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INTRODUCTION 
 
As a result of dye pollution, water contamination has been 
recognized as a severe issue worldwide [1–3]. Dye pollution 
sources include textile, food, paper-making, cosmetic industries, 
and medical and research centres [4–7]. Dye pollution is still 
increasing in many developing countries with less strict 
regulations on the manufacturing and use of dyes. Examples of 
these countries include Malaysia, India, Pakistan, Bangladesh, 
etc. [8,9]. In Malaysia, Juru riverine area was documented to have 
high-level contamination of dye pollution [9,10]. Effluents from 
dye-utilizing industries are usually released directly into the 
water bodies and have been a significant wastewater treatment 
concern [11,12]. In addition, many of the dyes and their 
byproducts have been documented to be mutagenic and 
carcinogenic, as well, as xenobiotic and recalcitrant pollutants 
[12–14]. Therefore, even in small amounts dyes have been 
reported to pose a serious threat to human health and the 
environment including the aquatic ecosystem [11]. Other 
challenges of dye pollution include increasing the chemical 

oxygen demand (COD) and biological oxygen demand (BOD),  
compromising the photosynthesis and the aesthetic quality of the 
water bodies [15,16]. 
 

Dyes are highly soluble in water and because of that some 
of the conventional wastewater treatment processes do not 
effectively clean the contaminants [17,18]. Traditionally, the 
effective treatment of dye effluents involves combining 
biological, chemical, and physical processes such as; 
precipitation, coagulation, ion exchange, reverse osmosis, 
flocculation, membrane filtration, photoelectrochemistry, 
incineration, etc. [19]. Nevertheless, because of the excessive 
usage of chemicals in some cases, the implementation of these 
processes may significantly generate secondary metabolites or 
sludge [20,21]. Furthermore, these conventional methods have 
also been shown to have some disadvantages: high production 
and maintenance costs, low dye removal efficiency, and possible 
generation of toxic by-products [22]. Tartrazine is a dye with 
major uses in the food, ink and pigment industry. It is from these 
industries that tartrazine has been found as water pollutants 
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 ABSTRACT 
Rhizopus arrhizus is utilized in many biotechnological applications such as in the manufacturing 
of enzymes, including pectinases, amylases, proteases, cellulases, and phytases, and metabolites 
such as  lactic acid, ethanol and fumaric acids. Its spent biomass is useful in the food and feed 
industry. Its usage as a biosorption agent especially dye sorption is an emerging and important 
application. In this study we explore 16 adsorption kinetics model of tartrazine by R. arrhizus 
using nonlinear regression. Based on the statistical indicators especially penalty-based error 
functions such as adjusted coefficient of determination (R2), Root-Mean-Square Error (RMSE), 
corrected Akaike Information Criterion (AICc), Bayesian Information Criterion (BIC), Hannan-
Quinn Information Criterion (HQC) and Marquardt's percentage standard deviation (MPSD)  
shows that the pseudo-2nd order (PSO) was the best model followed by pseudo-nth order and 
Fractal-like Pseudo-2nd Order. The parameter of the PSO model gave a value of equilibrium 
adsorption capacity, qe of 9.367 mg g-1 (95% confidence interval (C.I.), 9.250 to 9.485) and k2 
(g/(mg.min)) of 0.037 (95%, C.I., 0.032 to 0.041). The nonlinear regression exercise allows the 
uncertainty determination of the parameters to be carried out.  
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[23,24]. People who are sensitive to tartrazine, which is a yellow 
color that is often used in food and medicines, have been 
associated to having allergic responses to the drug. Individuals 
with allergic rhinitis, bronchial asthma, urticaria, or sensitivity to 
non-steroidal anti-inflammatory drugs have been shown in 
studies to experience significant reductions in peak expiratory 
flow and symptoms such as angioedema, nasal congestion, 
rhinorrhea, wheezing, itchy skin, and urticaria when they are 
given acceptable daily intake doses of tartrazine for a period of 
seven days [25–30]. In addition, Corder and Buckley [31] 
demonstrated through clinical respiratory investigations that 
patients who were susceptible to tartrazine suffered 
bronchoconstriction, which resulted in a reduction in respiratory 
volume. This was demonstrated by the patients' decreased lung 
capacity. It is anticipated that around three percent of the 
population, in particular those who are sensitive to salicylates, 
are affected by tartrazine sensitivity.  

 
Because the chemical structure of tartrazine is comparable 

to that of benzoates, salicylates, and indomethacin, tartrazine 
may trigger allergic cross-reactions in certain individuals. 
Tartrazine has also been demonstrated to trigger the release of 
histamine in basophils of people who have chronic allergy-
related diseases, such as urticaria, according to research 
conducted by Matsuo and colleagues [27]. In addition, Baterman 
and colleagues (2004) conducted an experiment with children of 
preschool age in which they gave them a placebo and then 
observed their behavior. The results of this study showed that 
artificial dyes, including tartrazine, have a significant influence 
on the hyperactive behavior of children aged three years old. 
These findings have also been supported by more recent research 
[32]. The hazardous nature of tartrazine pollution makes its 
removal from the environment much needed. One of the most 
efficient methods of dye removal at dilute levels from aquatic 
body is adsorption with biosorption being a cheaper alternative 
to expensive sorbents.  
 

