Activation Energy, Temperature Coefficient and Q10 Value Estimations of the Growth of 2,4-dinitrophenol-degrading Bacterium on 2,4-dinitrophenol

Authors

  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.
  • Noor Suffiah Md. Zin Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/jebat.v5i1.679

Abstract

In addition to its use as a pesticide, the chemical compound known as 2,4-dinitrophenol (2,4-DNP) is also utilized in the creation of wood preservatives and colors. Symptoms of acute (short-term) exposure to 2,4-DNP in humans include nausea or vomiting, sweating, headaches, disorientation, and a loss of weight. This type of exposure occurs when the substance is consumed orally. There are a few different models that may be used to simulate the growth rate of microorganisms on a variety of different medium at a range of temperatures. These models can be found online. One of the models that is employed the most frequently is the Arrhenius model, in part because it has a limited number of parameters. The development and metabolic activities of bacteria on the substrates they are grown on are commonly influenced by temperature. Temperature can also affect the growth of germs. Microbes are extremely sensitive to changes in temperature because of their small size. A discontinuous apparent activation energy with a chevron-like graph was used in order to describe the growth of a 2,4-dinitrophenol-degrading bacterium on 2,4-dinitrophenol. The break point of the graph was set at 28.05 °C. This was done so that the development of the bacterium could be described. Following the conclusion of the regression analysis, two temperature ranges for activation were determined. These temperature ranges were 20-27 °C and 30-42 °C, and their associated activation energies were 41.72 and 84.72 kilojoules per mole, respectively. It was anticipated that the Q10 value would be 2.905 and that the theta value would be 1.11 when considering the temperature range that was considered (30-42 °C). Due to the all-encompassing scope of this study, it is particularly useful for forecasting the effect of temperature on the breakdown and fate of 2,4-dinitrophenol during bioremediation.

References

Blasco R, Castillo F. Characterization of 2,4-dinitrophenol uptake by Rhodobacter capsulatus. Pestic Biochem Physiol USA. 1997;58:1-6.

Lenke H, Pieper DH, Bruhn C, Knackmuss HJ. Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl Environ Microbiol. 1992 Sep;58(9):2928-32.

Emelyanova EV, Reshetilov AN. Rhodococcus erythropolis as the receptor of cell-based sensor for 2, 4-dinitrophenol detection: effect of 'co-oxidation.' Process Biochem. 2002;37(7):683-92.

Zin NSMZ, Padrilah SNP, Rahman MFA, Sim HK, Khalid A, Shukor MY. Isolation and characterization of a 2,4-dinitrophenol-degrading bacterium. Bioremediation Sci Technol Res. 2016 Dec 31;4(2):28-33.

Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti A, Jain R. Degradation of 4-Nitrophenol, 2-Chloro-4-nitrophenol, and 2,4-Dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ Sci Technol. 2010 Feb 1;44:1069-77.

Jo KH, Silverstein J. Substrate inhibition of degradation of 2,4-Dinitrophenol in activated sludge. Water Environ Res. 1998;70(1):94-100.

Kristanti RA, Toyama T, Hadibarata T, Tanaka Y, Mori K. Bioaugmentation involving a bacterial consortium isolated from the rhizosphere of Spirodela polyrhiza for treating water contaminated with a mixture of four nitrophenol isomers. RSC Adv. 2014;4(4):1616-21.

Blasco R, Moore E, Wray V, Pieper D, Timmis K, Castillo F. 3-nitroadipate, a metabolic intermediate for mineralization of 2,4- dinitrophenol by a new strain of a Rhodococcus species. J Bacteriol. 1999;181(1):149-52.

Tang GF, She ZL, Wu ML, Jin CJ. Anaerobic degradation kinetics of 2,4-dinitrophenol. Huanjing KexueEnvironmental Sci. 2006;27(8):1570-3.

Kristanti RA, Toyama T, Hadibarata T, Tanaka Y, Mori K. Bioaugmentation involving a bacterial consortium isolated from the rhizosphere of Spirodela polyrhiza for treating water contaminated with a mixture of four nitrophenol isomers. RSC Adv. 2014;4(4):1616-21.

