A Review on Nematophagus Fungi: A Potential Nematicide for the Biocontrol of Nematodes

Authors

  • Ibrahim Lawal Department of Biological Sciences, Al-Qalam University Katsina, Dutsinma Road, 820102, Katsina, Nigeria.
  • Aminu Yusuf Fardami Department of Microbiology, Faculty Chemical and Life Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria.
  • Fatima Isma’il Ahmad Department of Biological Sciences, Al-Qalam University Katsina, Dutsinma Road, 820102, Katsina, Nigeria
  • Sani Yahaya Department of Microbiology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, PMB 3011, Gwarzo Road, Kano State, Nigeria.
  • Abdullahi Sani Abubakar Department of Microbiology, Faculty Chemical and Life Sciences, Usmanu Danfodiyo University, P.M.B. 2346 Sokoto, Nigeria.
  • Muhammad Abdullahi Sa’id Department of Biological Sciences, Al-Qalam University Katsina, Dutsinma Road, 820102, Katsina, Nigeria.
  • Musa Marwana Department of Sciences Laboratory Technology, Al-Qalam University Katsina, Katsina State, Dutsinma Road, 820102, Katsina, Nigeria.
  • Kamilu Adamu Maiyadi Department of Microbiology, Faculty of Life Sciences, College of Natural and Pharmaceutical Sciences, Bayero University Kano, PMB 3011, Gwarzo Road, Kano State, Nigeria.

DOI:

https://doi.org/10.54987/jebat.v5i1.677

Keywords:

Plant-parasitic-nematodes, Biocontrol, Nematophagus fungi, Nematodes

Abstract

Filamentous fungi offer an interesting biocontrol alternative. Trichoderma, mycorrhizal, and endophytic fungi are the main filamentous fungi used to induce nematode resistance. They can reduce plant-parasitic nematode damage by producing lytic enzymes, antibiosis, paralysis, and parasitism. They minimize space and resource competition by increasing nutrient and water uptake, or by modifying root morphology and/or rhizosphere interactions, which benefits plant growth. Filamentous fungi can induce nematode resistance by activating hormone-mediated plant-defense mechanisms (salicylic and jasmonic acid, strigolactones). Altering the transport of chemical defense components or the synthesis of secondary metabolites and enzymes can also boost plant defenses. Using filamentous fungi as BCAs against plant-parasitic nematodes is a promising biocontrol strategy in agriculture. By increasing a plant's ability to absorb nutrients and water, or by changing root shape and/or rhizosphere interactions, they reduce competition for space and resources. Filamentous fungi can activate hormone-mediated plant defenses (e.g., strigolactones, salicylic and jasmonic acids). Changing how chemical defense components are transported or synthesizing secondary metabolites and enzymes can improve a plant's defenses. Using filamentous fungi as BCAs in agriculture is a promising, long-lasting biocontrol method against plant-parasitic nematodes.

References

Sahebani N, Hadavi N. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol Biochem, 2008; 40: 2016-2020.

Larriba E, Jaime MD, Nislow C, Martín-Nieto J, Lopez-Llorca LV. Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochoniachlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. J Plant Res. 2015; 128: 665-678.

Zheng YK, Yang A. Diversity, distribution and biotechnological potential of endophytic fungi. Ann. Microbiol. 2018; 66: 529-542.

Nicol JM, Turner SJ, Coyne DL, den-Nijs L, Hockland S, Tahna-Maafi Z. Current Life Sciences. (Nordbring-Hertz B, Jansson HB, Tunlid, A.eds). Chichester: John Wiley & Sons Ltd, 2006; Pp. 1-11.

Walia RK, Kranti KVVS, Kumar V. Consolidated Biennial Report (2015-17) of All India Coordinated Research Project on Nematodes in Cropping System, ICAR- Indian Agri. Res. Inst. New-Delhi, 2018 pp 2-3.

Hallmann J, Davies KG, Sikora RA. Biological control using microbial pathogens, endophytes and antagonists. In: Root-Knot Nematodes. (Perry, RN, Moens, M. , Starr, JL, eds.). CAB International, Wallingford, UK; 2009; Pp. 380-411.

Singh S, Singh B, Singh AP. Nematodes: a threat to sustainability of agriculture. Procedia Environ Sci, 2015; 29: 215-216.