Research has been done on biosorption, and it has been 
hailed as a potentially useful technique for offering an 
environmentally friendly, cost-effective, and all-encompassing 
method of cleaning up a variety of environmental toxicants 
[33,34].Biosorption is a physicochemical method that may be 
used to remove a substance (either organic or inorganic) from a 
solution by making use of a biological material or the 
components of that biological material (death or living) [35,36]. 
Biosorption mechanisms include adsorption, absorption, surface 
complexation, precipitation, and ion exchange [18,37]. It has 
been demonstrated that biosorption has a straightforward 
construction, excellent performance, user-friendliness, and a 
cheap overall cost.  

 
The ingredients needed for biosorption are easy to get by 

(for example, waste products from agriculture and industry), and 
the process itself is quick, lasting anywhere from a few minutes 
to a few hours [38]. On various metals, dyes, and compounds in 
general, a great number of biosorption investigations were 
carried out using biomass derived from plants, animals, and other 
by-products [18,34]. However, many of these materials have a 
smaller surface area when contrasted with the surface area of 
bacterial biomass. As a consequence of this, the use of bacterial 
biomass as a solution to these issues is the primary emphasis of 
this investigation. One of the most cost-effective and successful 
strategies for removing pollutants is called bioremediation, 
which mostly involves biosorption. The use of microorganisms 
as biosorbents is intriguing for a number of reasons, including 
their surface area, their diversity of functional groups for 
sorption, their uniform size, and the fact that they may be 

generated in a sustainable manner by making use of agricultural 
waste [39]. For example, AMT-BioclaimTM, which is made 
from bacterial biomass, was one of the early biosorbents for 
contaminants that was commercially accessible [40]. Rhizopus 
arrhizus is employed in a variety of biotechnological 
applications, including the production of enzymes, such as 
pectinases, amylases, proteases, cellulases, and phytases, as well 
as metabolites, such as lactic acid, ethanol, and fumaric acids, 
amongst other things. The food and feed sector can benefit from 
the discarded biomass that it produces. It is now being 
investigated for use as a biosorption agent, particularly for dye 
sorption, which is a developing and significant use. The 
biosorption of dyes by microorganisms, including tartrazine, is 
therefore a very appealing technique for reducing the effects of 
this pollutant. In this study we report on the kinetics of sorption 
of tartrazine by Rhizopus arrhizus inactivated biomass. 
 
MATERIALS AND METHODS 
 
Data Acquisition 
 
The digitization software Webplotdigitizer, version 2.5 [41] 
digitized data from Figure 3 from a published work [42]. This 
software gives good accuracy of extracted data and its usage has 
been reported in numerous publications [6, 7, 8, and 9]. The data 
was then nonlinearly regressed using multiple models in the 
curve-fitting software CurveExpert Professional, Version 2.6.5. 
 
Kinetics models 
In order to determine the adsorption kinetics constant, it is 
necessary to take into account both the kinetic and equilibrium 
areas. Because an improper choice of the initial interval time, 
during which the adsorption happens very quickly, can result in 
an inaccurate calculation of the rate constant of the PFO and PSO, 
it is necessary to redo the adsorption kinetics using shorter 
period-times, such as one minute, three minutes, five minutes, 
etc. Second, a common mistake is to begin with an insufficient 
quantity of the adsorbate or to use a diluted form of it. Because 
of the material's relatively low initial adsorbate concentration, not 
all of its adsorption sites are currently being used. Because of this 
difference, the value of qe will be different from that of qt.  
 

Because of this, the values that were calculated for the 
parameters of the adsorption kinetic models, particularly the rate 
constants that are significant, cannot be accepted [43]. When 
compared to activated carbon or biochar, raw untreated 
biosorbent surface rarely exhibits extensive pores, which results 
in very low pore diffusion activities during adsorption [44–46]. 
Additionally, since the majority of experiments involve rapid 
stirring of the reaction, this reduces film diffusion to an absolute 
minimum. The kinetics model that was evaluated for this 
investigation may be found in the following (Table 1): 
 
Table 1. Kinetic models for fitting the adsorption curve of tartrazine to 
A. arrhizus. 
 
No Kinetic 

model 
Formula and background Ref 

1.  Pseudo–first-
order  

The pseudo-first model was proposed by 
Lagergren [47,48]. Its valid to about the first 30 
min of sorption process [49]. The determination of 
an adequate qe value is yet another significant 
challenge. Notably, the value of qe after 
adjustments cannot be lower than the highest value 
that was observed for qt [47,48]. The qe value that 
was determined via the use of the PFO equation is 
not the same as the qe value that was determined 
through experimentation [50]. It provides more 
evidence that the PFO equation is unable to 
adequately model the kinetic adsorption data. It 

[47,48] 
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was hypothesized that this disparity was due to the 
existence of a boundary layer or an external 
resistance that controlled the initiation of the 
sorption process [49]. The linearized form has 
several versions that are incorrect as suggested by 
Tran [51]. The pseudo–first-order kinetic model 
equation is as follows [52]: 
 
𝑞𝑞𝑡𝑡 =  𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝑘𝑘1𝑡𝑡)  
 
It is the first model that describes the kinetic rate 
of the liquid-solid phase for the adsorption 
process based on the adsorption capacity, and it 
has the distinction of being the first model to do 
so. It is the kinetic model that has been used the 
second most frequently to illustrate that the 
driving force is proportional to the available 
percentage of active sites. This model provides 
further evidence that the chemisorption process is 
at play. 
 