Ebert S, Fischer P, Knackmuss HJ. Converging catabolism of 2,4,6-trinitrophenol (picric acid) and 2,4-dinitrophenol by Nocardioides simplex FJ2-1A. Biodegradation. 2001;12(5):367-76.

Zablotowicz RM, Leung KT, Alber T, Cassidy MB, Trevors JT, Lee H, et al. Degradation of 2,4-dinitrophenol and selected nitroaromatic compounds by Sphingomonas sp. UG30. Can J Microbiol. 1999;45(10):840-8.

Kitova AE, Kuvichkina TN, Arinbasarova AY, Reshetilov AN. Degradation of 2,4-dinitrophenol by free and immobilized cells of Rhodococcus erythropolis HL PM-1. Appl Biochem Microbiol. 2004;40(3):258-61.

Lenke H, Pieper DH, Bruhn C, Knackmuss HJ. Degradation of 2,4-dinitrophenol by two Rhodococcus erythropolis strains, HL 24-1 and HL 24-2. Appl Environ Microbiol. 1992;58(9):2928-32.

Ghosh A, Khurana M, Chauhan A, Takeo M, Chakraborti AK, Jain RK. Degradation of 4-nitrophenol, 2-chloro-4-nitrophenol, and 2,4-dinitrophenol by Rhodococcus imtechensis strain RKJ300. Environ Sci Technol. 2010;44(3):1069-77.

Aleksieva Z, Ivanova D, Godjevargova T, Atanasov B. Degradation of some phenol derivatives by Trichosporon cutaneum R57. Process Biochem. 2002;37(11):1215-9.

Hess TF, Silverstein JA, Schmidt SK. Effect of glucose on 2,4-dinitrophenol degradation kinetics in sequencing batch reactors. Water Environ Res. 1993;65(1):73-81.

Heiss G, Trachtmann N, Abe Y, Takeo M, Knackmuss HJ. Homologous npdGI genes in 2,4-dinitrophenol- and 4-nitrophenol-degrading Rhodococcus spp. Appl Environ Microbiol. 2003;69(5):2748-54.

Iwaki H, Abe K, Hasegawa Y. Isolation and characterization of a new 2,4-dinitrophenol-degrading bacterium Burkholderia sp. strain KU-46 and its degradation pathway. FEMS Microbiol Lett. 2007;274(1):112-7.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Gemini VL, Gallego A, Tripodi V, Corach D, Planes EI, Korol SE. Microbial degradation and detoxification of 2,4-dinitrophenol in aerobic and anoxic processes. Int Biodeterior Biodegrad. 2007;60(4):226-30.

Yoon JH, Cho YG, Kang SS, Kim SB, Lee ST, Park YH. Rhodococcus koreensis sp. nov., a 2,4-dinitrophenol-degrading bacterium. Int J Syst Evol Microbiol. 2000;50(3):1193-201.

Kristanti RA, Toyama T, Hadibarata T, Tanaka Y, Mori K. Sustainable removal of nitrophenols by rhizoremediation using four strains of bacteria and giant duckweed (Spirodela polyrhiza). Water Air Soil Pollut. 2014;225(4).

Kimura N, Shinozaki Y, Lee TH, Yonezawa Y. The microbial community in a 2,4-dinitrophenol-digesting reactor as revealed by 16S rDNA gene analysis. J Biosci Bioeng. 2003;96(1):70-5.

Ohtake H, Fujii E, Toda K. Bacterial Reduction of Hexavalent Chromium: Kinetic Aspects of Chromate Reduction by Enterobacter cloacae HO1. Biocatalysis. 1990 Jan 1;4(2-3):227-35.

Ratkowsky DA, Ross T, McMeekin TA, Olley J. Comparison of Arrhenius-type and Belehradek-type models for prediction of bacterial growth in foods. J Appl Bacteriol. 1991;71(5):452-9.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006 Nov 1;22(11):1205-13.

