.

Geiselbrecht AD, Hedlund BP, Tichi MA, Staley JT. Isolation of marine polycyclic aromatic hydrocarbon (PAH)-degrading Cycloclasticus strains from the Gulf of Mexico and comparison of their PAH degradation ability with that of puget sound Cycloclasticus strains. Appl Environ Microbiol. 1998;64:4703-4710.

Hedlund BP, Geiselbrecht AD, Bair TJ, Staley JT. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol. 1999;65:251-259.

Goyal AK, Zylstra GJ. Molecular cloning of novel genes for polycyclic aromatic hydrocarbon degradation from Comamonas testosteroni GZ39. Appl Environ Microbiol. 1996;62:230-236

Kleindienst S, Paul JH, Joye SB. Using dispersants after oil spills:impacts on the composition and activity of microbial communities. Nat Rev Microbiol. 2015;13:388-396. doi:10.1038/nrmicro3452

Wasmund K, Burns KA, Kurtböke DI, Bourne DG. Novel alkane hydroxylase gene (alkB) diversity in sediments associated with hydrocarbon seeps in the Timor Sea. Australia. Appl Environ Microbiol. 2009;75:7391-7398. doi:10.1128/AEM.01370-09.

Varjani SJ. Microbial degradation of petroleum hydrocarbons. Bioresour Technol. 2017;223:277-286.

Xu X, Liu W, Tian S, Wang W, Qi Q, Jiang P, Gao X, Li F, Li H, Yu H. Petroleum Hydrocarbon-Degrading Bacteria for the Remediation of Oil Pollution Under Aerobic Conditions:A Perspective Analysis. Front Microbiol. 2018;9:2885. doi:10.3389/fmicb.2018.02885

Bamforth SM, Singleton I. Bioremediation of polycyclic aromatic hydrocarbons:Current knowledge and future directions. J Chemical Technol Biotechnol. 2005;80(7):723-736. doi:10.1002/jctb.1276

Dominy JE, Simmons CR, Karplus PA, Gehring AM, Stipanuk MH. Identification and characterization of bacterial cysteine dioxygenases:a new route of cysteine degradation for eubacteria. J Bacteriology. 2006;188(15):5561-5569.

Tremblay J, Yergeau E, Fortin N, Cobanli S, Elias M, King TL, et al. Chemical dispersants enhance the activity of oil-and gas condensate-degrading marine bacteria. ISME J. 2017;11, 2793-2808. doi:10.1038/ismej.2017.129

Nie Y, Liang JL, Fang H, Tang YQ, Wu XL. Characterization of a CYP153 alkane hydroxylase gene in a gram-positive Dietzia sp. DQ12-45-1b and its "team role" with alkw1 in alkane degradation. Appl Microbiol Biotechnol. 2014;98:163-173.

Sarkar P, Roy A, Pal S, Mohapatra B, Kazy SK, Maiti MK, et al. Enrichment and characterization of hydrocarbon-degrading bacteria from petroleum refinery waste as potent bioaugmentation agent for in situ bioremediation. Bioresour Technol. 2017;242:15-27. doi:10.1016/j.biortech.2017.05.010

Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol. 2007;18:257-266. doi:10.1016/j.copbio.2007.04.006

Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 1992;3:351-368.

Mueller JG, Cerniglia CE and Pritchard PH. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons, in Bioremediation:Principles and Applications, ed by Crawford RLandCrawford DL. CambridgeUniversity Press, Idaho, 1996;125-194.

Allen CCR, Boyd DR, Larkin MJ, Reid KA, Sharma ND, Wilson K. Metabolism of naphthalene, 1-naphthol, indene, and indole by Rhodococcus sp. strain NCIMB 12038. Appl Environ Microbiol. 1997;63(1):151-155.

Larkin MJ, Allen CCR, Kulakov LA, Lipscomb DA. Purification and characterization of a novel naphthalene dioxygenase from rhodococcus sp strain NCIMB12038. J Bacteriol. 1999;181(19):6200-6204.

Bakermans C, Madsen E. Diversity of 16S rDNA and naphthalene dioxygenase genes from coal-tar-waste-contaminated aquifer waters. Microbial Ecology. 2002;44(2):95-106.

