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INTRODUCTION 
 
In microbial kinetics, precise modeling of bacterial growth and 
the inhibitory effects of substrates is essential for optimising 
bioprocesses, ensuring product safety, and advancing our 
understanding of microbial ecology. Primary models, such as the 
modified Gompertz, Logistic, Richards, Baranyi-Roberts, 
Schnute, von Bertalanffy, Morgan-Mercer-Flodin (MMF), and 
Huang models, play a critical role in this process. These models 
describe bacterial development in non-inhibitory environments, 
facilitating the estimation of critical parameters such as specific 
growth rate, lag phase duration, and maximum population 
density. Understanding these factors is crucial for advancing to 
more complex secondary modeling tasks that account for 
substrate inhibition using models such as Haldane, Andrews, 
Yano, and Aiba. Specific growth rates derived from these 

primary models are particularly important in microbiology and 
biochemical engineering, as they determine bacterial replication 
rates under defined conditions [1–5].  
 

Fundamental models encapsulate the sigmoidal 
characteristics of bacterial growth curves, encompassing the lag, 
logarithmic (exponential), and stationary phases. This 
comprehensive understanding facilitates the prediction of 
bacterial responses to environmental fluctuations and nutritional 
accessibility. Prior to examining the impact of inhibitors on 
bacterial proliferation, it is essential to delineate the growth of 
bacteria under regulated, non-inhibitory settings. This baseline is 
essential for comparison analysis in secondary modeling. Once 
primary modeling has sufficiently characterized growth under 
optimal conditions, secondary models can be employed to 
analyse and predict the impact of various inhibitors on growth 
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 ABSTRACT 
In this study, various secondary growth models, including Luong, Yano, Teissier-Edward, Aiba, 
Haldane, Monod, Han, and Levenspiel, were employed to model the inhibitory effect of high 
acrylamide concentrations on the growth rate of Pseudomonas sp. strain DrY135. Following 
thorough statistical analyzes, the ten bacterial growth models ranged from very poor fits, as 
observed with the Luong, Monod, and Webb models, to exceptionally good fits for the other 
models. The Han-Levenspiel model was superior, demonstrating minimal RMSE, BIC, HQC, 
and modified adj.R2 values, except for the MPSD and AICc statistics. Moreover, the model's 
Accuracy Factor (AF) and Bias Factor (BF) values were close to unity, indicating a good fit 
between predicted and observed data. Experimental research indicates that acrylamide is 
detrimental and impedes growth at elevated concentrations. The Han-Levenspiel constants, 
including the maximal degradation rate (µmax), half-saturation constant (Ks), maximal substrate 
concentration tolerated (Sm), and curve-fitting parameters (m and n), were determined to be 
16.704 h−1, 3943.26 mg/L, 125.58 mg/L, 3.1469, and 0.9835, respectively. However, these values 
were accompanied by very large confidence intervals, likely due to the limited dataset. Similarly, 
the fitted parameters of other models also exhibited large 95% confidence intervals, likely for the 
same reason. Future remedies include incorporating additional data points to improve fitting 
accuracy. These enhanced constants can serve as significant inputs for future modeling projects. 
Furthermore, integrating substrate inhibition kinetics into risk assessment models can enhance 
the precision of hazard evaluation for toxic substrates at contaminated sites. This knowledge is 
vital for informed decision-making in environmental management. 
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kinetics. These models are explicitly engineered to integrate 
substrate inhibition. Primary models are essential in microbial 
kinetics as they are providing key characteristics and insights into 
bacterial development under controlled settings. These 
characteristics are essential for secondary models that emphasise 
substrate inhibition, which is crucial for thorough bioprocess 
optimization [6–8].  
 

Substrate inhibition is a phenomena where elevated 
substrate concentrations adversely impact the growth or activity 
of microorganisms. Numerous mathematical models have been 
created to elucidate this effect, each providing distinct insights 
and applicability under varying experimental situations. 
Comprehending these models is crucial for precisely predicting 
microbial activity in industrial and environmental contexts. The 
Monod model, a prevalent framework, characterises microbial 
development in relation to substrate concentration. Although 
efficient at low substrate concentrations, Monod's model fails to 
address inhibition at elevated substrate levels. To mitigate this 
constraint, adaptations such as the Haldane model were created. 
The Haldane model incorporates an extra term to address 
substrate inhibition, accurately depicting situations when 
development diminishes beyond an ideal substrate concentration 
[9–11]. 
 