Gafar AA, Manogaran M, Yasid NA, Halmi MIE, Shukor MY, Othman AR. Arrhenius plot analysis, temperature coefficient and Q10 value estimation for the effect of temperature on the growth rate on acrylamide by the Antarctic bacterium Pseudomonas sp. strain DRYJ7. J Environ Microbiol Toxicol. 2019 Jul 31;7(1):27-31.

Shukor MY. Arrhenius Plot Analysis of the Temperature Effect on the Biodegradation Rate of 2-chloro-4-nitrophenol. Biog J Ilm Biol. 2020 Dec 30;8(2):219-24.

Abubakar A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Serratia marcescens strain DRY6. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):21-6.

Abubakar A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on the Rate of Molybdenum Reduction by Acinetobacter calcoaceticus strain Dr Y12. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Jul 31;5(1):20-6.

Uba G, Yakasai HM, Babandi A, Ya'u M, Mansur A. The Effect of Temperature on the Rate of Molybdenum Reduction by Enterobacter sp. strain Dr.Y13: Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation. Bull Environ Sci Sustain Manag E-ISSN 2716-5353. 2021 Jul 31;5(1):1-6.

Yakasai HM, Safiyanu AJ, Ibrahim S, Babandi A. Arrhenius Plot Analysis, Temperature Coefficient and Q10 Value Estimation for the Effect of Temperature on Molybdenum Reduction Rate by Pantoea sp. strain HMY-P4. J Environ Microbiol Toxicol. 2021 Jul 31;9(1):16-20.

Singh RK, Kumar S, Kumar S, Kumar A. Biodegradation kinetic studies for the removal of p-cresol from wastewater using Gliomastix indicus MTCC 3869. Biochem Eng J. 2008;40(2):293-303.

Reardon KF, Mosteller DC, Bull Rogers JD. Biodegradation kinetics of benzene, toluene, and phenol as single and mixed substrates for Pseudomonas putida F 1. Biotechnol Bioeng. 2000;69(4):385-400.

Onysko KA, Budman HM, Robinson CW. Effect of temperature on the inhibition kinetics of phenol biodegradation by Pseudomonas putida Q5. Biotechnol Bioeng. 2000 Nov 5;70(3):291-9.

Angelova B, Avramova T, Stefanova L, Mutafov S. Temperature effect on bacterial azo bond reduction kinetics: an Arrhenius plot analysis. Biodegradation. 2008;19(3):387-93.

Zwietering MH, de Koos JT, Hasenack BE, de Witt JC, van't Riet K. Modeling of bacterial growth as a function of temperature. Appl Environ Microbiol. 1991 Apr;57(4):1094-101.

Arrhenius S. Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Z Für Phys Chem. 1889 Jan 1;

Mukerjee-Dhar G, Shimura M, Miyazawa D, Kimbara K, Hatta T. bph genes of the thermophilic PCB degrader, Bacillus sp. JF8: characterization of the divergent ring-hydroxylating dioxygenase and hydrolase genes upstream of the Mn-dependent BphC. Microbiology. 2005;151(12):4139-51.

Aisami A, Yasid NA, Johari WLW, Shukor MY. Estimation of the Q10 value; the temperature coefficient for the growth of Pseudomonas sp. aq5-04 on phenol. Bioremediation Sci Technol Res. 2017 Jul 31;5(1):24-6.

Benedek P, Farkas P. Influence of temperature on the reactions of the activated sludge process. In: Murphy RS, Nyquist D, Neff PW, editors. Proceedings of the international symposium on water pollution control in cold climates. University of Alaska, Washington, DC: Environmental Protection Agency; 1970.

Reynolds JH, Middlebrooks EJ, Procella DB. Temperature-toxicity model for oil refinery waste. J Environ Eng Div. 1974;100(3):557-76.

Melin ES, Jarvinen KT, Puhakka JA. Effects of temperature on chlorophenol biodegradation kinetics in fluidized-bed reactors with different biomass carriers. Water Res. 1998 Jan 1;32(1):81-90.