Calvo C, Toledo FL, González-López J. Surfactant activity of a naphthalene degrading Bacillus pumilus strain isolated from oil sludge. J Biotechnol. 2004;109:255-262.

Ferguson A, Huang W, Lawson K, Doherty R, Gibert O, Dickson K, Kalin R. Microbial analysis of soil and groundwater from a gasworks site and comparison with a sequenced biological reactive barrier remediation process. J Appl Microbiol. 2007;102(5):1227-1238.

Zeinali M, Vossoughi M, Ardestani SK, Naphthalene metabolism in Nocardia otitidiscaviarum strain TSH1, a moderately thermophilic microorganism. Chemosphere. 2008;72:905-909.

Hwang G, Park SR, Lee CH, Ahn IS, Yoon YJ, Mhin BJ. Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil, J Hazard. Mater. 2009;171:491-493.

Ulrici W. Contaminant soil areas, different countries and contaminant monitoring of contaminants, in environmental process II. soil decontaminants biotechnology, H. J.Rehm and G. Reed, eds. 2000;11:5-42.

Schocken MJ, Gibson DT. Bacterial oxidation of the polycyclic aromatic hydrocarbons acenaphthene and acenaphthylene. Appl Environ Microbiol. 1984;48:10-16.

Bugg TD, Ahmad M, Hardiman EM, Rahmanpour R. Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep. 2011;28(12):1883-1896.

Je?rey AM, Yeh HJC, Jerina DM, Patel TR, Davey JF, and Gibson DT. Initial reactions in the oxidation of naphthalene by Pseudomonas putida, Biochemistry. 1975;14(3):575-584.

Sawulski P, Nicholas Clipson, Evelyn Doyle. Effects of polycyclic aromatic hydrocarbons on microbial community structure and PAH ring hydroxylating dioxygenase gene abundance in soil. Biodegradation. 2014;25:835-847 DOI 10.1007/s10532-014-9703-4

Habe H, Omori T. Genetics of polycyclic aromatic hydrocarbon metabolism in diverse aerobic bacteria. Biosci Biotech Biochem. 2003;67:225-243

Smith MR. The biodegradation of aromatic hydrocarbons by bacteria. Biodegradation. 1990;1:191-206.

Harayama S, Rekik M. Bacterial Aromatic Ring-Cleavage Enzymes Are Classified into Two Different Gene Families. J Biol Chem.1989;264(8):15328-33.

Martins BM, Svetlitchnaia T, Dobbek H. 2-Oxoquinoline 8-Monooxygenase Oxygenase Component:Active Site Modulation by Rieske-[2Fe-2S] Center Oxidation/Reduction. Structure. 2005;13:817-824.

Gibson DT, Parales RE. Aromatic hydrocarbon dioxygenases in environmental biotechnology. Curr Opin Biotechnol. 2000;11:236-243.

Eberlein C, Johannes J, Mouttaki H, Sadeghi M, Golding BT, Boll M, Meckenstock RU. ATP?dependent/?independent enzymatic ring reductions involved in the anaerobic catabolism of naphthalene. Environ Microbiol. 2013;15(6):1832-1841.

Rockne KJ, Chee-Sanford JC, Sanford RA, Hedlund BP, Staley JT, Strand, SE. Anaerobic naphthalene degradation by microbial pure cultures under nitrate-reducing conditions. Appl Environ Microbiol. 2000;66(4):1595-1601.

Meckenstock RU, Annweiler E, Michaelis W, Richnow HH, Schink B. Anaerobic naphthalene degradation by a sulfate-reducing enrichment culture. Appl Environ Microbiol. 2000;66(7):2743-2747.

Kummel S, Florian-Alexander H, Arne B, Márcia D, Dietmar HP, Nico J, Jana S, Martin von B, Petra B, Hans HR. Anaerobic naphthalene degradation by sulfate-reducing desulfobacteraceae from various anoxic aquifers. FEMS Microbiology Ecology. 2015;91(3):fiv006.

Nieman JKC, Sims RC, McLean JE, Sims JL, Sorensen D. Fate of pyrene in contaminated soil amended with alternate electron acceptors. Chemosphere. 2001;44:1265-1271.