The Aiba model, akin to Haldane, emphasizes the 
integration of substrate inhibition in its formulation. It is 
especially appropriate for systems where the inhibitory 
mechanism entails competition for enzyme binding sites. The 
Yano and Teissier-Edward model expands on inhibition 
dynamics by incorporating the affinity of the enzyme-substrate 
complex, making it a powerful tool for understanding biological 
processes involving inhibition. The Luong model introduces the 
concept of a critical substrate concentration, where growth is 
optimal up to this threshold. Beyond this point, the growth rate 
sharply declines until total inhibition occurs. This model is 
particularly useful for microbiological systems with well-defined 
inhibition points, such as those involving hazardous substrates.  

 
Han and Levenspiel's approach provides an alternative 

viewpoint, integrating a broader spectrum of substrate influences 
on growth. Their approach is adaptable and can characterise both 
the stimulating and inhibitory phases of substrate concentration. 
This makes it particularly advantageous for bioprocess 
optimization, as transitions between these stages often occur. The 
distinctive features of each model render them suitable for 
circumstances. The Teissier-Edward model is utilised in enzyme 
kinetics research, but the Luong model is prevalent in 
environmental engineering for the breakdown of dangerous 
compounds. Notwithstanding their advantages, these models are 
also accompanied by constraints. They frequently necessitate 
experimental data for parameter estimation and may inadequately 
characterize intricate, mixed-substrate systems [12–18]. 
 

Besides theoretical comprehension, these models facilitate 
the optimization of industrial operations. During bioremediation, 
comprehending substrate inhibition kinetics enables researchers 
to modify substrate concentrations to optimize microbial 
breakdown efficiency. Similarly, in fermentation processes, 
models such as Aiba and Haldane help mitigate inhibitory 
substrate concentrations that may result in production losses. 
Substrate inhibition kinetics models offer a framework for 
analysing and forecasting microbial growth under various 
situations.  

 
 

The choice of a suitable model is contingent upon the 
system's particulars, including substrate properties and microbial 
traits. As these models advance, their utilisation remains crucial 
in disciplines such as bioprocess engineering and environmental 
sciences. The proper implementation of these models can result 
in substantial improvements in process optimization, however 
obstacles exist in their parameterisation and validation. The 
combination of primary and secondary models creates a cohesive 
framework that markedly improves our capacity to forecast and 
influence microbial activity in diverse biotechnological 
applications [19–27].  
 

Acrylamide is a chemical molecule predominantly utilized 
in industrial applications, including water treatment, paper 
manufacturing, and plastic production. It is also generated during 
the preparation of starchy meals at elevated temperatures, 
presenting a possible risk to human health. Acrylamide is 
designated as a potential human carcinogen, and extended 
exposure may result in neurological consequences, reproductive 
complications, and developmental damage. Its environmental 
endurance, especially in aquatic and terrestrial ecosystems, 
amplifies its potential risks. The biodegradation of acrylamide 
has become a useful bioremediation approach due to its 
hazardous characteristics and environmental persistence. 
Numerous microorganisms, such as bacteria, fungi, and algae, 
have been recognized for their capacity to breakdown acrylamide 
via enzymatic mechanisms.  

 
These microorganisms employ enzymes like acrylamidase 

and amidase to decompose acrylamide into less deleterious 
substances. The biodegradation process entails the 
transformation of acrylamide into non-toxic by-products, like 
acrylic acid or ammonia, rendering it a viable approach for the 
remediation of contaminated areas. This bioremediation 
technology provides an environmentally acceptable, economical, 
and sustainable alternative to conventional chemical techniques, 
which can be more costly and perilous.  

 
Research persists in enhancing these microbial processes for 

extensive applications to reduce acrylamide contamination in 
industrial effluents and food processing waste [28–35]. The main 
objective of this research is to model the growth of a bacterium 
on the toxic substance acrylamide previously modelled using 
primary models [36] using several secondary models mentioned 
above and finding the best model that fit the growth curve. 
 
MATERIALS AND METHODS 
 
All chemical reagents were generated in large quantities and 
utilised in the analysis in their impurified forms, and all the 
materials used in this study were of analytical grade. In all cases, 
unless otherwise noted, experiments were carried out in 
triplicate. 
 