Jahan K, Ordóñez R, Ramachandran R, Balzer S, Stern M. Modeling biodegradation of nonylphenol. Water Air Soil Pollut Focus. 2008 Aug 1;8(3-4):395-404.

Bandyopadhyay SK, Chatterjee K, Tiwari RK, Mitra A, Banerjee A, Ghosh KK, et al. Biochemical studies on molybdenum toxicity in rats: effects of high protein feeding. Int J Vitam Nutr Res. 1981;51(4):401-9.

Bedade DK, Singhal RS. Biodegradation of acrylamide by a novel isolate, Cupriavidus oxalaticus ICTDB921: Identification and characterization of the acrylamidase produced. Bioresour Technol. 2018 Aug 1;261:122-32.

Guo J, Lian J, Xu Z, Xi Z, Yang J, Jefferson W, et al. Reduction of Cr(VI) by Escherichia coli BL21 in the presence of redox mediators. Bioresour Technol. 2012 Nov 1;123:713-6.

Kavita B, Keharia H. Reduction of hexavalent chromium by Ochrobactrum intermedium BCR400 isolated from a chromium-contaminated soil. 3 Biotech. 2012 Mar;2(1):79-87.

Zhao R, Guo J, Song Y, Chen Z, Lu C, Han Y, et al. Mediated electron transfer efficiencies of Se(IV) bioreduction facilitated by meso-tetrakis (4-sulfonatophenyl) porphyrin. Int Biodeterior Biodegrad. 2020 Feb 1;147:104838.

dos Santos AB, Cervantes FJ, van Lier JB. Azo dye reduction by thermophilic anaerobic granular sludge, and the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) on the reductive biochemical transformation. Appl Microbiol Biotechnol. 2004 Mar;64(1):62-9.

Dafale N, Wate S, Meshram S, Nandy T. Kinetic study approach of remazol black-B use for the development of two-stage anoxic-oxic reactor for decolorization/biodegradation of azo dyes by activated bacterial consortium. J Hazard Mater. 2008 Nov 30;159(2):319-28.

Chen G, Huang M hong, Chen L, Chen D hui. A batch decolorization and kinetic study of Reactive Black 5 by a bacterial strain Enterobacter sp. GY-1. Int Biodeterior Biodegrad. 2011 Sep 1;65(6):790-6.

Chang JS, Kuo TS. Kinetics of bacterial decolorization of azo dye with Escherichia coli NO3. Bioresour Technol. 2000 Nov 1;75(2):107-11.

Behzat B. Decolorization of Reactive Black 39 and Acid Red 360 by Pseudomonas aeruginosa. Water Sci Technol. 2015 Jul 6;72(8):1266-73.

Minkevich IG, Satroutdinov AD, Dedyukhina EG, Chistyakova TI, Kaparullina EN, Koshelev AV, et al. The effect of temperature on bacterial degradation of EDTA in pH-auxostat. World J Microbiol Biotechnol. 2006;22(11):1205-13.

Han MH. Non-linear Arrhenius plots in temperature-dependent kinetic studies of enzyme reactions: I. Single transition processes. J Theor Biol. 1972 Jun 1;35(3):543-68.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5.

Stannard CJ, Williams AP, Gibbs PA. Temperature/growth relationships for psychrotrophic food-spoilage bacteria. Food Microbiol. 1985;2(2):115-22.

McMeekin TA, Chandler RE, Doe PE, Garland CD, Olley J, Putro S, et al. Model for combined effect of temperature and salt concentration/water activity on the growth rate of Staphylococcus xylosus. J Appl Bacteriol. 1987;62(6):543-50.

Fernández A, Collado J, Cunha LM, Ocio MJ, Martínez A. Empirical model building based on Weibull distribution to describe the joint effect of pH and temperature on the thermal resistance of Bacillus cereus in vegetable substrate. Int J Food Microbiol. 2002;77(1-2):147-53.