2.  Pseudo–
second-order 

The pseudo-second-order model is one that is 
based on the adsorption capacity onto a solid 
phase, and Blanchard et al. were the ones who first 
presented the nonlinear form of the PSO model 
[53]. It is expressed as: 
𝑞𝑞𝑡𝑡 =  𝑘𝑘2𝑞𝑞𝑒𝑒2𝑡𝑡

1+ 𝑘𝑘2 𝑞𝑞𝑒𝑒𝑡𝑡
     

 
Where 
k2 (g/(mg.min)) is the pseudo-second-order rate 
constant 
 
The rate of change in adsorption capacity slows 
down in a manner that is exponentially relative to 
the quantity of adsorbate that has been adsorbed.  
 
 

 [54] 

3.  Elovich Simulation of the adsorption of carbon monoxide 
on the sorbent manganese dioxide was the original 
driving force behind the development of the 
Elovich equation. The Elovich model is expressed 
as follow. 
 

𝑞𝑞𝑡𝑡 =
1

𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽
+

1
𝛽𝛽𝛽𝛽𝛽𝛽𝛽𝛽

 

Where, 
α is the initial sorption rate (mg/g.min-1) and β is 
surface coverage extent (g.mg-1) and 
chemisorption activation energy. Datapoint that 
starts from the origin (0,0) must be removed due to 
the ln term. 
 

[55]  

4.  Mixed 1,2-
order 

A type of pseudo-first-order and pseudo-second-
order kinetic equations that is mixed together. 
This model, which is a linear combination of the 
pseudo-first-order and the pseudo-second-order 
equations, is referred to as the mixed 1,2-order 
equation (MOE). The formula is as follow. 
 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒 �1 −
𝑘𝑘1𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘1𝛽𝛽)

𝑘𝑘1 + 𝑞𝑞𝑒𝑒𝑘𝑘2�1 − 𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘1𝛽𝛽)�
� 

 
Where k1 and k2, represent first- and second-order 
kinetics, respectively. 
 

[56,57] 

5.  Fractal-like 
pseudo-first 
order 

Incorporating the fractal concept into the pseudo-
first-order model was one of the suggested 
modifications to the model.  The formula is as 
follow. 
 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒�1 − 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘1′ 𝛽𝛽∅�� 
 
Here the adsorption rate coefficient might have a 
temporal dependency during the adsorption time. 
ϕ is the fractal time exponent and k′1 (1/minϕ) is 
the fractal-like pseudo-first-order rate constant. 
 

[58] 

6.  Fractal-like 
pseudo-
second order 

In a similar vein, an additional modification for 
the pseudo-second-order model has been 
suggested, and this time it involves the concept of 
fractals.  The formula is as follow. 
 

𝑞𝑞𝑡𝑡 =
𝑘𝑘2′ 𝑞𝑞𝑒𝑒

2𝛽𝛽∅

1 + 𝑘𝑘2′ 𝑞𝑞𝑒𝑒𝛽𝛽∅
 

[58] 

k′2 (g/(mg min))ϕ and ϕ are the fractal-like 
pseudo-second-order rate constant and exponent, 
respectively. 

7.  Pseudo-nth 
order 

It can be difficult to discern the order of the 
adsorption process in particular circumstances. 
This indicates that the PSO and PFO models are 
able to adequately fit the experience data of time 
dependency. Because of this, the pseudo-nth-
order (PNO) model or the general order kinetic 
(GOK) model is also utilized in order to 
accurately identify the overall order of the 
adsorption process. 
 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒 −

𝑞𝑞𝑒𝑒

[𝑘𝑘𝑁𝑁(𝑞𝑞𝑒𝑒)𝑛𝑛−1𝛽𝛽(𝛽𝛽 − 1) + 1]
1

1−𝑛𝑛
;𝛽𝛽 ≠ 1 

Where, 
 n is the order of kinetic adsorption (n could be an 
integer or non-integer rational number) and kN is 
the general order rate constant ((g/mg)n−1/min), 
 

[59] 

8.  One-site 
Langmuir 

The kinetic model works on the assumption that 
the overall adsorption rate is simply the difference 
between the adsorption and desorption rates, and 
that once equilibrium is reached, these two rates 
cancel each other out to give the same result. 
While the rate of desorption is related to the 
amount that was adsorbed, the rate of adsorption 
is proportional to the solute concentration that is 
already present in the bulk phase and the amount 
of accessible adsorbent surface.  The formula is as 
follow. 
 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒 �
𝐾𝐾′

𝑎𝑎𝑎𝑎
(𝐾𝐾′

𝑎𝑎𝑎𝑎 + 𝐾𝐾𝑎𝑎)�
{1

− 𝑒𝑒𝑒𝑒𝑒𝑒[−(𝐾𝐾′
𝑎𝑎𝑎𝑎

+ 𝐾𝐾𝑎𝑎)𝛽𝛽]} 
 
k′ad is the Langmuir adsorption rate constant 
(1/min) and kd is the desorption rate constant 
(1/min) 

[60] 

9.  Modified-
Freundlich 

The Freundlich equation was modified to include 
a time-dependent expression, which allowed for 
the development of a kinetic model. The formula 
is as follow. 
 

