Kinetic Analysis of the Adsorption of Lead(II) onto an Antarctic Sea-Ice Bacterial Exopolysaccharide

Authors

  • Faggo Abdullahi Adamu Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Hartinie Marbawi Biotechnology Programme, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah.
  • Ahmad Razi Othman Department of Chemical Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, D.E, Malaysia
  • Nur Adeela Yasid Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/jebat.v5i1.674

Keywords:

Antarctic sea-ice bacterial exopolysaccharide, Biosorption, Lead(II), Kinetics, Pseudo-1st order, Pseudo-2nd order

Abstract

Hypertension and kidney impairment are two of the many adult health problems that have been related to lead exposure. Women who are expecting a child are especially susceptible to the dangers of lead since it can have devastating consequences on the developing embryo. Existing techniques for the remediation of lead pollutant include membrane separation, ion exchange, precipitation and biosorption. Of all of this technology, biosorption has several positive aspects which include low operating expenses, very efficient detoxification of toxicants at low concentrations and low amount of disposal materials. The biosorption of the biosorption of lead(II) onto an Antarctic sea-ice bacterial exopolysaccharide is remodeled using nonlinear regression and the optimal mode was determined by a series of error function assessments. Statistical analysis showed that the best kinetic model for adsorption in salt-free water was pseudo-1st order while the best kinetic model for adsorption in seawater was pseudo-2nd order model. All error function analyses also supported these two best models. The kinetic constants values for salt-free water and seawater shows large difference in terms of adsorption in salt-free water and seawater. A higher equilibrium biosorption capacity for lead (II) or qe values were exhibited for both k1 and k2 rate constants in sea water indicating a more efficient adsorption in seawater. Adsorption in seawater increased the qe values from 51.11 (mg/g) (95% confidence interval from 49.75 to 52.44) to 92.98 (mg/g) (95% C.I. from 91.01 to 94.95) In addition, the h value, (mg/g.min) indicates a stronger driving force to accelerate the diffusion of adsorbate from seawater onto the adsorbent. The results suggest fundamental difference of sorption mechanism and functional groups are involved in salt-free and seawater.

References

Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN. Toxicity, mechanism and health effects of some heavy metals. Interdiscip Toxicol. 2014 ;7(2):60-72.

Wani AL, Ara A, Usmani JA. Lead toxicity: a review. Interdiscip Toxicol. 2015;8(2):55-64.

Prengaman RD, Mirza AH. 20 - Recycling concepts for lead-acid batteries. In: Garche J, Karden E, Moseley PT, Rand DAJ, editors. Lead-Acid Batteries for Future Automobiles. Amsterdam: Elsevier; 2017: 575-98.

Raviraja A, Vishal Babu GN, Sehgal A, Saper RB, Jayawardene I, Amarasiriwardena CJ, et al. Three cases of lead toxicity associated with consumption of ayurvedic medicines. Indian J Clin Biochem. 2010;25(3):326-9.

Alissa EM, Ferns GA. Heavy metal poisoning and cardiovascular disease. J Toxicol. 2011;870125.

Nepalia A, Singh A, Mathur N, Pareek S. Toxicity assessment of popular baby skin care products from Indian market using microbial bioassays and chemical methods. Int J Environ Sci Technol. 2018;15(11):2317-24.

Gambelunghe A, Sallsten G, Borné Y, Forsgard N, Hedblad B, Nilsson P, et al. Low-level exposure to lead, blood pressure, and hypertension in a population-based cohort. Environ Res. 2016;149:157-63.

Jarvis P, Fawell J. Lead in drinking water - An ongoing public health concern? Curr Opin Environ Sci Health. 2021;20:100239.

Chu WL, Phang SM. Biosorption of Heavy Metals and Dyes from Industrial Effluents by Microalgae. In: Alam MdA, Wang Z, editors. Microalgae Biotechnology for Development of Biofuel and Wastewater Treatment.Springer, Singapore.

Zhang Z, Cai R, Zhang W, Fu Y, Jiao N. A novel exopolysaccharide with metal adsorption capacity produced by a marine bacterium Alteromonas sp. JL2810. Mar Drugs. 2017;15(6):175

Mahapatra B, Dhal NK, Pradhan A, Panda BP. Application of bacterial extracellular polymeric substances for detoxification of heavy metals from contaminated environment: A mini-review. Mater Today Proc. 2020;30:283-8.