Ucun H, Bayhan YK, Kaya Y. Kinetic and thermodynamic studies of the biosorption of Cr(VI) by Pinus sylvestris Linn. J Hazard Mater. 2008 May 1;153(1):52-9.

Tchobanoglous G, Schoeder ED. Water quality: Characteristics, modeling and modification. 1 edition. Reading, Mass: Pearson; 1985. 780 p.

Ratkowsky DA, Olley J, McMeekin TA, Ball A. Relationship between temperature and growth rate of bacterial cultures. J Bacteriol. 1982;149(1):1-5.

Melin ES, Ferguson JF, Puhakka JA. Pentachlorophenol biodegradation kinetics of an oligotrophic fluidized-bed enrichment culture. Appl Microbiol Biotechnol. 1997 Jun 1;47(6):675-82.

Kuhn HJ, Cometta S, Fiechter A. Effects of growth temperature on maximal specific growth rate, yield, maintenance, and death rate in glucose-limited continuous culture of the thermophilic Bacillus caldotenax. Eur J Appl Microbiol Biotechnol. 1980;10(4):303-15.

Ceuterick F, Peeters J, Heremans K, De Smedt H, Olbrechts H. Effect of high pressure, detergents and phaospholipase on the break in the arrhenius plot of Azotobacter nitrogenase. Eur J Biochem. 1978;87(2):401-7.

Mutafov SB, Minkevich IG. Temperarture effect on the growth of Candida utilis VLM-Y-2332 on ethanol. Comptes Rendus Acad Bulg Sci. 1986;39:71-4.

Funamizu N, Takakuwa T. Simulation analysis of operating conditions for a municipal wastewater treatment plant at low temperatures. In: Margesin R, Schinner F, editors. Biotechnological Applications of Cold-Adapted Organisms. Berlin, Heidelberg: Springer Berlin Heidelberg; 1999. p. 203-20.

Yakasai HM, Yasid NA, Shukor MY. Temperature Coefficient and Q10 Value Estimation for the Growth of Molybdenum-reducing Serratia sp. strain HMY1. Bioremediation Sci Technol Res. 2018 Dec 31;6(2):22-4.

Gibbs CF, Davis SJ. The rate of microbial degradation of oil in a beach gravel column. Microb Ecol. 1976 Mar 1;3(1):55-64.

Malina G, Grotenhuis JTC, Rulkens WH. The effect of temperature on the bioventing of soil contaminated with toluene and decane. J Soil Contam. 1999 Jul 1;8(4):455-80.

Oh YS, Kim SJ. Effect of temperature and salinity on the bacterial degradability of petroleum hydrocarbon. Korean J Microbiol Korea R. 1989;26(4):339-47.

Kim BY, Hyun HH. Production of acrylamide using immobilized cells of Rhodococcus rhodochrous M33. Biotechnol Bioprocess Eng. 2002 Aug 1;7(4):194.

Atlas RM, Bartha R. Fate and effects of polluting petroleum in the marine environment. In: Gunther FA, editor. Residue Reviews. Springer New York; 1973. p. 49-85. (Residue Reviews).

Deppe U, Richnow HH, Michaelis W, Antranikian G. Degradation of crude oil by an arctic microbial consortium. Extrem Life Extreme Cond. 2005 Dec;9(6):461-70.

Bagi A, Pampanin DM, Brakstad OG, Kommedal R. Estimation of hydrocarbon biodegradation rates in marine environments: A critical review of the Q10 approach. Mar Environ Res. 2013 Aug;89:83-90.

Downloads

Published

2022-08-05

How to Cite

Yakasai, H. M. ., Md. Zin, N. S. ., & Shukor, M. Y. (2022). Activation Energy, Temperature Coefficient and Q10 Value Estimations of the Growth of 2,4-dinitrophenol-degrading Bacterium on 2,4-dinitrophenol. Journal of Environmental Bioremediation and Toxicology, 5(1), 38–44. https://doi.org/10.54987/jebat.v5i1.679

Issue

Section

Articles