Pace NR, Stahl DA, Lane DJ, Olsen GJ. The analysis of natural microbial populations by ribosomal RNA sequences. Adv Microbiol Ecol. 1986;9:1-55.

Hugenholtz P, Pace NR. Identifying microbial diversity in the natural environment:a molecular phylogenetic approach. Trends Biotechnol. 1996;14:190-197.

Feng X. Vonk JE, van Dongen BE, Gustafsson Ö, Semiletov IP, Dudarev OV, Wang Z, Montluçon DB, Wacker L. Eglinton TI. Differential mobilization of terrestrial carbon pools in Eurasian Arctic river basins. Proc Natl Acad Sci USA. 2013;110:14168-14173

Kirk JL, Beaudette LA, Hart M, Moutoglis P, Klironomos JN, Lee H, Trevors JT. Methods of studying soil microbial diversity. J Microbiol Methods. 2004;58:169- 188

Jung GY, Park S. Hydrogen production by a new chemoheterotrophic bacterium Citrobacter sp. Y19. Int J Hydrog Energy. 2002;27(6):601-610

Heylen K, Bram V, Lieven W, Willy V, Nico B, Paul DV. Cultivation of denitrifying bacteria:optimization of isolation conditions and diversity study. Appl Environ Microbiol. 2006;72(4):2637-2643

Sun W. Sun X, Cupples AM. Presence, diversity and enumeration of functional genes (bssA and bamA) relating to toluene degradation across a range of redox conditions and inoculum sources. Biodegradation. 2014;25:189-203

Hofer U. The majority is uncultured. Nat Rev Microbiol. 2018;16:716-717.

Torsvik V, Lise O. Microbial Diversity and Function in Soil:From Genes to Ecosystems. Curr Opin Microbiol. 2002;5:240-45. doi:10.1016/S1369-5274(02)00324-7.

Hahn MW, Koll U, Schmidt J. Isolation and cultivation of bacteria. Springer, Cham. 2019;313-351

Locey KJ, Lennon JT. Scaling laws predict global microbial diversity. Proc Natl Acad Sci USA. 2016;113:5970-5975.

Rappe´, MS, Connon SA, Vergin KL, Giovannoni SJ. Nature. 2002;418:630-633.

Pedro´s-Alio´ C, Manrubia S. The vast unknown microbial biosphere. Proc Natl Acad Sci USA. 2016;113:6585-6587.

Stewart JE. Growing Unculturable Bacteria. J Bacteriology. 2012;194(16):4151-4160 doi:10.1128/JB.00345-12

Connon SA, Giovannoni SJ. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol. 2002;68:3878-3885.

Kaeberlein T, Lewis K. Epstein SS. Science 2002;296:1127-1129.

Rappe´, MS, Connon SA,Vergin KL, Giovannoni SJ. Nature. 2002;418:630-633.

Bodor A, Naila B, Gyorgy EV, Agnes EK, Krisztian L, Gabor B, Arpad S, Tamas K, Katalin P, Gabor R. Challenges of unculturable bacteria:environmental perspectives Rev Environ Sci Biotechnol. 2020;19:1-22 https://doi.org/10.1007/s11157-020-09522-4

Simu K, Hagstrom A. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl. Environ. Microbiol. 2004;70:2445-2451.

Eilers H, Pernthaler J, Glo¨ckner FO, Amann R. Appl. Environ. Microbiol. 2000;66, 3044-3051.

Radajewski S, Ineson P, Parekh NR, Murrell JC. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403(6770):646-649.

Sul WJ, ParkJ, Quensen JF, 3rd Rodrigues JL, Seliger L, Tsoi TV, . . . Tiedje JM. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol. 2009;75(17):5501-5506. doi:10.1128/AEM.00121-09 [doi]

Mane?eld M, Whiteley AS, Grif?ths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl. Environ. Microbiol. 2002;68:5367-5373.

Hendrickx B, Dejonghe W, Faber F, Boenne W, Bastiaens L, Verstraete W. PCR DGGE method to assess the diversity of BTEX mono-oxygenase genes at contaminated sites. FEMS Microbiol Ecol. 2006;55:262-73.

Coulon F, Chronopoulou PM, Fahy A, Paisse S, Goni-Urriza M, Peperzak L, et al. Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol. 2012;78:3638-48.