Nagar S, Antony R, Thamban M. Extracellular polymeric substances in Antarctic environments: A review of their ecological roles and impact on glacier biogeochemical cycles. Polar Sci. 2021;30:100686.

Ma Y, Shen B, Sun R, Zhou W, Zhang Y. Lead(II) biosorption of an Antarctic sea-ice bacterial exopolysaccharide. Desalination Water Treat. 2012;42(1-3):202-9.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J Off Publ Fed Am Soc Exp Biol. 1987;1(5):365-74.

Tran HN, You SJ, Hosseini-Bandegharaei A, Chao HP. Mistakes and inconsistencies regarding adsorption of contaminants from aqueous solutions: A critical review. Water Res. 2017;120:88-116.

Lagergren S. Zurtheorie der sogenannten adsorption gelösterstoffe. K Sven Vetenskapsakademiens. 1898;24(4):1-39.

Ho YS, McKay G. Pseudo-second order model for sorption processes. Process Biochem. 1999;34(5):451-65.

Zeldovich J. Über den mechanismus der katalytischen oxydation von CO an MnO2. Acta Physicochim URSS. 1934;1:364-499.

Rohatgi A. WebPlotDigitizer. http://arohatgi.info/WebPlotDigitizer/app/ Accessed; 2015.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-5.

Khare KS, Phelan Jr FR. Quantitative comparison of atomistic simulations with experiment for a cross-linked epoxy: A specific volume-cooling rate analysis. Macromolecules. 2018;51(2):564-75.

Akaike H. New look at the statistical model identification. IEEE Trans Autom Control. 1974;AC-19(6):716-23.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002: 528

Kass RE, Raftery AE. Bayes Factors. J Am Stat Assoc. 1995;90(430):773-95.

Ross T, McMeekin TA. Predictive microbiology. Int J Food Microbiol. 1994;23(3-4):241-64.

Wang T, Pan X, Ben W, Wang J, Hou P, Qiang Z. Adsorptive removal of antibiotics from water using magnetic ion exchange resin. J Environ Sci. 2017;52:111-7.

Chu KH, Hashim MA. Adsorption and desorption characteristics of zinc on ash particles derived from oil palm waste. J Chem Technol Biotechnol. 2002;77(6):685-93.

Gadd GM. Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol. 2009;84(1):13-28.

Mu H, Feng X, Chu KH. Calculation of emergy flows within complex chemical production systems. Ecol Eng. 2012;44:88-93.

Wang L, Liu Y, Chu K. A Simplified Model and Similarity Solutions for Interfacial Evolution of Two-Phase Flow in Porous Media. Transp Porous Media. 2012;93(3):721-35.

González-López ME, Laureano-Anzaldo CM, Pérez-Fonseca AA, Arellano M, Robledo-Ortíz JR. A Critical Overview of Adsorption Models Linearization: Methodological and Statistical Inconsistencies. Sep Purif Rev. 2021;0(0):1-15.

Qurie M, Khamis M, Manassra A, Ayyad I, Nir S, Scrano L, et al. Removal of Cr(VI) from aqueous environments using micelle-clay adsorption. Sci World J. 2013;Article ID 942703:7.

Khamizov RKh, Sveshnikova DA, Kucherova AE, Sinyaeva LA. Kinetic model of batch sorption processes: Comparing calculated and experimental data. Russ J Phys Chem A. 2018;92:2032-8.

Tunali S, Akar T, Özcan AS, Kiran I, Özcan A. Equilibrium and kinetics of biosorption of lead(II) from aqueous solutions by Cephalosporium aphidicola. Sep Purif Technol. 2006;47(3):105-12.

Liu Le, Liu J, Li H, Zhang H, Liu J, Zhang H. Equilibrium, kinetic, and thermodynamic studies of lead (ii) biosorption on sesame leaf. BioResources. 2012;7(3):3555-72.

Meitei MD, Prasad MNV. Lead (II) and cadmium (II) biosorption on Spirodela polyrhiza (L.) Schleiden biomass. J Environ Chem Eng. 2013;1(3):200-7.

