

JOURNAL OF ENVIRONMENTAL BIOREMEDIATION AND TOXICOLOGY

Website: <http://journal.hibiscuspublisher.com/index.php/JEBAT/index>

Isolation and Characterization of Hydrocarbon-degrading Bacteria in Soils of Mechanical Workshops in Maiduguri, Borno State

Hussaini Shettima¹, Ibrahim A. Allamin^{1*}, Nasir Halima², Haruna Yahaya Ismail¹ and Yusuf Musa¹

¹Department of Microbiology, Faculty of Science, University of Maiduguri,
P.M.B 1069 Borno State, Nigeria.

²Department of Pure and Applied Chemistry Faculty of Science, University of Maiduguri,
P.M.B 1069 Borno State, Nigeria.

*Corresponding author:

Dr. Ibrahim A. Allamin,
Department of Microbiology,
Faculty of Science,
University of Maiduguri,
P.M.B 1069 Borno State,
Nigeria.

Email: ibnallamin@gmail.com

HISTORY

Received: 3rd Aug 2021
Received in revised form: 15th Oct 2021
Accepted: 19th Nov 2021

KEYWORDS

Hydrocarbon
Bacteria
Mechanical workshops
Maiduguri
Soil

ABSTRACT

The study was conducted to determine the distribution of hydrocarbon utilizing bacteria in spent engine oil (SEO) contaminated soil. Five mechanical workshops within Maiduguri Metropolis. Five bulk soil sample comprising of one each of the five sites; the sites are Leventis Area on Kashim Ibrahim Way, Damboa Road, Boiler (commonly called Bola) near Maiduguri Monday Market, Ngomari, on Kano Road, and 1000 Housing Estate, also on Kano Road. Nutrient agar was used, or isolation and enumeration total heterotrophic bacteria and Mineral salt agar was used for the isolation and enumeration of hydrocarbon utilizing bacteria. The result shows THB (92.0×10^4) at Damboa road (DR) to as higher and (78.8×10^4) at Bola area (BL) while HUB (2.0×10^4) at Damboa road (DR) and as high as (9.3×10^4) at Bola area (BL). The bacterial species isolated were species of *Bacillus licheniformis*, *Bacillus subtilis*, *Bacillus coagulans*, *Bacillus alvei*, *Bacillus cereus*, *Bacillus lenthus* other are *Pseudomonas aeruginosa*, *Klebsiella pneumonia*, *Bacillus licheniformis*, and *Bacillus subtilis* are the most occurring bacterial isolates identified. The ability of those bacterial isolate to degrade hydrocarbon buoyantly will help in remediation of oil polluted environments.

INTRODUCTION

Human activity has had an increasing impact on many ecosystems in the last several years, as seen by the numerous changes that have occurred. As a result, many individuals have begun to recognize the need of safeguarding ecosystems and assessing the harm that pollution causes. Recent years have seen an increase in study on oil pollution because of the increasing incidence and risk [1–3,2,4,5]. There is a corresponding rise in demand for energy for transportation, residential usage, and industrial use as the human population grows. Since the 1950s, fossil fuels have been the primary source of energy.

There has been a noticeable rise in soil pollution across the world due to the increased use of petroleum and its derivative products such as gasoline, diesel, and motor oils. In both industrialized and developing countries, the environmental effect of petroleum exploration, production, refining, and transportation is a serious problem. Liquid oil has a devastating impact on the marine environment as well as on soil and plant life [3,6–9]. A number of factors, including blowouts, tank leaks, and waste

disposal, all contribute to oil spills [10,11]. Roadside sales of lubricating oil in Nigeria, for example, are a major contributor to soil pollution by lubricating oil because of the casual ways that automobile and generator owners discard leftover lubricating oil [12–20]. A widespread practise among motor technicians and generator owners is to dispose of motor oil in gutters, water drains, open unoccupied plots, and farms, which releases large volumes of engine oil into the environment [20]. In addition, the exhaust system releases oil into the atmosphere when the engine is running and when there are leaks. Unlawful dumping of spent motor oil is a serious environmental threat with far-reaching consequences [2,20–24]. Crankcase oil flow from automobiles is a major source of oil pollution in Buea, Cameroon, according to a similar assessment by Akoachere et al. [25]. In India's Pudukkottai district and Nigeria's Gwagwalada region, studies by Ugoh and Moneke [26] found evidence of soil contamination caused by the discharge of spent motor oil. Poor aeration caused by the presence of spent motor oil in the soil results in an unsuitable environment for life in the soil. Used motor oil and heavy metals have been discovered to impact soil biochemistry, which includes changes in soil microbiological features such as

pH, Oxygen availability and nutrition supply [27,28,28–31]. We are not aware of any study that has attempted to isolate and identify bacteria present in the used motor oil polluted soil environment in Maiduguri. Soil samples polluted with spent motor oil were the focus of the current investigation.

