Primary Mathematical Modeling of Growth on Phenol by Pseudomonas sp. strain Neni-4

Authors

  • . Rusnam Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • Fachri Ibrahim Nasution Department of Agricultural Engineering, Faculty of Agricultural Technology, Andalas University, Padang, 25163, Indonesia.
  • Hafeez Muhammad Yakasai Department of Biochemistry, Faculty of Basic Medical Sciences, College of Health Science, Bayero University Kano, PMB 3011, Nigeria.

DOI:

https://doi.org/10.54987/jebat.v7i2.1049

Keywords:

Primary models, Biodegradation, Phenol, Huang model, Pseudomonas sp.

Abstract

Primary modeling of microbial growth is essential for determining key parameters such as the maximum specific growth rate (μm), which are foundational for secondary modeling. Models such as the modified Gompertz, modified Logistic, modified Richards, Buchanan-3-phase, Baranyi-Roberts, modified Schnute, von Bertalanffy, and Morgan-Mercer-Flodin (MMF) models elucidate the impact of substrates on bacterial growth and biotransformation processes, which are vital for biotechnological applications such as wastewater treatment and bioremediation. In this study, the growth of a previously isolated phenol-degrading Pseudomonas sp. strain Neni-4 on phenol was modeled using the aforementioned primary models. Experimental data indicated that phenol concentrations ranging from 500 to 2500 mg/L were toxic, slowing bacterial growth and increasing lag periods from 5 to 7 hours. Among the primary models tested, the Huang model provided the best fit, evidenced by a high adjusted coefficient of determination, low RMSE, and AICc values, and favorable accuracy (AF) and bias factors (BF). The robustness of the Huang model highlights its suitability for modeling bacterial growth under toxic conditions, providing valuable insights for optimizing biotechnological processes that involve bacterial adaptation and growth under stress conditions. This model's ability to accurately describe the growth kinetics under such challenging conditions makes it a reliable tool for further bioprocess optimization and environmental applications.

References

Gami AA, Shukor MY, Khalil KA, Dahalan FA, Khalid A, Ahmad SA. Phenol and its toxicity. J Environ Microbiol Toxicol. 2014;2(1):11-23.

Dahalan FA, Yunus I, Johari WLW, Shukor MY, Halmi MIE, Shamaan NA, et al. Growth kinetics of a diesel-degrading bacterial strain from petroleum-contaminated soil. J Environ Biol. 2014;35(2):399-406.

Hansch C, McKarns SC, Smith CJ, Doolittle DJ. Comparative QSAR evidence for a free-radical mechanism of phenol-induced toxicity. Chem Biol Interact. 2000;127(1):61-72.

Aditiawati P, Akhmaloka, Astuti DI, Sugilubin, Pikoli MR. Biodesulfurization of subbituminous coal by mixed culture bacteria isolated from coal mine soil of South Sumatera. Biotechnology. 2013;12(1):46-53.

Yahuza S, Dan-Iya BI, Sabo IA. Modelling the Growth of Enterobacter sp. on Polyethylene. J Biochem Microbiol Biotechnol. 2020 July 31;8(1):42-6.

Rusnam, Yakasai HM, Rahman MF, Gusmanizar N, Shukor MY. Mathematical Modeling of Molybdenum-Blue Production from Bacillus sp. strain Neni-. Bioremediation Sci Technol Res. 2021 July 31;9(1):7-12.

Yakasai MH, Manogaran M. Kinetic Modelling of Molybdenum-blue Production by Bacillus sp. strain Neni-10. J Environ Microbiol Toxicol. 2020 July 31;8(1):5-10.

López S, Prieto M, Dijkstra J, Dhanoa MS, France J. Statistical evaluation of mathematical models for microbial growth. Int J Food Microbiol. 2004;96(3):289-300.

McKellar RC, Knight K. A combined discrete-continuous model describing the lag phase of Listeria monocytogenes. Int J Food Microbiol. 2000;54(3):171-80.