𝑞𝑞𝑡𝑡 = 𝑘𝑘𝐶𝐶0𝛽𝛽
1
𝑛𝑛 

 
where k is the apparent adsorption rate constant 
(L/g.min1/n); n is the Kuo-Lotse constant; C0 is the 
initial adsorbate concentration (mmol/L); and t is 
the adsorption time 

[61] 

10.  Avrami Under the premise that nucleation occurs in a 
manner that is spatially random, this model 
predicts the kinetics of phase transition. This 
provides an illustration of the kinetic parameters 
as feasible variations of the adsorption rates in 
terms of the initial concentration and the 
adsorption period. Additionally, it provides an 
evaluation of fractional kinetic orders. The 
formula is as follow. 
 
𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒{1 − 𝑒𝑒𝑒𝑒𝑒𝑒[−(𝑘𝑘𝐴𝐴𝐴𝐴𝛽𝛽)]𝑛𝑛𝐴𝐴𝐴𝐴}v  
 
the Avrami kinetic model rate constant (1/min) 
and nAv (fraction) is the model exponent of time 
related to the adsorption mechanism changes. 
 

[62] 

11.  Exponential An exponential form of the kinetic equation is a 
form of the equation that can be used to illustrate 
the pattern of an adsorption rate as a function of 
time. Between pseudo-first-order models and 
pseudo-second-order models is where the driving 
force of the exponential model rests. Both 
homogeneous and heterogeneous surfaces are 
appropriate contexts for using the kinetic model. 
The formula is as follow. 
 

𝑞𝑞𝑡𝑡
𝑞𝑞𝑒𝑒

= 𝛽𝛽𝛽𝛽�2.72 − 1.72𝑒𝑒𝑒𝑒𝑒𝑒�−𝑘𝑘𝐸𝐸𝐸𝐸𝐸𝐸𝛽𝛽�� 

kExp is the exponential kinetic model rate constant 
(mg/(g.min)). Datapoint that starts from the origin 
(0,0) must be removed due to the ln term. 
 

[63] 

https://doi.org/10.54987/jebat.v5i2.760


JEBAT, 2022, Vol 5, No 2, 58-68 
https://doi.org/10.54987/jebat.v5i2.768  

 

- 61 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

12.  Double-
exponential 

Wilczak and Keinath came up with a double 
exponential kinetic model after observing the 
kinetics of copper(II) and lead(II) adsorption on 
activated carbon. This model was based on their 
results. This equation describes the adsorption 
characteristics as a two-step mechanism, with the 
first step being a quick phase that includes both 
internal and exterior diffusions. This is preceded 
by a slow phase that is governed by the intra-
particle diffusion.  The formula is as follow. 
 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒 −
𝐷𝐷𝑅𝑅
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝐷𝐷𝑅𝑅𝛽𝛽)

−
𝐷𝐷𝑆𝑆
𝑚𝑚𝑎𝑎𝑎𝑎𝑎𝑎

𝑒𝑒𝑒𝑒𝑒𝑒(−𝑘𝑘𝐷𝐷𝑆𝑆𝛽𝛽)} 

Where, 
KDR and KDS are diffusion parameters (1/min) for 
the rapid and slow step of double-exponential 
model, respectively,  mads is the adsorbent amount 
in the solution (g/L) and DR and DS are adsorption 
rate parameters of the rapid and the slow step 
(mmol/L), respectively. 
 

[64] 

13.  Hyperbolic 
tangent 

The hyperbolic tangent function has been used as 
the foundation for the development of this 
mathematical model. In addition to this, it is able 
to calculate the precise equilibrium time of the 
adsorption process.  The formula is as follow. 
 

𝑞𝑞𝑡𝑡
𝑞𝑞𝑒𝑒

= �𝛽𝛽𝑡𝑡𝛽𝛽ℎ �𝜋𝜋
𝛽𝛽

𝛽𝛽𝑒𝑒𝑒𝑒𝑒𝑒
��
𝑛𝑛𝐻𝐻𝐻𝐻

 

 
teHT is the required time for adsorption to reach 
the equilibrium state (min) and nHT represents the 
adsorbent surface heterogeneity. 
 

[65] 

14.  Brouers and 
Sotolongo 

a time dependent rate or hazard function (in 
reliability theory) or intensity of transition (in 
relaxation theory), 𝑅𝑅(𝛽𝛽).  The formula is as 
follow. 

𝑦𝑦 = 𝑞𝑞𝑒𝑒 �1 − �1 + (𝛽𝛽 − 1) �
𝛽𝛽
𝜏𝜏
�
𝛼𝛼
�
− 1
𝑛𝑛−1

� 

 
Musawi suggests to use (n, a) of (1.5, a).  The 
formula is as follow. 
 