MATERIALS AND METHODS

Study area

The study was conducted in Maiduguri Metropolis. Maiduguri is located in the North-easter part of Nigeria at coordinates 11°50'N Latitude and 13°09'E Longitude. The average monthly temperature ranges from 24°C in December and January to 42°C in March and April. It has a tropical climate with distinct dry season which starts in November and ends in April, and a distinct wet season which starts in May and ends in October. Maiduguri is the capital of Borno State; the inhabitants are mainly civil servants, farmers, fishermen, and petty traders [32].

The study sites are five different mechanical workshops in Maiduguri metropolis located at Bola Workshop near the Post Office, Anthony Mechanical workshop along Dambo Road, Leventis Mechanical Workshop Near West-End, Ngomari Workshop near Maiduguri International Airport, and 1000 Housing Estate along Kano Raod.

Media used

The media used for this research were: Nutrient Agar (NA) for enumeration and isolation of bacteria; Mineral Salt Media- a modified Bushnell and Haas (BH) medium for isolation of hydrocarbon utilizing bacteria. Spent engine oil was used as carbon source in the BH medium [20].

Sample collection

Digging with a hoe and transferring the soil sample straight into sterilised containers were the methods used to gather soil samples at each session. At each repair shop, samples were taken at five different locations. They were subsequently taken to the microbiology laboratory at the University of Maiduguri for testing.

Isolation and enumeration of Bacteria

Bacterial load of the soil samples were enumerated by making tenfold dilution of the samples collected from the soil samples. The test tubes with 10⁸ and 10⁹ were covered or corked and incubated at 30°C in an incubator. Using a dropper pipette, 0.025 ml of each dilution was inoculated on NA and BH (containing 0.5% v/w SEO) agar surfaces. The plates were incubated at 30°C for 24h and 48h respectively. Colony formation was used to determine viable and hydrocarbon-degrading bacterial counts in the samples. In terms of colony forming units per gramme of soil, the result was calculated using the number of counts and dilutions employed ([19].

Pure isolates were obtained by repeated subculture on fresh NA. Pure isolates were maintained on agar slants for further characterization and identification.

Characterization and identification of isolates

Pure isolates of bacteria were identified based on colonial, morphological and biochemical characteristics following the guidelines outlined by Prescott and Harley [33].

RESULTS AND DISCUSSIONS

Heterotrophic bacterial counts were generally higher (92.0 x 10⁴ CFU/g) Damboa road (78.8 x 10⁴ CFU/g) lower in Bola (Table 1). Hydrocarbon utilizing bacteria ranged as high as (9.3 x 10⁴ CFU/g) in Bola to as low as (2.0 x 10⁴ CFU/g) in Damboa road (Table 2).

Table 1. Enumeration of total heterotrophic bacteria and hydrocarbon-utilizing bacteria.

S/No.	Sample Sites	THB (cfu/g)	HUB (cfu/g)
1	LT	84.0 x 10 ⁴	3.0 x 10 ⁴
2	DR	92.0 x 10 ⁴	2.0 x 10 ⁴
3	BL	78.8 x 10 ⁴	9.3 x 10 ⁴
4	NG	84.0 x 10 ⁴	2.4 x 10 ⁴
5	OHE	84.0 x 10 ⁴	4.3 x 10 ⁴

Keys: THB=Total Heterotrophic Bacteria, HUB=Hydrogen Utilizing Bacteria, CFU/G=Colony Forming Unit/Gram LT=Leventis, DR=Damboa Road, BL= Bola, OHE=One thousand Housing Estate, NG=Ngomari

Table 2. Distribution of hydrocarbon utilizing bacteria in the five sites and their percentage occurrence.