Fitting of the bacterial growth data 
The Schnute model parameters previously obtained [28] was 
utilized in this study. We utilized Curve Expert Professional 
(Version 1.6) software in this study, which minimizes the sums 
of squares of the differences between predicted and measured 
values. The program utilizes a Marquardt algorithm (Table 1).  
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Table 1. Substrate inhibition mathematical models. 
 
 
Author 
 

Degradation Rate Author 

Monod  
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑆𝑆 + 𝐾𝐾𝑠𝑠

 
 
[29] 

Haldane  
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
�
 

 
[30] 

Teissier 
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
𝐾𝐾𝑠𝑠
�� 

 

 
[31] 

Aiba 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝐾𝐾𝑠𝑠 + 𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆
𝐾𝐾𝑖𝑖
� 

 

 
[32] 

Yano and Koga 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
� �1 + 𝑆𝑆

𝐾𝐾�
  

[33] 

 
Han and Levenspiel 
 

 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 �1 − � 𝑆𝑆𝑆𝑆𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[34] 

 
 
Luong 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠
�1 − �

𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

 
 
[35] 

Moser 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑠𝑠𝑛𝑛 
[36] 

Webb 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �1 + 𝑆𝑆
𝐾𝐾�

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝑆𝑆2
𝐾𝐾𝑖𝑖

 
[37] 

Hinshelwood 𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝐾𝐾𝑠𝑠 + 𝑆𝑆 �
1 − 𝐾𝐾𝑝𝑝𝑃𝑃� 

[38] 

 
Note: 
qmax maximal specific growth rate 
Ks  half saturation constant 
Ki  inhibition constant 
Sm  maximal concentration of substrate tolerated 
Kp product inhibition constant 
m, n, K curve parameters 
S substrate concentration 
p product concentration 
 
 
Statistical analysis 
The statistically significant difference between the models was 
evaluated using various metrics, The following statistical 
functions were utilized to determine the best models.  
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
      (Eqn. 1) 

 
The quality of the nonlinear models was determined by 

adjusting the R2 value. 𝑆𝑆𝑦𝑦2 is the total variance of the y-variable, 
while RMS stands for residual mean square. These two terms are 
used in the adjusted R2 formula (Equations 2 and 3). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑌𝑌2
          (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

         (Eqn. 3) 
 

The Akaike Information Criterion (AIC) helps compare 
statistical models for experimental data. Akaike created this 
criterion. Instead, data sets with many parameters or few values 
should use the corrected AIC (AICc) [39]. The AICc was 
determined using the equation that is presented below (Equation 
4). 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛1𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝 + 1) + 2(𝑝𝑝+1)(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
  (Eqn. 4) 

 
The Bayesian Information Criterion (BIC) (Equation 5) is 

another information theory-based statistical metric like the AICc. 
The lowest Bayesian information criterion (BIC) models are 
usually selected when picking among a finite set of models. It is 
similar to Akaike information criteria and partially based on 
likelihood function. This error function penalizes parameter 
count more than the AIC [40]. 
 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛. ln 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 𝑝𝑝. ln (𝑛𝑛)      (Eqn. 5) 

 
The Hannan–Quinn information criterion (HQC) is another 

information theory-based error function technique (Equation 7). 
The Hannan-Quinn information criterion is used by specialists to 
assess statistical model fit. This statistic is often used to compare 
models. Unlike the LLF, it's linked to Akaike's information 
criteria. Like the AIC, the HQC has a penalty function for the 
number of model parameters, but it is much larger because the 
equation contains the ln ln n factor [41]; 
 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛 × 𝑙𝑙𝑙𝑙 𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
+ 2 × 𝑝𝑝 × 𝑙𝑙𝑙𝑙(ln𝑛𝑛)    (Eqn. 7) 

 
Model suitability was assessed using BF and AF. To attain 

a 1 correlation between the anticipated and observed values, the 
Bias Factor must be 1.Bias and Accuracy Factors from predictive 
microbiology in food microbiology model microbial 
development that causes food degradation [42–49]. A fail-safe 
model is suggested when the Bias Factor (Equation 8) is larger 
than 1, while a fail-negative model is indicated when it is less 
than 1. Equation 9 shows that predictions with Accuracy values 
below 1 are less accurate.  

 
Their susceptibility to dataset outliers is a drawback. 