𝑦𝑦 = 𝑞𝑞𝑒𝑒 �1 − �1 + (0.5) �
𝛽𝛽
𝜏𝜏
�
𝛼𝛼
�
−2

� 

 
Where 
n is the reaction’s fractional order; 𝛽𝛽 is the fractal 
coefficient that, on a macro scale, expresses the 
level of complexity of the sorbent-sorbate 
relationship, and 𝜏𝜏 is the  characteristic time 
(min). It has been  suggested for the whole series 
to use BSf (1.5,a)  [66].   
 

 
[67] 

15.  normalized 
Gudermanni
an function 

In order to simulate the sigmoidal shape of 
sorption kinetics data, the normalized 
Gudermannian function was introduced. The 
function is related to both the circular and the 
hyperbolic functions.  The formula is as follow. 

𝑞𝑞𝑡𝑡
𝑞𝑞𝑒𝑒

= �0.637𝛽𝛽𝑡𝑡𝛽𝛽−1 �𝑠𝑠𝑠𝑠𝛽𝛽ℎ
5.233 × 𝛽𝛽

𝛽𝛽𝑒𝑒𝑒𝑒
��
𝑛𝑛𝐺𝐺

 

where  
where teG reflects the amount of time that must 
have passed for the adsorption process to reach 
the condition of equilibrium and  the 
heterogeneity of the adsorption system is 
represented by the parameter nG. 
 

[68] 

16.  Sigmoidal 
Chapman 

In addition to that, the Sigmoidal Chapman model 
was incorporated into this study. It is depicted by 
the equation: where the adsorption rate constant is 
denoted by b (h-1), and c represents how the 
adsorption rate varies as a function of time.  The 
formula is as follow. 
 

𝑞𝑞𝑡𝑡 = 𝑞𝑞𝑒𝑒(1 − 𝑒𝑒−𝑏𝑏𝑡𝑡)𝑐𝑐 
 
The idea that adsorbate molecules interact with 
one another in a cooperative manner forms the 
foundation of the equivalent Chapman isotherm 
model. 

[69] 

 
Note 
qe is the time dependent and maximum sorbed quantities (mg/g) 
t is time (min) 
 
Statistical analysis 
To determine if there is a significant difference in terms of fitness 
among models with varying numbers of parameters, statistics 
functions such as the adjusted coefficient of determination (R2), 
Root-Mean-Square Error (RMSE), corrected Akaike Information 
Criterion (AICc), Bayesian Information Criterion (BIC), 
Hannan-Quinn Information Criterion (HQC), bias factor, and 
accuracy factor (BF, AF) were applied to the same set of 
experimental data. The RMSE, which accounts for the penalty 
for the number of parameters, was calculated using Eqn 1, where 
n is the number of experimental data, p is the number of 
parameters, Obi is the experimental data, and Pdi is the value 
predicted by the model [70]. 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑎𝑎𝑖𝑖−𝑂𝑂𝑏𝑏𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝐸𝐸
   (Eqn. 1) 

 
To determine the validity of the models, both BF and AF were 
used. The Bias Factor should be set to 1 to achieve a correlation 
of 1 between the predicted and observed values. If the Bias Factor 
(as shown in Equation 2) is greater than 1, it indicates a fail-safe 
model, and if it is less than 1, it indicates a fail-negative model. 
If Accuracy is less than 1, it means that the prediction will be less 
accurate (Eqn. 3).  
 
𝐵𝐵𝑠𝑠𝑡𝑡𝑠𝑠 𝑓𝑓𝑡𝑡𝑓𝑓𝛽𝛽𝑓𝑓𝑓𝑓 = 10 �∑ 𝛽𝛽𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑎𝑎𝑖𝑖/𝑂𝑂𝑏𝑏𝑖𝑖)

𝑛𝑛
�  (Eqn. 2) 

 
𝐴𝐴𝑓𝑓𝑓𝑓𝐴𝐴𝑓𝑓𝑡𝑡𝑓𝑓𝑦𝑦 𝑓𝑓𝑡𝑡𝑓𝑓𝛽𝛽𝑓𝑓𝑓𝑓 = 10 �∑ 𝛽𝛽𝑓𝑓𝑙𝑙𝑛𝑛

𝑖𝑖=1
|(𝑃𝑃𝑎𝑎𝑖𝑖/𝑂𝑂𝑏𝑏𝑖𝑖)|

𝑛𝑛
�  (Eqn. 3) 

 
 
In linear regression, the best fitting model was determined by R2 
or coefficient of determination. However, in nonlinear 
regression, the R2 does not give a comparative analysis where the 
number of parameters between models is different. To overcome 
this, adjusted R2 was used to calculate the quality of the nonlinear 
models. In the adjusted R2 formula, 𝑅𝑅𝑦𝑦2 is the total variance of the 
y-variable and RMS is Residual Mean Square (Eqns. 4 and 5).  
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝛽𝛽𝑒𝑒𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑆𝑆

𝑆𝑆𝑌𝑌2
       (Eqn. 4) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑠𝑠𝛽𝛽𝑒𝑒𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝐸𝐸−1)

  (Eqn. 5) 
 
Various statistical models can be evaluated for a given range of 
experimental data using the Akaike Information Criterion (AIC). 
Alternatively, AICc (the corrected AIC) should be used for data 
sets with numerous parameters or a few data point values [71]. 
The AICc was calculated based on the following Eqn. 6. 
 