Isolates	Sites					% Occurrence of Isolates at each site
	LT	DR	BL	NG	OHE	
<i>Bacillus licheniformis</i>	+	+	+	+	+	100
<i>Bacillus subtilis</i>	+	+	+	+	+	100
<i>Bacillus coagulans</i>	+	+	+	+	+	100
<i>Pseudomonas aeruginosa</i>	+	-	+	+	+	80
<i>Klebsiella pneumonia</i>	+	+	-	+	+	80
<i>Bacillus alvei</i>	+	+	+	+	-	80
<i>Bacillus cereus</i>	+	+	+	-	+	80
<i>Bacillus lentus</i>	+	+	+	-	+	80

Keys: + = Present, - = Absent, LT= Lake chad, DR= Damboa road, BL= Bola, NG= Ngomari, OHE= One thousand housing.

DISCUSSIONS

The total heterotrophic bacterial count as shown in the table above is higher in Damboa road with (92.0 x 10⁴ CFU/g) which is the site with little or less spent engine oil contaminations as the workshop there used constructed equipment for the collection of the used engine oil and this show that the lower the level of the contamination the greater the population of heterotrophic bacteria. Whereas the least total heterotrophic bacterial counts as encountered at Bola the densely populated area with different workshops and the level of contamination there is very high as the used engine oil were disposed anyhow to the soil which we assume suppress the growth heterotrophic bacteria to be lower showing (78.8 x 10⁴ CFU/g) the finding here agrees with that of Ugoh and Moneke [26].

The hydrocarbon utilizing bacterial count also shows a similar findings to that of Ugoh and Moneke 2011 where higher counts of (HUB) are enumerated at the densely polluted area of Bola (9.3 x 10⁴ CFU/g) which shows that the bacteria are able to utilized spent engine oil as their source of carbon and grow efficiently in that contaminated soil whereas lower counts were enumerated at Damboa road workshop (2.0 x 10⁴ CFU/g) which is having lower or little disposed engine oil in the soil there.

The hydrocarbon utilizing bacteria isolated are mostly of the genus of *Bacillus* the species identified are *Bacillus licheniformis*, *Bacillus subtilis*, *Bacillus coagulans*, *Bacillus alvei*, *Bacillus cereus*, *Bacillus lenthus* other are *Pseudomonas aeruginosa*, *Klebsiella pneumonia* as shown in Table 2. *Bacillus* are soil bacteria known to produce spores and can withstand adverse condition their mostly isolated in contaminated soil as recorded by [19,34-42].

ACKNOWLEDGMENT

The authors would like to thank University of Maiduguri likewise acknowledge the services of all laboratory staff in the Department of Microbiology.

FUNDING

This work was supported by IBR research grant TEFund 2018.