Wang L, Wang W, Lai Q, Shao Z. Gene diversity of CYP153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean." Environmental Microbiology. 2010;12:1230-1242.

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6:1621-1624.

Dunford EA, Neufeld JD. DNA stable-isotope probing (DNA-SIP). J Visualized Experiments:JoVE. 2010;(42). pii:2027. doi (42) (Aug 2):10.3791/2027.

Smets W, Leff JW, Bradford MA et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol Biochem. 2016;96:145-151.

Cébron A, Norini MP, Beguiristain T. Leyval C. Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHD?) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J. Microbiological Methods. 2008;73:148-159

Raji HM, Ameh JB, Ado SA, Yakubu SE, Webster G, Weightman AJ. Analysis of bacterial and archaeal 16S rRNA gene in soil obtained from a petroleum refinery effluent site in Nigeria using Real-Time PCR. International J Microbiol Biotechnol. 2016;1(1):44-48. doi:10.11648/j.ijmb.20160101.17.

Iwai S, Benli C, Woo JS, James RC, Syed H, James MT. Gene-Targeted-Metagenomics Reveals Extensive Diversity of Aromatic Dioxygenase Genes in the Environment." The ISME Journal 4. Nature Publishing Group:2009;279-85. doi:10.1038/ismej.2009.104.

Schloss PD, Handelsman, J. Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biology. 2005;6(8):229.

Chakraborty R, Wu CH, Hazen TC. Systems biology approach to bioremediation. Current Opinion in Biotechnology. 2012;23:483-490.

Handelsman J, Rondon MR, Brady SF, Clardy J, Goodman RM. Molecular biological access to the chemistry of unknown soil microbes:a new frontier for natural products. Chem. Biol. 1998;5:245-249.

Friedrich MW. Stable-isotope probing of DNA:Insights into the function of uncultivated microorganisms from isotopically labeled metagenomes. Current Opinion in Biotechnology. 2006;17(1):59-66.

Uhlík O, Katerina J, Mary BL, Martina M, Tomas M. DNA-based stable isotope probing:A link between community structure and function. Science of the Total Environment. 2009;407 (12) (6/1):3611-9.

Radajewski S, McDonald IR, Murrell JC. Stable-isotope probing of nucleic acids:a window to the function of uncultured microorganisms. Curr Opin Biotechnol. 2003;14:296-302.

Chikere BC. Application of Molecular Microbiology Techniques in Bioremediation of Hydrocarbons and Other Pollutants. British Biotechnology Journal. 2013;3(1):90-115, 2013

Ding GC, Heuer H, Zuhlke S, Spiteller M, Pronk GJ, Heister K, Kogel-Knabner I, Smalla K. Soil type-dependent responses to phenanthrene as revealed by determining the diversity and abundance of polycyclic aromatic hydrocarbon ring hydroxylating dioxygenase genes by using a novel PCR detection system. Appl Environ Microbiol. 2010;76(14):4765-4771.

Iwai S, Chai B, Sul WJ, Cole JR, Hashsham SA. Tiedje JM. Gene-targeted-metagenomics reveals extensive diversity of aromatic dioxygenase genes in the environment. ISME Journal. 2010;4(2):279-85.

Muangchinda C, Chavanich S, Viyakarn V, Watanabe K, Imura S, Vangnai AS, Pinyakong O. Abundance and diversity of functional genes involved in the degradation of aromatic hydrocarbons in Antarctic soils and sediments around Syowa Station. Environ Sci Pollut Res. 2015;22:4725-4735

Uyttebroek M, Breugelmans P, Janssen M, Wattiau P, Joffe B, Karlson U, Ortega-Calvo JJ, Bastiaens L, Ryngaert A, Hausner M, Springael D. Distribution of the Mycobacterium community and polycyclic aromatic hydrocarbons (PAHs) among different size fractions of a long term PAH-contaminated soil. Environ.Microbiol. 2006;8:836-847.

Delmont TO, Robe PR, Clark I, Simonet P, Vogel TM. Metagenomic comparison of direct and indirect soil DNA extraction approaches. J. Microbiol. Methods. 2011;86:397-400.