Li Y, Hyde KD, Jeewon R, Lei C, Vijaykrishna D, Zhang KQ. Phylogenetics and evolution of nematode-trapping fungi (Orbilales) estimated from nuclear and protein-coating genes. Mycologia , 2005; 97: 1034-1046.

Li G, Zhang K, Xu J, Dong J, Liu Y. Nematicidal substances from fungi. Recent Pat Biotechnol, 2007; 1: 212-233.

Widmer TL, Abawi GS. Mechanism of suppression of Meloidogyne hapla and its damage by a green manure of Sudan grass. Plant Disease 2000; 84: 562-568.

Berg G, Zachow C, Lottmann J, Gotz M, Costa R, Smalla K. Impact of plant species and site on rhizosphere associated fungi antagonistic to Verticillium dahlia Kleb. Appl Environ Biol, 2005; 71: 4203-4213.

Shamalie BVT, Fonseka RM, Rajapaksha RGAS. Effect of Trichoderma viride and (Curator) on management of root-knot nematodes and growth parameters of Gotukola (Centella asiatica L.). Trop Agricultural Res, 2011; 2: 61-69.

Brand D, Soccol CR, Sabu A, Roussos S. Production of fungal biocontrol agents through solid state fermentation: a case study on Paecilomyceslilacinus against root-knot nematodes. MycologiaAplicada Int, 2010; 22: 31-48.

Nordbring-Hertz B, Jansson HB, Tunlid A. Nematophagous fungi. In: Encyclopedia of Life Sciences. John Wiley and Sons, 2006; Pp. 1-11.

Liu X, Xiang M, Che Y. The living strategy of nematophagous fungi. Mycoscience, 2009; 50: 20-25.

Li S, Duan, YX, Zhu X.F, Chen LJ, Wang YY. The effects of adding secondary metabolites of Aspergillus niger on disease resistance to root-knot nematode of tomato. China Vegetables, 2011; 1: 44-49.

Braga FR, Araújo JV. Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl. Microbiol. Biototechnol, 2014; 98: 71-82.

Degenkolb T, Vilcinskas A. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl MicrobiolBiotechnol, 2016;100 :3799-3812.

Gaurab K. Role of nematodes in Agriculture: Importance of nematodes in soil. 2019

Nicol J. "Current nematode threats to world agriculture". In: Jones J, Gheysen G, Fenoll C, editors. Genomics and Molecular Genetics of Plant-Nematode Interactions. Berlin: Springer Science Business Media, 2011: 21-43.

Kendrick B. The Fifth Kingdom, 3rd edn. Mycol Pub, 2001 Canada.

Natvig DO, May G. (1996) Fungal evolution and speciation. J Gen, 1996; 75: 441- 452.

Burnett JH. Fungal Populations and Species. Oxford University Press, 2003; sOxford, UK.

Kohn LM. Mechanisms of fungal speciation. Ann Rev Phytopat, 2005;43: 279-308.

Giraud T, Refregier G, Le GM, de-Vienne DN, Hood ME. Speciation in fungi. Fungal Gen Biol, 2008; 45: 791-802.

Rundle HD, Nosil P. Ecological speciation. Ecol Lett, 2005; 8:336-352.

Darwin C, Wallace AR. On the tendency of species to form varieties and species by naturalmeans of selection. Proc Linn Soc (Zool), London , 1859; 3: 45-62.

Hatfield T, Schluter D. Ecological speciation in sticklebacks: environment- dependent hybrid fitness. Evol, 1999; 53: 866-873.

Ogden R, Thorpe RS. Molecular evidence for ecological speciation in tropical habitats. 2002

Richmond JQ, Reeder TW. Evidence for parallel ecological speciation in Scincid lizards of theeumecesSkiltonianus species group (Squamata: Scincidae). Evol, 2002;56: 1498-1513.

Via S, BouckAC,Skillman S. Reproductive isolation between divergent races of pea aphids on two hosts. II. Selection against migrants and hybrids in the parental environments. Evol, 2000;54: 1626-1637.

Barat M, Tarayre M, Atlan A. Genetic divergence and ecological specialization of seed weevils (Exapion spp.) on gorses (Ulex spp.). EcolEntomol, 2008;33: 328- 336.