Extreme numbers might unfairly affect computations, 
emphasizing isolated findings that may not represent the pattern. 
These factors' interpretation is context-dependent, with no 
universal accuracy or bias threshold. To draw significant 
conclusions from these elements, researchers must carefully 
analyze their data and curve-fitting process. 
 
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�    (Eqn. 8) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|

𝑛𝑛
�  (Eqn. 9) 

 
Another parameter-penalized model is MPSD. Marquardt's 

% standard deviation. This error function distribution follows the 
geometric mean error, which penalizes model parameters 
(Equation 10). 
 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1     (Eqn. 10) 

 
where p is the number of parameters, n is the number of 

experimental data, Obi is the data, and Pdi is the model 
prediction. The Marquardt MPSD method has limitations. Its 
sensitivity to initial parameter values can hinder Marquardt 
algorithm convergence. The convergence behavior, especially if 
the algorithm converges to a local minimum, may affect 
parameter estimates and prediction ability through percentage 
standard deviation. MPSD values, like other percentage 
measures, are scale-dependent and susceptible to outliers. With 
no universal fit criterion, curve-fitting procedures are difficult to 
evaluate without contextual information or comparison to other 
models. 
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RESULTS AND DISCUSSION  
 
Models of substrate inhibition kinetics are essential for 
comprehending and regulating microbial growth at elevated 
substrate concentrations. In industrial processes like 
fermentation, these models facilitate the tuning of substrate 
concentrations to maximize productivity while preventing 
inhibition. In biofuel production, elevated substrate 
concentrations can impede microbial activity or completely 
disrupt the process. Utilizing models such as the Haldane or Aiba 
models, engineers can forecast and sustain the ideal substrate 
range, enhancing yield and minimizing waste. These models also 
facilitate bioremediation initiatives, wherein harmful substances 
are decomposed by microorganisms. Models like Luong's 
delineate the essential substrate concentration at which microbial 
degradation is optimized without inducing inhibition [50–55]. 
 

Substrate inhibition models are essential in environmental 
engineering for the design of effective wastewater treatment and 
pollution control systems. Microorganisms utilized in these 
systems must function within non-inhibitory substrate 
concentrations to effectively breakdown organic contaminants. 
Researchers can simulate microbial behavior and modify 
operational factors, like feed rate, substrate concentration, or 
aeration, utilizing models such as Monod, Han-Levenspiel, or 
Teissier-Edward. These insights enable engineers to avert system 
failures due to substrate inhibition, hence ensuring uninterrupted 
and efficient pollutant removal. Furthermore, these models are 
especially beneficial in mixed substrate systems, where several 
contaminants interact with bacteria, frequently confounding their 
behavior [14,17,56–58]. 
 

In addition to practical uses, these models provide 
substantial contributions to academic and theoretical 
microbiology. They offer a paradigm for examining the 
correlation between microbial physiology and substrate 
availability, particularly in nutrient-dense or hazardous 
situations. The Monod and Haldane models elucidate enzyme 
kinetics and metabolic pathways in microbial cells. Researchers 
get insight into how diverse microorganisms adapt to varied 
substrate levels by comparing models such as Luong and Aiba. 
This theoretical knowledge is crucial for advancing novel 
biotechnological applications and enhancing current systems, 
including bioenergy production [17,50,57,58]. 
 

Ultimately, substrate inhibition kinetics models facilitate the 
creation of computational tools that replicate microbial growth 
dynamics in practical settings. These models are essential for 
forecasting results in intricate contexts, such as natural 
ecosystems or industrial reactors. They enhance bioprocess 
efficiency, lower expenses, and mitigate environmental effects 
by offering data-driven recommendations for substrate 
management. Due to the significant variety in circumstances 
inside microbial systems, these models serve as crucial 
instruments for decision-making and process regulation. Their 
adaptability and applicability across various sectors, 
environmental systems, and research fields emphasize their 
significance in furthering both the science and practice of 
microbiology. These models are essential for elucidating how 
varying substrate concentrations affect microbial growth kinetics 
and biotransformation processes, which are vital in 
biotechnological applications such as wastewater treatment, 
bioremediation, and biochemical production [59,60].  

 
 
 

As shown in Figs. 1-10, all ten bacterial growth models fit 
from very poorly for the Luong, Monod and Webb to 
exceptionally well for the other models. The Han-Levenspiel 
model was the best due to its low RMSE, BIC, HQC, and 
modified adjR2 values except for the MPSD and AICc stats. 
Furthermore, the model's AF and BF values were near to unity 
(Table 2). The experimental evidence shows that acrylamide is 
hazardous and hinders growth at greater dosages.  