Eisen JA. Environmental shot-gun sequencing:its potential and challenges for studying the hidden world of microbes. PLoS Biol. 2007;5:e82. doi:10.1371/journal.pbio.0050082.

Muyzer G, De Waal EC, Uitterlinden AG. Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Profiling of Complex Microbial Populations by Denaturing Gradient Gel Electrophoresis Analysis of Polymerase Chain Reaction-Amplified Genes. 1993.

Zhang D, Mörtelmaier C. Margesin R. Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Science Total Environ. 2012;184-196

Neufeld JD, Jyotsna V, Marc GD, Tillmann L, Mike M, Michael WF, Colin MJ. DNA stable-isotope probing. Nature Protocols. 2007;2(4):860-6.

Dunford EA, Neufeld JD. DNA stable-isotope probing (DNA-SIP). J Visualized Experiments:JoVE 2010;(42). pii:2027. doi (42) (Aug 2):10.3791/2027.

Fries MR, Hopkins GD, McCarty PL, Forney LJ, Tiedje JM. Microbial succession during a field evaluation of phenol and toluene as the primary substrates for trichloroethene co-metabolism. Appl Environ Microbiol. 1997;63:1515-22.

Malik S, Beer M, Megharaj M, Naidu R. The use of molecular tools to characterize the microbial communities in contaminated soil and water. Environ Int. 2008;38:265-276.

Song B, Zhihao L, Si L, Zhongzhen Z, Qitong F, Shijie W, Liang L, Shuting Q. Functional metagenomic and enrichment metatranscriptomic analysis of marine microbial 3qactivities within a marine oil spill area. Environmental Pollution. 2021;274.

Kamila K, Andrea B, Adriana K, Thierry B. Metatranscriptomic Analysis of Oil-Exposed Seawater Bacterial Communities Archived by an Environmental Sample Processor (ESP) Microorganisms. 2020;(8)5:744. https://doi.org/10.3390/microorganisms8050744

Julien T, Fortin N, Elias M, Wasserscheid J, King T, Lee K, Greer C. Metagenomic and metatranscriptomic responses of natural oil degrading bacteria in the presence of dispersants. Environmental Microbiology. 2019;21. 10.1111/1462-2920.14609.

Singh DP, Ratna P, Vijai K. Gupta M, Verma K. Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked With the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere. Front Microbiol. 2018;10.3389/fmicb.2018.01331

Kuntze K, Shinoda Y, Moutakki H, McInerney MJ, Vogt C, Richnow HH, Boll M. 6-Oxocyclohex-1-ene-1-carbonyl-coenzyme A hydrolases from obligately anaerobic bacteria: Characterization and identification of its gene as a functional marker for aromatic compounds degrading anaerobes. Environ Microbiol. 2008;10(6):1547-1556

Song B, Ward BB. Genetic diversity of benzoyl coenzyme A reductase genes detected in denitrifying isolates and estuarine sediment communities. Appl Environ Microbiol. 2005;71(4):2036-2045.

Dojka MA, Hugenholtz P, Haack SK, Pace NR. Microbial diversity in a hydrocarbonand chlorinated-solvent contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol. 1999;64:3869-3877.

Bordenave S, Jezequel AR, Fourcans A, Budzinski H, Merlin FX, Fourel T, et al. Degradation of the "Erika" oil. Aqua Living Resour. 2004;17:261-267.

Lasken RS. Genomic Sequencing of Uncultured Microorganisms from Single Cells. Nat Rev Microbiol. 2012;10(9):631-40.

Dowd SE, Glassing A, Galandiuk S, Davis B, Jorden JR, Chiodini RJ. Changes in 16s RNA Gene Microbial Community Profiling by Concentration of Prokaryotic DNA. J Microbiol Methods. 2015;119:239-42. doi:10.1016/j.mimet.2015.11.001.

Zhou J, He Z, Yang Y, Deng Y, Tringe SG, Alvarez-Cohen L. High-throughput metagenomic technologies for complex microbial community analysis:open and closed formats. mBio. 2015;6(1):e02288-14.