Chase TE, Ulrich RC. Five genes determining intersterility in Heterobasidionannosum. Mycol,1990; 82: 73-81.

Antonovics J, Hood M, Partain J. The ecology and genetics of a host shift: Microbotryum as a model system. The American Naturalist, 2002; 160: 540-553.

Couch BC, Fudal I, Lebrun MH, Tharreau D, Valent B, van-Kim P, Notteghem JL, Kohn LM. Origins of host specific populations of the blast pathogen Magnaportheoryzae in crop domestica- tion with subsequent expansion of pandemic clones on rice and weeds of rice. Gen, 2005; 170: 613-630.

Fisher MC, Hanage WP, de-Hoog S, Johnson E, Smith MD, White NJ, Vanittanakom J. Low effective dispersal of asexual genotypes in heterogeneous landscapes by the endemic pathogen Penicillium marneffei. PLoS Path, 2005; 1: 20.

Lopez-Villavicencio M, Enjalbert J, Hood ME, Shykoff JA, Raquin C, Giraud T. The an- ther smut disease on Gypsophila repens: a case of parasite sub-optimal performance following a recent host shift? J Evol Biol, 2005; 18: 1293- 1303.

Zeilinger S, Gupta VK, Dahms T E, Silva RN, Singh HB, Upadhyay, RS. Friends or foes? Emerging insights from fungal interactions with plants. FEMS Microbiol. Rev, 2015; 40: 182-207.

Ahrén D, Faedo M, Rajastiekar B, Tunlid A. Low genetic diversity among isolates of the nematode-trapping fungus Duddingtoniaflagrans: evidence for recent worldwide dispersion from a single common ancestor. Mycol Res, 2004; 108: 1205-1214.

Jeewon R, Hyde KD. Detection and diversity of fungi from environmental samples: trad- itional versus molecular approaches. In: Varma, A. and Oelmuller, R. (eds). Adv Tech Soil Microbiol, 2007; 2: 1-15.

Zhang H, Chi C, Song L, Xia X. Strigolactones positively regulate defense against root-knot nematodes in tomato. J Exp Bot, 2018; 70: 1325-1337.

Raberg U, Hogberg NOS, Land CJ. Detection and species discrimination using rDNA T-RFLP for identification of wood decay fungi. Holzforschung, 2005; 59: 696-702.

Wakelin SA, Warren RA, Kong L, Harvey, PR. Management factors affecting size and structure of soil Fusarium communities under irrigated maize Australia. Appl Soil Ecol, 2008; 39: 201-209.

Pfister DH. Castor, Pollux and life histories of fungi. Mycol, 1997; 89: 1-23.

Moosavi MR, Zare R. Fungi as biological control agents of plant-parasitic nematodes. In: Merillon, J.M. and Ramawat, K.G. (eds) Plant Defence: Biol Control, Progress in Biological Control 12. Springer Science + Business Media, Dordrecht, the Netherlands, 2012; Pp. 67-107.

Scholler M, Hagedorn G, Rubner A. A re-evaluation of predatory Orbiliaceous fungi II. A newgeneric concept. Sydowia, 1999; 51: 89-113.

Durrieu G. Biogeographical behavior of phytopathogenic fungi: Attempts at classification. Bulletin de la Société Botanique de France, 1970; 117: 533-545.

Dasgupta MK, Mandal NC. Postharvest Pathology of Perishables. Oxford and IBH, New Delhi, India, 1989; p. 623.

Ahrén D, Ursing BM, Tunlid A. Phylogeny of nematode-trapping fungi based on 18S rDNAsequences. FEMS Microbiol Lett, 1998; 158: 179-184.

Downloads

Published

2022-08-05

How to Cite

Lawal, I. ., Fardami, A. Y. ., Ahmad, F. I. ., Yahaya, S., Abubakar, A. S. ., Sa’id, M. A. ., Marwana, M. ., & Maiyadi, K. A. . (2022). A Review on Nematophagus Fungi: A Potential Nematicide for the Biocontrol of Nematodes. Journal of Environmental Bioremediation and Toxicology, 5(1), 26–31. https://doi.org/10.54987/jebat.v5i1.677

Issue

Section

Articles