COMPETING INTEREST

The authors declare no competing interest

REFERENCES

1. Habib S, Iruthayam A, Abd Shukor MY, Alias SA, Smykla J, Yasid NA. Biodeterioration of Untreated Polypropylene Microplastic Particles by Antarctic Bacteria. *Polymers*. 2020 Nov;12(11):2616.
2. Boleydei H, Mirghaffari N, Farhadian O. Comparative study on adsorption of crude oil and spent engine oil from seawater and freshwater using algal biomass. *Environ Sci Pollut Res*. 2018;25(21):21024-35.
3. Nasreen Z, Kalsoom S. Biodegradation of petroleum industry oily sludge and its application in land farming: a review. *Int J Environ Waste Manag*. 2018;21(1):37-57.
4. Shetaia YM, El khalik WAA, Mohamed TM, Farahat LA, ElMekawy A. Potential biodegradation of crude petroleum oil by newly isolated halotolerant microbial strains from polluted Red Sea area. *Mar Pollut Bull*. 2016;111(1-2):435-42.
5. Li X, Zhao L, Adam M. Biodegradation of marine crude oil pollution using a salt-tolerant bacterial consortium isolated from Bohai Bay, China. *Mar Pollut Bull*. 2016;105(1):43-50.
6. Almansoory AF, Idris M, Abdullah SRS, Anuar N. Screening for potential biosurfactant producing bacteria from hydrocarbon-degrading isolates. *Adv Environ Biol*. 2014;8(3 SPEC ISSUE):639-47.
7. Vrabie CM, Candido A, van den Berg H, Murk AJ, van Duursen MB, Jonker MT. Specific in vitro toxicity of crude and refined petroleum products: 3. Estrogenic responses in mammalian assays. *Environ Toxicol Chem*. 2011;30(4):973-80.
8. Leighton FA. The systemic toxicity of Prudhoe Bay crude and other petroleum oils to CD-1 mice. *Arch Environ Contam Toxicol*. 1990;19(2):257-62.
9. Das PKMK, Konar SK. Acute toxicity of petroleum products, crude oil and oil refinery effluent on plankton, benthic invertebrates and fish. *Environ Ecol*. 1988;6(4):885-91.
10. Allison T, Chad L, Kate M, Rana S. Bioremediation of an Oil Refining Site. *J Biosci*. 1999;9(3):13-5.
11. Ajayi OO. Heavy Metal Contents of Soil in Automobile Workshops in Lagos Nigeria. *J Soil Sci*. 2005;15(2):163-4.
12. Ajayi AO, Balogun SA, Adegbekingbe K. Microorganisms in the crude oil-producing areas of Ondo State, Nigeria. *Acad J Sci Res Essay*. 2008;3(5):174-9.
13. de Oliveira VF, Parente Jr EJS, Manrique-Rueda ED, Cavalcante Jr CL, Luna FMT. Fatty acid alkyl esters obtained from babassu oil using C1-C8 alcohols and process integration into a typical biodiesel plant. *Chem Eng Res Des*. 2020;160:224-32.
14. Abdulredha MM, Hussain SA, Abdullah LC. Optimization of the demulsification of water in oil emulsion via non-ionic surfactant by the response surface methods. *J Pet Sci Eng*. 2020;184.
15. Safieddin Ardebili SM, Solmaz H, Mostafaei M. Optimization of fusel oil – Gasoline blend ratio to enhance the performance and reduce emissions. *Appl Therm Eng*. 2019;148:1334-45.
16. Marzan LW, Sultana T, Hasan MM, Mina SA, Islam MR, Rakibuzzaman AGM, et al. Characterization of furnace oil bioremediation potential of hydrocarbonoclastic bacteria isolated from petroleum contaminated sites of the Sundarbans, Bangladesh. *J Genet Eng Biotechnol*. 2017;15(1):103-13.
17. Allamin IA, Yasid NA, Abdullah SRS, Halmi MIE, Shukor MY. Phyto-Tolerance Degradation of Hydrocarbons and Accumulation of Heavy Metals by of *Cajanus cajan* (Pigeon Pea) in Petroleum-Oily-Sludge-Contaminated Soil. *Agronomy*. 2021 Jun;11(6):1138.
18. Allamin IA, Halmi MIE, Yasid NA, Ahmad SA, Abdullah SRS, Shukor Y. Rhizodegradation of petroleum oily sludge-contaminated soil using *Cajanus cajan* increases the diversity of soil microbial community. *Sci Rep*. 2020 Mar 5;10(1):4094.
19. Allamin IA, Ijah UJJ, Ismail HY, Riskuwa ML. Occurrence of hydrocarbon degrading bacteria in soil in Kukawa, Borno State. *Int J Environ*. 2014 May 29;3(2):36-47.
20. Ismail H, Ijah U, Riskuwa-Shehu M, Allamin I, Isah : Assessment of phytoremediation potentials of legumes in spent engine oil contaminated soil. *J Environ Saf Sci*. 2014 Jan 1;2:59-64.
21. Blodgett WC. Water Soluble Mutagens Produced During the Bioremediation of Oil Contaminated Soil. *Fla Sci*. 2001;60(1):28-36.
22. Rout PR, Bhunia P, Dash RR. Evaluation of kinetic and statistical models for predicting breakthrough curves of phosphate removal using dolochar-packed columns. *J Water Process Eng*. 2017 Jun 1;17:168-80.
23. Ahmad SA. Biodegradation of Spent Engine Oil by Workshops in Sokoto Metropolis [MSc Dissertation]. [Sokoto, Nigeria]: Usman Danfodiyo University; 2011.
24. Chukwu LO, Odunzeh CC. Relative toxicity of spent lubricant oil and detergent against benthic macro-invertebrates of a west African estuarine lagoon. *J Environ Biol*. 2006;27(3):479-84.
25. Akoachere JTK, Akenji TN, Yongabi FN, Nkwelang G, Ndip RN. Lubricating oil-degrading bacteria in soils from filling stations and auto- mechanic workshops in Buea, Cameroon: occurrence and characteristics of isolates. *Afr J Biotechnol*. 2008;7(11).
26. Ugoh S, Moneke L. Isolation of Bacteria From Engine Oil Contaminated Soils In Auto mechanic workshops in Gwagwalada, Abuja, FCT-Nigeria. *Acad Arena*. 2011 Jan 1;3(5):28-33.
27. Mittal A, Singh P. Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. *Indian J Exp Biol*. 2009 Sep;47(9):760-5.
28. Husaini A, Roslan HA, Hii KSY, Ang CH. Biodegradation of aliphatic hydrocarbon by indigenous fungi isolated from used motor oil contaminated sites. *World J Microbiol Biotechnol*. 2008;24(12):2789-97.
29. Guo W, He M-C, Yang Z-F. A review of studies on the degradation of petroleum hydrocarbon in soils and sediments by microorganism. *Bull Mineral Petrol Geochem*. 2007;26(3):276-83.
30. Mohammed D a, Ramsubhag A a, Beckles DM b. An assessment of the biodegradation of petroleum hydrocarbons in contaminated soil using non-indigenous, commercial microbes. *Water Air Soil Pollut*. 2007;182(1-4):349-56.
31. Moslemy P a b, Neufeld RJ c, Guiot SR a b. Biodegradation of gasoline by gellan gum-encapsulated bacterial cells. *Biotechnol Bioeng*. 2002;80(2):175-84.
32. Bukar M, Zannah M. Comparative Study of Media Management in Nigeria: A Study of nta Zonal Centre Maiduguri and (FRCN) Peace fm Maiduguri. *J Media Manag*. 2021 Mar 30;1-7.
33. Harley JP, Prescott LM. *Laboratory Exercises in Microbiology*. 5th ed. McGraw-Hill Higher Education; 2002. 496 p.
34. Gomare SS, Parshetti GK, Govindwar SP. Biodegradation of malachite green by *Brevibacillus laterosporus* MTCC 2298. *Water Environ Res*. 2009;81(11):2329-36.
35. Dawkar VV, Jadhav UU, Ghodake GS, Govindwar SP. Effect of inducers on the decolorization and biodegradation of textile azo dye Navy blue 2GL by *Bacillus* sp. VUS. *Biodegradation*. 2009;20(6):777-87.
36. Batisson I, Crouzet O, Besse-Hoggan P, Sancelme M, Mangot J-F, Mallet C, et al. Isolation and characterization of mesotriione-degrading *Bacillus* sp. from soil. *Environ Pollut*. 2009;157(4):1195-201.