Kim HW, Lee SA, Yoon Y, Paik HD, Ham JS, Han SH, et al. Development of kinetic models describing kinetic behavior of Bacillus cereus and Staphylococcus aureus in milk. Korean J Food Sci Anim Resour. 2013;33(2):155-61.

Li MY, Sun XM, Zhao GM, Huang XQ, Zhang JW, Tian W, et al. Comparison of Mathematical Models of Lactic Acid Bacteria Growth in Vacuum-Packaged Raw Beef Stored at Different Temperatures. J Food Sci. 2013;78(4):M600-4.

Zwietering MH, Jongenburger I, Rombouts FM, Van't Riet K. Modeling of the bacterial growth curve. Appl Environ Microbiol. 1990;56(6):1875-81.

Buchanan RL, Whiting RC, Damert WC. When is simple good enough: A comparison of the Gompertz, Baranyi, and three-phase linear models for fitting bacterial growth curves. Food Microbiol. 1997;14(4):313-26.

Rusnam, Rahim MBHA, Rahman MF, Khayat ME, Nasution FI, Yakasai HM. Primary Mathematical Modeling of Growth on Phenol by Bacillus sp. Strain Neni-10. J Environ Bioremediation Toxicol. 2023 Dec 31;6(2):29-36.

Rusnam, Gusmanizar N, Rahman MF, Yasid NA. Characterization of a Molybdenum-reducing and Phenol-degrading Pseudomonas sp. strain Neni-4 from soils in West Sumatera, Indonesia. Bull Environ Sci Sustain Manag. 2022 July 31;6(1):1-8.

Rusnam, Gusmanizar N. Isolation and Characterization of a Molybdenum-reducing and the Congo Red Dye-decolorizing Pseudomonas putida strain Neni-3 in soils from West Sumatera, Indonesia. J Biochem Microbiol Biotechnol. 2022 July 31;10(1):17-24.

Salihan MSR, Habib S, Dahalan FA, Hassan NAAA, Syed MA, Gani SA, et al. Allochthonous Diesel Biodegradation by Bacillus sp. MO1 Isolated from Diesel-contaminated Soil. Bioremediation Sci Technol Res E-ISSN 2289-5892. 2019 July 31;7(1):18-23.

Mansur R, Gusmanizar N, Roslan MAH, Ahmad SA, Shukor MY. Isolation and characterisation of a molybdenum-reducing and Metanil yellow dye-decolourising Bacillus sp. strain Neni-10 in soils from West Sumatera, Indonesia. Trop Life Sci Res. 2017 Jan;28(1):69-90.

Shukor MY, Gusmanizar N, Azmi NA, Hamid M, Ramli J, Shamaan NA, et al. Isolation and characterization of an acrylamide-degrading Bacillus cereus. J Enviromental Biol. 2009;30(1):57-64.

Ross T. Indices for performance evaluation of predictive models in food microbiology. J Appl Bacteriol. 1996;81(5):501-8.

Ezekiel M. The Sampling Variability of Linear and Curvilinear Regressions: A First Approximation to the Reliability of the Results Secured by the Graphic "Successive Approximation" Method. Ann Math Stat. 1930;1(4):275-333.

Akaike H. A New Look at the Statistical Model Identification. IEEE Trans Autom Control. 1974;19(6):716-23.

Burnham KP, Anderson DR. Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33(2):261-304.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987;1(5):365-74.

Aravindhan R, Naveen N, Anand G, Rao JR, Nair BU. Kinetics of Biodegradation of phenol and a polyphenolic compound by a mixed culture containing Pseudomonas Aeruginosa and Bacillus Subtilis. Appl Ecol Environ Res. 2014;12(3):615-25.

Folsom BR, Chapman PJ, Pritchard PH. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: Kinetics and interactions between substrates. Appl Environ Microbiol. 1990;56(5):1279-85.

Hasan SA, Jabeen S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol Biotechnol Equip. 2015;29(1):45-53.

