Study the Antitumor Activity of Copper (II) Complex of 4-Azomalononitrile Antipyrine on Mice Induced With Earlich Ascites Carcinoma Cells

Authors

  • Bahgat A. El-fiky Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute University of Sadat City, Egypt.
  • Samar A. Aly Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research Institute University of Sadat City, Egypt.
  • Ibrahim H. El-Sayed Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
  • Sabah F. El-Abd Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.
  • Sara S. Abo-Ella Department of Molecular Biology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt.

DOI:

https://doi.org/10.54987/jebat.v2i2.216

Abstract

Copper (II) complex of 4-azomalononitril antipyrine has been isolated and characterized based on IR spectra, 1H NMR, elemental analyses, molar conductance, electronic spectra and magnetic moment. A diminished amount of antioxidant enzyme coupled with superoxide production in
appears to be general characteristic of the tumor cells. This character can be used in cancer treatment. The present study attempted to investigate the effect of copper (II) complex of 4- azomalononitril antipyrine which has SOD like activity on tumor development using Ehrlich ascites carcinoma (EAC) implemented in Swiss albino female mice. The results showed that copper complex with ligand has anti cancer activity in all studied parameters with variable ratios.

References

. Cancer Research UK. UK Cancer Incidence Statistics by Age.

-25. 2007.

. Osinsky S, Levitin I, Bubnovskaya ., Sigan A, Ganusevich I,

Kovelskaya N. Selectivity of effects of redox-active cobalt (III)

complexes on tumor tissue. Exp Oncol. 2004, 26:140-144.

. Hathaway BJ. Comprehensive Coordination Chemistry.

(Wilkinson G, Gillard RD, Cleverly JA (Eds.), vol. 5, Pergamon

Press, Oxford, p.553. 1987.

. Kalinowska U, Checinska, L, Malecka M, Erxleben A, Lippert

B, Ochocki J. Synthesis and spectroscopy of diethyl

(Pyridinylmethyl) phosphates and their palladium (II)

complexes. X-Ray crystal structures of Pd (II) complexes. Inorg

Chim Acta, 2005, 358:2464-2472.

. Aranowska K, Graczyk J, Checinska L, Pakulska W, Ochocki, J.

Antitumor effect of Pt(II) amine phosphonate complexes on

sarcomaSa-180 in mice. Crystal structure of cis-dichlorobis

(diethyl-4-pyridylmethylphosphonate-N)platinum(II) hydrate,

cis-[PtCl2 (4-pmpe)2]•H2O. Die Pharmazie, 2006, 61:457-460.

. Kei S. Serum lipid peroxide in cerebrovascular disorders

determined by a new colorimetric method. Clinica Chim Acta,

, 90(1):37-43.

. Hofmann H, Schmidt H.H.H.W. Thiol dependence of nitric

oxide synthase. Biochemistry. 1995, 34(41):13443-13452.

. Beutler E. Red cell metabolism –a manual of biochemical

methods, 2nd eds., Grune and Stration, New York, pp 69-72.

. El-Boraey HA, El-Saied FA, Aly SA. UO2(VI), Sn(IV), Th(IV)

and Li(I) complexes of 4-azomalononitrile antipyrine: Synthesis,

characterization and thermal studies. J Therm Anal Cal. 2009,

(2):599-606.

. Peters GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman

AM, Ackland SP. Basis for effective combination cancer

chemotherapy with antimetabolites. Pharmacol Ther. 2000, 87(2-

: 227-253.

. Rafael N. DNA measurement and cell cycle analysis by flow

cytometry. Curr Issues Mol Biol. 2001, 3(3): 67-70.

. Mostafa MM, El- Asmy AA. Transition metal complexes of 1-

isovaleryl4phenyl-thiosemicarbazide. J Coord Chem. 1970,

:197-224.

. West DX, Gebremedhin H, Ramack TJ, Liberta AE. Spectral and

biological studies of copper(II) complexes of 2-acetyl- pyridine

thiosemicarbazone with bulky-4N-substitutents. Transition Met.

, 19(4):426- 431.

. El- Bindary AA. N- picolinamide- N-benyzoylthiocarbamide

transition metal complexes. Trans Met Chem. 1991, 22:381-384.

. El- Saied FA, Ayad MI, Issa RM, Aly SA. Copper(II) complexes

of azocyanoacetamidoanilineantipyrine and 4-

azocyanoacetamido -m-toludineantipyrine. Pol J Chem.

,75:941-947.

. El-Saied FA, Aly SA. Synthesis and characterization of

UO2(VI), Sn(IV)and Th(IV)complexes of 4-

formylazohydrazoanilineantipyrine. Afinidad, 2004,

(514):516-520.

. El- Saied FA, Ayad MI, Issa RM, Aly SA. Synthesis and

characterization of iron(III), cobalt(II), nickel(II) and copper(II)

complexes of formylazohydrazoanilineantipyrine. Pol J Chem,

, 75:773-783.

. Geary WJ. The use of conductivity measurements in organic

solvents for the characterization of coordination compounds.