 
The Han-Levenspiel constants maximal degradation rate, 

half saturation constant, maximal substrate concentration 
tolerated, and curve parameter that specifies the steepness of the 
growth rate fall from the maximum rate are determined by umax, 
Ks, Sm and the curve fitting parameters m and n were 16.704 h-1, 
3943.26 mg/L, 125.58 mg/L, 3.1469 and 0.9835, respectively, 
with very large confidence interval values likely due to the poor 
data. Other models fitted parameters also share the similar 
unfortune large 95% confidence interval values (results not 
shown), presumably due to the same reason. Future remedy 
includes adding more data points to improve fitting. 
 

These biologically important results from the analysis will 
help guide and improve batch and field experiments. They will 
help researchers and environmental scientists forecast the 
bacterium's growth and demands when used to remediate 
toxicants in polluted areas. Sm, the maximum substrate 
concentration tolerated, is a key Han-Levenspiel model 
parameter. This study shows that a small number of points in 
curve-fitting challenge the modeling process's reliability and 
resilience.  

 
The lack of data to accurately identify trends and patterns is 

a major drawback. With few data points, the model may overfit 
or underfit to determine the variable relationships. Overfitting 
happens when a model fits data noise rather than pattern, 
resulting in poor generalization to fresh data. However, 
underfitting occurs when the model is too simple to describe the 
phenomenon's complexity.  
 

Both conditions reduce the model's prediction power and 
extrapolation beyond observable data points. The paucity of data 
points reduces statistical power to detect subtle trends or 
nonlinear correlations, lowering confidence in the fitted curve's 
accuracy and precision. Researchers must be cautious and 
examine alternative modeling methodologies or extra data to 
solve curve-fitting's intrinsic constraints of a few points. Most 
Han-Levenspiel model studies for xenobiotic-degrading bacteria 
have focused on limited xenobiotics [12,50,61–63] likely due to 
the high number of parameters of the model compounded with 
difficulty in getting more data points. 
 
Table 2. Statistical analysis of the substrate inhibition models utilized in 
this study. 
 
Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Luong 4 0.0486 -5.2893 186.754 29.726 -40.491 -42.948 0.838 1.901 
Yano 4 0.0103 0.8486 16.851 8.041 -62.176 -64.634 0.986 1.100 
Tessier-
Edward 3 0.0116 0.8177 20.810 -32.269 -60.431 -62.274 0.990 1.128 
Aiba 3 0.0117 0.8197 26.694 -32.158 -60.320 -62.164 0.971 1.143 
Haldane 3 0.0120 0.7555 23.686 -31.884 -60.046 -61.890 1.094 1.178 
Monod 2 0.0244 -0.7209 52.847 -36.356 -50.464 -51.693 1.111 1.421 
Han and 
Levenspiel  5 0.0083 0.8700 18.496 #DIV/0! -66.107 -69.179 1.013 1.070 
Moser 3 0.0263 -0.8987 53.993 -20.838 -49.000 -50.844 1.109 1.402 
Hinshlewood 4 0.0315 -2.4418 68.225 23.644 -46.572 -49.030 1.111 1.421 
Webb 4 0.0138 0.6321 27.440 12.139 -58.077 -60.535 1.094 1.179 
 
Note: p is the number of parameters 
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Fig. 1. Growth of Pseudomonas sp. strain DrY135 modeled using 
Luong. 

 
Fig. 2. Growth of Pseudomonas sp. strain DrY135 modeled using Yano. 
 

 
 
Fig. 3. Growth of Pseudomonas sp. strain DrY135 modeled using 
Teissier- Edward. 

 
 
Fig. 4. Growth of Pseudomonas sp. strain DrY135 modeled using Aiba. 
 

 
Fig. 5. Growth of Pseudomonas sp. strain DrY135 modeled using 
Haldane. 