𝐴𝐴𝐴𝐴𝐶𝐶𝑓𝑓 = 2𝑒𝑒 + 𝛽𝛽1𝛽𝛽 �𝑅𝑅𝑆𝑆𝑆𝑆

𝑛𝑛
� + 2(𝑒𝑒 + 1) + 2(𝐸𝐸+1)(𝐸𝐸+2)

𝑛𝑛−𝐸𝐸−2
   

 (Eqn. 6) 
 
The AICc gives information about the differences that exist 
between the two models in terms of the number of parameters (p) 
and the fitting. The AICc value that is the smallest possible would 
suggest the model that best fits the data [71]. A further 
information-theory-based approach to statistics is the Bayesian 
Information Criterion (Eqn. 7). The number of parameters is 
punished more harshly by this error function than it is by AIC 
[72]. 
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𝐵𝐵𝐴𝐴𝐶𝐶 = 𝛽𝛽. ln 𝑅𝑅𝑆𝑆𝑆𝑆
𝑛𝑛

+ 𝑒𝑒. ln (𝛽𝛽)   (Eqn. 7) 
 
The Hannan–Quinn information criterion, often known as the 
HQC, is an additional error function approach that relies on the 
information theory (Eqn. 8). In contrast to the AIC, the HQC 
exhibits a high level of consistency because the equation contains 
the ln ln n term. [73]; 
 
 
𝐻𝐻𝐻𝐻𝐶𝐶 = 𝛽𝛽 × 𝛽𝛽𝛽𝛽 𝑅𝑅𝑆𝑆𝑆𝑆

𝑛𝑛
+ 2 × 𝑒𝑒 × 𝛽𝛽𝛽𝛽(ln 𝛽𝛽)  (Eqn. 8) 

 
Another is MPSD. The Marquardt’s percent standard deviation 
(MPSD). This error function distribution follows the geometric 
mean error which allows for the penalty to the number of 
parameters of a model (Eqn. 9). 
 

𝑅𝑅𝑀𝑀𝑅𝑅𝐷𝐷 = 100� 1
𝑛𝑛−𝐸𝐸

∑ �𝑂𝑂𝑏𝑏𝑖𝑖−𝑃𝑃𝑎𝑎𝑖𝑖
𝑂𝑂𝑏𝑏𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1   (Eqn. 9) 

 
where n is the number of experimental data, p is the number of 
parameters, Obi is the experimental data, and Pdi is the value 
predicted by the model  
 
RESULTS AND DISCUSSION 
 
Determination of kinetic model for batch adsorption studies 
Since the linearisation of nonlinear data disturbs the data's error 
structure, this makes it harder to assess uncertainty, which is 
often reported as 95% confidence interval range [74]. Hence, the 
non–linear regression is preferable for kinetic model fitting since 
it is conducted on the same abscissa with a linear regression plot, 
showing more accurate calculations. The various kinetic models 
utilized in this study (Figs. 1 to 16) shows visually acceptable 
fittings for all tested models. 
 

 
Fig. 1. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the pseudo-first 
order model. 
 

 
Fig. 2. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the pseudo-second 
order model. 
 

 
Fig. 3. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the Elovich model. 
 

 
Fig. 4. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the mixed order 
(MOE) model. 

 
Fig. 5. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the fractal pseudo-
first order model. 
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Fig. 6. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the fractal pseudo-
second order model. 

 
Fig. 7. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the fractal pseudo-
nth order model. 

 
Fig. 8. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the one-site 
Langmuir model. 
 

 

Fig. 9. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the modified 
Freundlich model. 
 

 
Fig. 10. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the Avrami model. 

 
Fig. 11. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the exponential 
model. 
 

 
Fig. 12. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the double-
exponential model. 
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Fig. 13. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the hyperbolic 
tangent model. 

 
Fig. 14. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the Brouers and 
Sotolongo model. 
 

 
Fig. 15. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the normalized 
Gudermannian function model. 
 

 
 
Fig. 16. Experimental data versus calculated data (line) of tartrazine dye 
adsorption using Rhizopus arrhizus as modelled using the sigmoidal 
Chapman model. 
 

Based on the statistical indicators especially penalty-based 
error functions such as AICc, AdjR2, BIC, HQC and MPSD 
shows that the pseudo-2nd order was the best model followed by 
pseudo-nth order and Fractal-like Pseudo-2nd Order (Table 2). 
Kinetic analysis using the PSO model gave a value of equilibrium 
adsorption capacity, qe of 9.367 mg g-1 (95% confidence interval 
(C.I.), 9.250 to 9.485) and k2 (g/(mg.min)) of 0.037 (95%, C.I., 
0.032 to 0.041) (Table 2). The result of the nonlinear regression 
work was within the range of the original study at 9.28 mg g-1 
and 0.026. 