37. Ogbulie TE, Ogbulie JN, Umezuruike I. Biodegradation of detergents by aquatic bacterial flora from Otamiri River, Nigeria. Afr J Biotechnol. 2008;7(6):824–30.
38. Kolekar YM, Pawar SP, Gawai KR, Lokhande PD, Shouche YS, Kodam KM. Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by *Bacillus fusiformis* KMK5 isolated from the textile dye contaminated soil. Bioresour Technol. 2008;99(18):8999–9003.
39. Dankaka SM, Farouq AA, Bagega AI, Abubakar U. Microbiological and Physicochemical Analysis of Old Sokoto Abattoir Wastewater (Sewage) Contaminated with Blacksmith Activities. Bioremediation Sci Technol Res. 2018 Dec 31;6(2):9–13.
40. Maarof MZ, Shukor MY, Mohamad O, Karamba KI, Halmi MIE, Rahman MFA, et al. Isolation and Characterization of a Molybdenum-reducing *Bacillus amyloliquefaciens* strain KIK-12 in Soils from Nigeria with the Ability to grow on SDS. J Environ Microbiol Toxicol. 2018 Jul 31;6(1):13–20.
41. Onuoha SC a, Olugbue VU a, Uraku JA b, Uchendu DO a. Biodegradation potentials of hydrocarbon degraders from waste-lubricating oil-spilled soils in Ebonyi State, Nigeria. Int J Agric Biol. 2011;13(4):586–90.
42. Lateef A, Oloke JK, Gueguim Kana EB, Sobowale BO, Ajao SO, Bello BY. Keratinolytic activities of a new feather-degrading isolate of *Bacillus cereus* LAU 08 isolated from Nigerian soil. Int Biodeterior Biodegrad. 2010;64:162–5.