 
 
Fig. 6. Growth of Pseudomonas sp. strain DrY135 modeled using 
Monod. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.00

0.03

0.06

0.09

0.12

0 300 600 900 1200 1500 1800
Acrylamide (mg/L)

Sp
ec

ifi
c 

gr
ow

th
 R

at
e 

(1
/h

)

EXP
LUONG

0.00

0.03

0.06

0.09

0.12

0 300 600 900 1200 1500 1800
Acrylamide (mg/L)

Sp
ec

ifi
c 

gr
ow

th
 R

at
e 

(1
/h

)

EXP
YANO

0.00

0.03

0.06

0.09

0.12

0 300 600 900 1200 1500 1800
Acrylamide (mg/L)

Sp
ec

ifi
c 

gr
ow

th
 R

at
e 

(1
/h

)

EXP
TEISSIER-EDWARD

0.00

0.03

0.06

0.09

0.12

0 300 600 900 1200 1500 1800
Acrylamide (mg/L)

Sp
ec

ifi
c 

gr
ow

th
 R

at
e 

(1
/h

)

EXP
AIBA

0.00

0.03

0.06

0.09

0.12

0 300 600 900 1200 1500 1800
Acrylamide (mg/L)

Sp
ec

ifi
c 

gr
ow

th
 R

at
e 

(1
/h

)
EXP
HALDANE

0.00

0.03

0.06

0.09

0.12

0 300 600 900 1200 1500 1800
Acrylamide (mg/L)

Sp
ec

ifi
c 

gr
ow

th
 R

at
e 

(1
/h

)

EXP
MONOD

https://doi.org/10.54987/jebat.v5i2


JEBAT, 2024, Vol 7, No 1, 1-8 
https://doi.org/10.54987/jebat.v7i1.995   

- 6 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

 
 
 

 
 
Fig. 7. Growth of Pseudomonas sp. strain DrY135 modeled using 
Moser. 
 

 
 
Fig. 8. Growth of Pseudomonas sp. strain DrY135 modeled using 
Webb. 
 

 
Fig. 9. Growth of Pseudomonas sp. strain DrY135 modeled using 
Hinshelwood. 
 

 
Fig. 10. Growth of Pseudomonas sp. strain DrY135 modeled using 
Han-Levenspiel. 
 

The utilization of a substrate inhibition kinetics model is 
increasingly recognized as a pivotal approach for assessing the 
impact of toxic compounds on microbial growth or degradation 
rates. Traditionally, many studies have favored the Haldane or 
Monod models for modeling purposes. However, a select few, 
including this study, opt for a comprehensive modeling approach, 
capitalizing on the flexibility offered by alternative models. This 
inclusive strategy improves curve fitting results compared to 
popular models and represents a nuanced and thorough 
methodology for comprehending the intricate dynamics of 
microbial responses to toxic compounds. In the specific case of 
Pseudomonas sp. strain DrY135, the application of substrate 
inhibition kinetics provides a more detailed understanding of its 
behavior in acrylamide remediation, contributing to the broader 
field of environmental microbiology. 
 
CONCLUSION 
 
Substrate inhibition kinetics models offer critical insights into 
microbial growth and their reactions to different substrate 
concentrations, facilitating their use in various biotechnological 
domains. This study's findings underscore the significance of 
employing robust models like the Han-Levenspiel model, which 
shown enhanced efficacy in delineating the dynamics of bacterial 
growth suppression caused by acrylamide. The precise 
representation of maximal degradation rates, half-saturation 
constants, and tolerance thresholds provides essential 
information for the design and optimization of bioprocesses, 
including those employed in the bioremediation of hazardous 
contaminants. Nonetheless, the analysis highlights the 
difficulties associated with insufficient data points, which may 
undermine the reliability of curve-fitting and subsequent 
parameter estimates. The research highlights that augmenting 
data density is crucial for enhancing model accuracy and 
confidence intervals. This is especially critical for models with 
several parameters, since inadequate data may result in 
overfitting or underfitting, so constraining their prediction 
efficacy. Mitigating these restrictions would improve the 
application of models such as Han-Levenspiel in practical 
contexts, including wastewater treatment and pollution 
remediation.  
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This research emphasizes the significance of choosing suitable 
models matched to microbial systems and substrate dynamics. 
Substrate inhibition kinetics models are essential instruments for 
environmental and industrial microbiology, providing data-
driven methodologies to enhance microbial activities. By 
optimizing these models via improved data acquisition and 
validation, researchers may more accurately forecast and 
influence microbial activity, aiding in sustainable solutions for 
environmental and biotechnological issues. The utilization of 
these models, together with their versatility across various 
systems, guarantees their ongoing significance in enhancing both 
scientific comprehension and practical innovation. 
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