Coord Chem Rev. 1971, 7:81-122.

. Oberley LW. Role of antioxidant enzymes in cell

immortalization and transformation. Mol Cell Biochem. 1998,

(4):147-153.

. Kern JC, Kehrer JP. Free radicals and apoptosis: relationships

with glutathione, thioredoxin and the Bcl family of proteins.

Front Biosci. 2005, 10:1727-1738.

. Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free

radicals, metals and antioxidants in oxidative stress-induced

cancer. Chem Biol Interact. 2006, 160:1-40.

. Kc S, Carcamo JM, Golde DW. Antioxidants prevent oxidative

DNA damage and cellular transformation elicited by the overexpression

of c-MYC. Mutat Res. 2006, 593:64-79.

. Kang YH, Lee E, Choi MK, Ku JL, Kim SH, Park YG, Lim SJ.

Role of reactive oxygen species in the induction of apoptosis by

alphatocopheryl succinate. Int J Cancer. 2004, 112:385-392.

. Lecour S, Merwe EV, Opie LH, Sack MN. Ceramide attenuates

hypoxic cell death via reactive oxygen species signaling. J

Cardio Pharmacol. 2006, 47:158-63.

. Maia L, Vala A, Mira L. NADH oxidase activity of rat liver

xanthine dehydrogenase and xanthine oxidase-contribution for

damage mechanisms. Free Radical Res. 2005, 39:979-986.

. Mookerjee A, Mookerjee Basu J, Dutta P, Majumder S,

Bhattacharyya S, Biswas J, Pal S, Mukherjee P, Raha S, Baral

RN, Das T, Efferth T, S, Roy S, Choudhuri SK. Overcoming

drug resistant mediated apoptosis. Clin Cancer Res. 2006,

:4339-4349.

. Letelier ME, Lepe AM, Faundez M, Salazar J, Marin R, Aracena

P, Speisky H. Possible mechanisms underlying copper-induced

damage in biological membranes leading to cellular toxicity.

Chem Biol Interact. 2005, 151:71-82.

. Majumder S, Dutta P, Choudhuri SK. The role of copper in

development of drug resistance in murine carcinoma. Med

Chem. 2005, 1:563-573.

. Suntres ZE, Lui EM. Prooxidative effect of copper -

metallothionein in the acute cytotoxicity of hydrogen peroxide in

Ehrlich ascites tumor cells. Toxicology. 2006, 217:155-68.

. Steinebach OM, Wolterbeek HT. Role of cytosolic copper,

metallothionein and glutathione in copper toxicity in rat

hepaticas tissue culture cells. Toxicology. 1994, 92:75-90.

. Majumder S, Dutta P, Mookerjee A, Choudhuri SK. The role of

a novel copper complex in overcoming doxorubicin resistance in

Ehrlich ascites carcinoma cells in vivo. Chem Biol Interact.

, 159:90-103.

. Goldstein S, Czapski G. Comparison between different assays

for superoxide dismutase- like activity. Free Rad Res Comm.

, 12(13):5-10.

. Wenqing S. Metal-dependent SOD mimics, free radical &

radiation biology program, B-180 Medical Laboratories, The

University of Iowa, Iowa City, IA 52242-1181, USA. 2001.

. Beakman JS, Robert L, Minor J, White CW, Repine JE, Rosen

GM, Freeman BA. Superoxide dismutase and catalase

conjugated to polyethlene glycol increases endothelial enzyme

activity and oxidant resistence. J Bio Chem. 1988, 263:6884-

. Czapski G, Goldstein S. Superoxide scavengers and SOD or

SOD mimics. In: Antioxidants in Therapy and Preventive

Medicine. Emerit I, (Ed.). New York: Plenum Press; pp 45-50.

. Kensler TW, Trush M. Inhibition of oxygen radical metabolism

in phorbolester activated polymorphonuclear leukocytes by an

antitumor promoting copper complex with superoxide dismutasemimetic

activity. Bio Chem Pharm. 1983, 32:3485-3487.

. Weinstein J, Bielski BH. Reaction of superoxide radical with

copper (II)-histidine complexes. J Am Chem Soc. 1979,

:4916-4919.

. Kimura E, Sakonaka A, Nakamoto M. Superoxide dismutase

activity of macrocyclic polyamine complexes. Biophys Acta.

, 678:172-179.

. Bijloo GJ, Goot H, Bast A, Timmerman H. Copper complexes of

, 10-phenanthroline and related compounds as superoxide

dismutase mimetics. J Inorg Biochem. 1990, 40:237-244

Downloads

Published

2014-12-31

How to Cite

El-fiky, B. A., Aly, S. A., El-Sayed, I. H., El-Abd, S. F., & Abo-Ella, S. S. (2014). Study the Antitumor Activity of Copper (II) Complex of 4-Azomalononitrile Antipyrine on Mice Induced With Earlich Ascites Carcinoma Cells. Journal of Environmental Bioremediation and Toxicology, 2(2), 42–47. https://doi.org/10.54987/jebat.v2i2.216

Issue

Section

Articles