 

As far as tartrazine biosorption is concerned (Table 4), the 
PSO model is also the best model for several adsorbents such as 
Inula viscosa waste [75], activated carbon derived from Cassava 
sievate biomass [76], iron nanoadsorbents utilizing different 
waste plant biomass [77], lanthanum enriched aminosilane-
grafted mesoporous carbon material [78], magnetic Ni-Ag 
bimetallic nanoparticles supported on reduced graphene oxide 
(Ni-Ag NPs/rGO) [79], activated carbon produced from pecan 
nut shells [80], masau stone (MS) [81], copper coordinated 
dithiooxamide metal-organic framework (Cu-DTO MOF) [82], 
Fe(II) based adsorbent system [83], iron modified zeolitic tuff 
[84], activated carbon from Alligator weed (Alternenthera 
philoxeroids) [85], polyaniline nanolayer composite [86], while 
the PFO was the best model for adsorption of tartrazine using 
natural quartz, modified with a cationic surfactant and 
homoionized with sodium [87] ZnAl-LDH/PVA nanocomposite 
[88]. 
 
Table 2. Statistical analysis for tartrazine adsorption using Rhizopus 
arrhizus adsorbent at 100 mg/L dye. 
 

Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Pseudo-first-order  2 0.363 0.980 105.41 -11.07 -19.71 -21.00 0.998 1.023 
Pseudo-second-order 2 0.088 0.999 1.04 -42.25 -50.88 -52.18 1.000 1.008 
Elovich 2 0.827 0.886 8.70 7.04 -1.60 -2.89 0.980 1.036 
Mixed 1 3 1.158 0.761 13.78 20.39 6.92 4.97 1.008 1.056 
Fractal-like pseudo-
1st order 3 0.149 0.997 1.97 -24.73 -38.20 -40.15 1.000 1.010 
Fractal-like pseudo-
second order 3 0.091 0.999 1.13 -35.63 -49.10 -51.05 1.000 1.007 
Pseudo-nth order 3 0.088 0.999 1.12 -36.39 -49.86 -51.81 1.000 1.007 
One-site Langmuir 3 0.385 0.98 4.94 -3.84 -17.31 -19.26 0.998 1.023 
Modifed-Freundlich 2 0.471 0.966 6.19 -5.34 -13.97 -15.27 1.003 1.027 
Avrami 3 0.385 0.978 4.94 -3.84 -17.31 -19.26 0.998 1.023 
Exponential 2 0.304 0.986 3.76 -14.97 -23.60 -24.90 0.998 1.022 
Double-exponential 5 0.074 0.999 0.90 -20.98 -51.99 -55.23 1.000 1.002 
Hyperbolic tangent 3 0.225 0.992 2.86 -15.63 -29.10 -31.05 1.001 1.017 
Brouers and 
Sotolongo 3 0.149 0.997 1.97 -24.73 -38.20 -40.15 1.000 1.010 
normalized 
Gudermannian 
function 3 0.212 0.993 2.69 -16.91 -30.38 -32.33 1.001 1.016 
Sigmoidal Chapman 3 0.199 0.994 2.56 -18.37 -31.85 -33.79 1.001 1.014 

 
Table 3. Model constants for the top-three kinetic models for tartrazine 
adsorption using Rhizopus arrhizus adsorbent at 100 mg/L dye. 
 

Model value (95% C.I.) 
Pseudo-2nd order 
qe (mg/g) 9.367 9.250 to 9.485 
k2 (g/(mg.min)) 0.037 0.032 to 0.041 
Pseudo-nth order 
qe (mg/g) 9.393 9.136 to 9.651 
kN ((g/mg)n−1/min) -3.632 -7.577 to 0.313 
n -0.043 -0.419 to 0.33 
Fractal-like Pseudo-2nd Order 
qe (mg/g) 9.323 9.151 to 9.495 
k′2 (g/(mg min))ϕ  0.034 0.024 to 0.043 
ϕ 1.051 0.892 to 1.210 
 

It was often accepted that the ability to fit the kinetic data 
was the best test of the PFO and PSO equations' validity, despite 
the fact that such a test has little to do with whether or not the 
equations have a solid physicochemical foundation. Both k1 and 
k2 were phenomenological rate constants that declined when the 
adsorbate concentration was raised at the outset. k1 and k2 values 
varied widely from measurement to measurement, making it 
difficult to draw conclusions about the underlying physics and 
chemistry and extrapolate valuable results.  

 
The PFO and PSO equations may be fitted to most kinetic 

data even if the experimental conditions affecting the adsorption 
kinetics were not completely controlled. The PFO equation 
typically gave lower estimates of qe than did the experiments. 
This mismatch was due to a delay in the onset of the adsorption 
process, which was likely brought on by the existence of a 
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boundary layer or external resistance regulating. In the 
adsorption process that followed the PSO equation, the chemical 
reaction is not always the rate-limiting step because a good fit 
alone is not enough to reveal the true nature of the rate-limiting 
step [57,89,90]. 

 
Table 4. Summary of tartrazine dye sorption by sorbents. 
 
Adsorbent  Best 

kinetics 
Ref. 