Tomasi I, Artaud I, Bertheau Y, Mansuy D. Metabolism of polychlorinated phenols by Pseudomonas cepacia AC1100: Determination of the first two steps and specific inhibitory effect of methimazole. J Bacteriol. 1995;177(2):307-11.

Magharbeh MK, Khleifat KM, Al-Kafaween MA, Saraireh R, Alqaraleh M, Qaralleh H, et al. Biodegradation of phenol by Bacillus simplex: Characterization and kinetics study. Appl Environ Biotechnol. 2021;6(2):1-12.

Ke Q, Zhang Y, Wu X, Su X, Wang Y, Lin H, et al. Sustainable Biodegradation of phenol by immobilized Bacillus sp. SAS19 with porous carbonaceous gels as carriers. J Environ Manage. 2018;222:185-9.

Chris Felshia S, Aswin Karthick N, Thilagam R, Chandralekha A, Raghavarao KSMS, Gnanamani A. Efficacy of free and encapsulated Bacillus lichenformis strain SL10 on degradation of phenol: A comparative study of degradation kinetics. J Environ Manage. 2017;197:373-83.

Karthika S, Reshma MJ, Wilson PA, Das RA, Sarma US, Harikrishnan K, et al. Characterization and Evaluation of Phenol Degrading Bacillus Spp. for Enhancing the Softness of Coir Fiber. J Nat Fibers. 2016;13(3):253-60.

Hasan SA, Jabeen S. Degradation kinetics and pathway of phenol by Pseudomonas and Bacillus species. Biotechnol Biotechnol Equip. 2015 Jan 2;29(1):45-53.

Halmi MIE, Shukor MS, Johari WLW, Shukor MY. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-5.

Banerjee A, Ghoshal AK. Phenol degradation by Bacillus cereus: Pathway and kinetic modeling. Bioresour Technol. 2010;101(14):5501-7.

Bai J, Wen JP, Li HM, Jiang Y. Kinetic modeling of growth and Biodegradation of phenol and m-cresol using Alcaligenes faecalis. Process Biochem. 2007;42(4):510-7.

Kiliç NK. Enhancement of phenol biodegradation by Ochrobactrum sp. isolated from industrial wastewaters. Int Biodeterior Biodegrad. 2009;63(6):778-81.

Ahmad SA, Syed MA, Arif NM, Shukor MYA, Shamaan NA. Isolation, identification and characterization of elevated phenol degrading Acinetobacter sp. strain AQ5NOL 1. Aust J Basic Appl Sci. 2011;5(8):1035-45.

Yadzir ZHM, Shukor MY, Nazir MS, Abdullah MA. Characterization and identification of newly isolated Acinetobacter baumannii strain Serdang 1 for phenol removal. In 2012. p. 223-8.

Patil AH, Mishra RM, Kundar RR, Pendse AS. Study of phenol degrading bacterium isolated from a petrochemical contaminated site. J Appl Biol Sci. 2023 May 31;17(2):306-19.

Wen Y, Li C, Song X, Yang Y. Biodegradation of phenol by rhodococcus sp. Strain SKC: Characterization and kinetics study. Molecules. 2020;25(16).

Kumari S, Chetty D, Ramdhani N, Bux F. Phenol degrading ability of Rhodococcus pyrinidivorans and Pseudomonas aeruginosa isolated from activated sludge plants in South Africa. J Environ Sci Health - Part ToxicHazardous Subst Environ Eng. 2013;48(8):947-53.

Arif NM, Ahmad SA, Syed MA, Shukor MY. Isolation and characterization of a phenol-degrading Rhodococcus sp. strain AQ5NOL 2 KCTC 11961BP. J Basic Microbiol. 2013;53(1):9-19.

Shumkova ES, Solyanikova IP, Plotnikova EG, Golovleva LA. Phenol degradation by Rhodococcus opacus strain 1G. Appl Biochem Microbiol. 2009;45(1):43-9.