Samimi M, Shahriari-Moghadam M. Isolation and identification of Delftia lacustris Strain-MS3 as a novel and efficient adsorbent for lead biosorption: Kinetics and thermodynamic studies, optimization of operating variables. Biochem Eng J. 2021;173:108091.

Lee CG, Kim SB. Cr(VI) Adsorption to Magnetic Iron Oxide Nanoparticle-Multi-Walled Carbon Nanotube Adsorbents. Water Environ Res Res Publ Water Environ Fed. 2016 Nov 1;88(11):2111-20.

Maaloul N, Oulego P, Rendueles M, Ghorbal A, Díaz M. Cu(II) Ions Removal on Functionalized Cellulose Beads from Tunisian Almond (Prunus dulcis) Shell. Environ Sci Eng. 2021;65-71.

Li H, Lin Y, Guan W, Chang J, Xu L, Guo J, et al. Biosorption of Zn(II) by live and dead cells of Streptomyces ciscaucasicus strain CCNWHX 72-14. J Hazard Mater. 2010;179(1-3):151-9.

Mukherjee A, Sarkar S, Parvin R, Bera D, Roy U, Gachhui R. Remarkably high Pb2+ binding capacity of a novel, regenerable bioremediator Papiliotrema laurentii RY1: Functional in both alkaline and neutral environments. Ecotoxicol Environ Saf. 2020;195:110439.

Vijayaraghavan K, Rangabhashiyam S, Ashokkumar T, Arockiaraj J. Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass. Sep Sci Technol. 2016;51(17):2725-33.

Periasamy K, Namasivayam C. Removal of copper(II) by adsorption onto peanut hull carbon from water and copper plating industry wastewater. Chemosphere. 1996;32(4):769-89.

Xie S, Yang J, Chen C, Zhang X, Wang Q, Zhang C. Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact. 2008;99(1):126-33.

Nadeem R, Hanif MA, Mahmood A, Jamil MS, Ashraf M. Biosorption of Cu(II) ions from aqueous effluents by blackgram bran (BGB). J Hazard Mater. 2009;168(2-3):1622-5.

Mahajan G, Sud D. Application of lingo-cellulosic waste material for heavy metal ions removal from aqueous solution. J Environ Chem Eng. 2013;1(4):1020-7.

Dudu TE, Sahiner M, Alpaslan D, Demirci S, Aktas N. Removal of As(V), Cr(III) and Cr(VI) from aqueous environments by poly(acrylonitril-co-acrylamidopropyl-trimethyl ammonium chloride)-based hydrogels. J Environ Manage. 2015;161:243-51.

Gunasundari E, Senthil Kumar P. Higher adsorption capacity of Spirulina platensis alga for Cr(VI) ions removal: parameter optimisation, equilibrium, kinetic and thermodynamic predictions. IET Nanobiotechnol. 2017;11(3):317-28.

Gunasundari E, Senthil Kumar P. Adsorption isotherm, kinetics and thermodynamic analysis of Cu(II) ions onto the dried algal biomass (Spirulina platensis). J Ind Eng Chem. 2017 Dec 25;56:129-44.

Sharififard H, Ghorbanpour M, Hosseinirad S. Cadmium removal from wastewater using nano-clay/TiO2 composite: kinetics, equilibrium and thermodynamic study. Adv Environ Technol. 2018 Oct 1;4(4):203-9.

Vijayaraghavan K, Yun YS. Bacterial biosorbents and biosorption. Biotechnol Adv. 2008 May 1;26(3):266-91.

Gonzalez-Davila M, Millero FJ. The adsorption of copper to chitin in seawater. Geochim Cosmochim Acta. 1990 Mar 1;54(3):761-8.

Downloads

Published

2022-08-05 — Updated on 2022-08-05

Versions

How to Cite

Adamu, F. A. ., Marbawi, H. ., Othman, A. R., Yasid, N. A., & Shukor, M. Y. (2022). Kinetic Analysis of the Adsorption of Lead(II) onto an Antarctic Sea-Ice Bacterial Exopolysaccharide. Journal of Environmental Bioremediation and Toxicology, 5(1), 11–16. https://doi.org/10.54987/jebat.v5i1.674

Issue

Section

Articles