Mason OU, Hazen TC, Borglin S, Chain PS, Dubinsky EA, Fortney JL, Han J, Holman HYN, Hultman J, Lamendella R, Mackelprang R, Malfatti S, Tom LM, Tringe SG, Woyke T, Zhou J, Rubin EM, Jansson JK. Metagenome, metatranscriptome and single-cell sequencing reveal microbial response to Deepwater Horizon oil spill. The ISME J. 2012; 6(9):1715-1727.

Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol. 2012;14:525-539

Bentley DR, Shankar B, Harold PS, Geoffrey PS, John M, Clive GB, Kevin PH, et al. Accurate Whole Human Genome Sequencing Using Reversible Terminator Chemistry. Nature. 2008;456 (November):53-59. doi:10.1038/nature07517.

Clegg C, Murray P. Soil microbial ecology and plant root interactions. IGER Innov. 2002;6:36-39.

Rondon MR, August PR, Bettermann AD, Brady SF, Grossman TH, Liles MR, Loiacono KA, Lynch BA, MacNeil IA, Minor C, Tiong CL, Gilman M, Osburne MS, Clardy J, Handelsman J, Goodman RM. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl Environ Microbiol. 2000;66:2541-7.

Austin B. The value of cultures to modern microbiology. Antonie van Leeuwenhoek Int J Gen Mol Microbiol. 2017;110(10):1247-1256.

Colwell RR, Brayton PR, Harrington D, Tall BD, Huq A, Levine MM. Viable but non-culturable Vibrio cholerae O1 revert to a cultivable state in the human intestine. World J Microbiol. Biotechnol. 1996;12:28-31.

Colwell RR, Grimes DJ. Nonculturable microorganisms in the environment. ASM Press, Washington, D.C. 2000;

Hugenholtz P, Pace NR. Identifying microbial diversity in the natural environment:a molecular phylogenetic approach. Trends Biotechnol. 1996;14:190-197.

Schmeisser C, Steele H, Streit WR. Metagenomics, biotechnology with non-culturable microbes. Appl Microbiol Biotechnol. 2007;75:955-62.

Simu K, Hagstrom A. Oligotrophic bacterioplankton with a novel single-cell life strategy. Appl Environ Microbiol. 2004;70:2445-2451.

Davis KER, Joseph SJ, Janssen PH. Effects of growth medium, inoculum size, and incubation time on culturability and isolation of soil bacteria. Appl Environ Microbiol. 2005;71:826-834.

Muhammad RG, Machido DA, Ado SA, Atta HI, Bello I.A. A Comparism of the Effect of Some Organic Wastes on the Rate of Bioremediation of Soil Contaminated with Spent Engine Oil Using Gas Chromatography/Mass Spectrophotometer. J Agric Sci Technol. 2019;19(1) 2278-8779

Witt G, Trost E. Polycyclic aromatic hydrocarbons (PAHs) in sediments of the Baltic Sea and of the German coastal waters. Chemosphere. 1999;38:1603-1614.

Haritash A, Kaushik C. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs):A review. J Hazard Mater. 2009;169(1-3):1-15.

Bhushan B, Samanta SK, Jain RK. Indigo production by naphthalene-degrading bacteria. Lett Appl Microbiol. 2000;31:5-9

Zocca C, Simona DG, Filippo V, Giovanni V. Biodiversity amongst cultivable polycyclic aromatic hydrocarbon-transforming bacteria isolated from an abandoned industrial site. FEMS Microbiol Lett. 238. 2004;375-382.

Doukyu, N, Arai T. Aono R. Effects of organic solvents on indigo formation by Pseudomonas sp. strain ST-200 grown with high levels of indole. Biosci Biotechnol Biochem. 1998;62:1075-1080.

Chikere CB. Culture-Independent Analysis of Bacterial Community Composition during Bioremediation of Crude Oil-Polluted Soil. Br Microbiol Res J. 2012;2(3):187-211.

Downloads

Published

2022-12-31

How to Cite

Hussein, I. I., Atta, H. I., Ibrahim, S., & Goje, L. J. (2022). Beyond Culturing Approach for Accessing Hydrocarbon-Degrading Microbes in Petroleum Hydrocarbon Polluted Soils: A Perspective. Journal of Environmental Bioremediation and Toxicology, 5(2), 25–35. https://doi.org/10.54987/jebat.v5i2.763

Issue

Section

Articles