Inula viscosa waste PSO [75] 
activated carbon derived from Cassava sievate biomass  PSO  [76] 
iron nanoadsorbents utilizing different waste plant biomass  PSO [77] 
lanthanum enriched aminosilane-grafted mesoporous carbon 
material  

PSO [78] 

magnetic Ni-Ag bimetallic nanoparticles supported on reduced 
graphene oxide (Ni-Ag NPs/rGO)  

PSO  [79] 

activated carbon produced from pecan nut shells PSO  [80] 
mascopper coordinated dithiooxamide metal-organic framework 
(Cu-DTO MOF)  

PSO [82] 

Fe(II) based adsorbent system PSO  [83] 
iron modified zeolitic tuff  PSO [84] 
activated carbon from Alligator weed (Alternenthera 
philoxeroids)  

PSO [85] 

polyaniline nanolayer composite PSO  [86] 
masau stone (MS) PSO  [81] 
Activated carbon of Lantana camara PSO [99] 
Crosslinked Chitosan-Coated Bentonite PSO [100] 
natural quartz, modified with a cationic surfactant and 
homoionized with sodium 

PFO  [87]  

ZnAl-LDH/PVA nanocomposite  PFO [88] 
hen feathers PFO [101] 
Deoiled soya waste PFO 

(default) 
[102] 

Bottom ash from thermal power PFO 
(default) 

[102] 

Chitin and Chitosan Avrami [103] 
Note: 
PSO Pseudo-2nd order 
PFO Pseudo-1st order 
 

Analytical methods, as well as data on adsorptive 
thermodynamics such as changes in entropy and enthalpy, 
activation- and adsorption energies, are required in order to 
determine whether the adsorption of pollutants in solution is a 
physical or chemical process [51]. Both of the kinetic models for 
sorption from liquid solutions were obtained without any process 
conditions being treated as particularly important. The creation 
of these models from theory is presented in detail by Azizian, 
who also provides the support of experimental findings in his 
analysis.  

 
The model’s theoretical derivation has the benefit of 

providing an estimation of the circumstances necessary to offer a 
more expressive interpretation of kinetic parameters. This is 
possible because of the models' ability to predict the conditions 
that must be satisfied. Azizian has noticed that the PFO kinetic 
model's observed rate constant (k1) symbolizes a mix of 
desorption and adsorption rate constants, and not the rate 
constant’s intrinsic adsorption [91]. This is because k1 does not 
the rate constant’s intrinsic adsorption. In the study of sorption 
kinetics, the PFO model can account for the use of high starting 
solute concentration (C0) of the adsorbate, but the PSO model can 
more consistently suit low values of C0.  

 
The PFO model can also account for the use of low values 

of C0. For adsorption profiles that obey the PFO kinetic model, 
the observed k1 value is linearly proportionate to the initial solute 
concentration, where the intercept and slope imply the desorption 
and adsorption rate constants, respectively. This is the case for 
adsorption profiles that follow the PFO kinetic model. The 
observed rate constant is a convoluted function of the initial 

sorbate concentration in the scenario in which processes of 
adsorption follow PSO kinetics [91].  
 

To reiterate, the PFO model is supported by experimental 
studies whenever the solute’s initial concentration is high. In 
contrast, when the solute concentration is low, the PSO kinetic 
model is dominant  [91–96]. Additionally, the intraparticle 
diffusion model is one of several kinetic models of adsorption 
that have been used to investigate the adsorption process at the 
atomic and molecular levels, especially for porous sorbents 
[97,98]. If chemical sorption or chemisorption is assumed to be 
the rate-limiting phase, then the PSO kinetic model may predict 
behavior across the whole adsorption range. As a result of this 
circumstance, the adsorption rate is independent of the adsorbate 
concentration and instead is dependent on the adsorption 
capacity.  

 
The equilibrium adsorption capacity can be calculated with 

this model, which is a huge improvement over the Lagergren first 
order model. Therefore, in principle, there is no need to use 
experimental data to evaluate the adsorption equilibrium 
capacity. As the concentration of the solute at the outset grows, 
the correlation between the data and the PSO kinetics model 
decreases, while the data and the PFO model grow increasingly 
well-fitted [91]. 
 
CONCLUSION 
 
Linearized form of adsorption kinetics has its drawbacks such as 
inaccurate representation of 95% confidence interval output of 
the parameters, transformation activity give unbalanced attention 
to potential outliers and magnification of errors may result in 
inaccurate parameters value.  In this study we explore 16 
adsorption kinetics model of tartrazine by R. arrhizus using 
nonlinear regression. Based on the statistical indicators 
especially penalty-based error functions such as AICc, ADR2, 
BIC, HQC and MPSD shows that the pseudo-2nd order (PSO) 
was the best model followed by pseudo-nth order and Fractal-like 
Pseudo-2nd Order. Kinetic analysis using the PSO model gave a 
value of equilibrium adsorption capacity, qe of 9.367 mg g-1 (95% 
confidence interval (C.I.), 9.250 to 9.485) and k2 (g/(mg.min)) of 
0.037 (95%, C.I., 0.032 to 0.041).  
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