Nagamani A a, Lowry M b. Phenol biodegradation by Rhodococcus coprophilus isolated from semi arid soil samples of Pali, Rajasthan. Int J Appl Environ Sci. 2009;4(3):295-302.

?ejková A, Masák J, Jirk? V, Veselý M, Pátek M, Nešvera J. Potential of Rhodococcus erythropolis as a bioremediation organism. World J Microbiol Biotechnol. 2005;21(3):317-21.

Halmi MIE, Wasoh H, Sukor S, Ahmad SA, Yusof MT, Shukor MY. Bioremoval of molybdenum from aqueous solution. Int J Agric Biol. 2014;16(4):848-50.

Baranyi J, Roberts TA. A dynamic approach to predicting bacterial growth in food. Int J Food Microbiol. 1994;23(3-4):277-94.

Agarry SE, Audu TOK, Solomon BO. Substrate inhibition kinetics of phenol degradation by Pseudomonas fluorescence from steady state and wash-out data. Int J Environ Sci Technol. 2009;6(3):443-50.

Othman AR, Bakar NA, Halmi MIE, Johari WLW, Ahmad SA, Jirangon H, et al. Kinetics of molybdenum reduction to molybdenum blue by Bacillus sp. strain A.rzi. BioMed Res Int. 2013;2013:Article number 371058.

Manogaran M, Othman AR, Shukor MY, Halmi MIE. Modelling the Effect of Heavy Metal on the Growth Rate of an SDS-degrading Pseudomonas sp. strain DRY15 from Antarctic soil. Bioremediation Sci Technol Res. 2019 July 31;7(1):41-5.

Shukor MS, Shukor MY. Bioremoval of toxic molybdenum using dialysis tubing. Chem Eng Res Bull. 2015;18(1):6-11.

Sevinç P, Gündüz U, Eroglu I, Yücel M. Kinetic analysis of photosynthetic growth, hydrogen production and dual substrate utilization by Rhodobacter capsulatus. Int J Hydrog Energy. 2012;37(21):16430-6.

McClure PJ, Cole MB, Davies KW. An example of the stages in the development of a predictive mathematical model for microbial growth: the effects of NaCl, pH and temperature on the growth of Aeromonas hydrophila. Int J Food Microbiol. 1994;23(3-4):359-75.

Dalgaard P. Modelling of microbial activity and prediction of shelf life for packed fresh fish. Int J Food Microbiol. 1995;26(3):305-17.

Abubakar A, Yakasai HM. Mathematical Modelling on the effect of Mercury on the Growth Rate of Serratia marcescens strain DRY6 on Sodium Dodecyl Sulphate. Bull Environ Sci Sustain Manag. 2022 Dec 31;6(2):48-53.

Abubakar A, Yakasai HM, Uba G, Sabo I. Substrate Inhibition Modelling of Pseudomonas nitroreducens Growth on Octylphenol Polyethoxylates. J Environ Microbiol Toxicol. 2023 June 30;11(1):25-31.

Rusnam, Syafrawati S, Rahman MF, Yasid NA, Nasution FI, Yakasai HM, et al. Primary Mathematical Modeling of the Growth of Diesel by a Bacterium Isolated from a Hydrocarbon-contaminated Soil. J Environ Microbiol Toxicol. 2023 Dec 31;11(2):35-44.

Burnham KP, Anderson DR. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer Science & Business Media; 2002. 528 p.

Bolker BM. Ecological Models and Data in R. Princeton, N.J: Princeton University Press; 2008. 408 p.

Downloads

Published

2024-12-25

How to Cite

Rusnam, ., Nasution, F. I., & Yakasai, H. M. . (2024). Primary Mathematical Modeling of Growth on Phenol by Pseudomonas sp. strain Neni-4. Journal of Environmental Bioremediation and Toxicology, 7(2), 86–93. https://doi.org/10.54987/jebat.v7i2.1049

Issue

Section

Articles