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Industrial effluents (Azo dyes) are brightly coloured, making their disposal into receiving waters
undesirable not only because many Azo dyes and their breakdown products are toxic to aquatic
life and mutagenic to humans, but also because many Azo dyes and their breakdown products are
harmful to aquatic life due to the presence of aromatics and metals, chlorides, and other
chemicals. Various kinetic models, including modified Gompertz, Baranyi-Roberts, modified
Richards, Von Bertalanfty, modified Logistics, modified Schnute, Buchanan three-phase, and the
most recently presented Huang, were used in this study. Based on statistical tests, the modified
Schnute model provided the best fit, with the lowest values for RMSE and corrected Akaike
Information Criteria (AICc), the greatest value for adjusted R?, and the closest to unity for both
Accuracy and Bias Factor. The Modified Schnute parameters such as A (lag time), gmax (maximum
specific bacterial growth rate) and curve fitting parameters o and 3 (Constant), were found to be
-4.39 (95% confidence interval of -77.58 to 68.79), 57.00 (95% confidence interval of -2854.30
to0 2968.30), 0.78 (95% confidence interval of -0.34 to 1.89) and 0.96 (95% confidence interval
of -0.85 to 2.78, respectively.
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INTRODUCTION

The use of dyestuffs has risen steadily as a result of rapid
industrialization and man's desire for colour [1]. Industrial
effluents are highly coloured, and their disposal into receiving
waters harms the environment as a result of the limited light
penetration, it may disrupt photosynthetic activity in aquatic life
and may also be harmful to some aquatic species due to the
presence of aromatics and metals, chlorides, and other chemicals
[1-3]. The biological oxygen demand (BOD), chemical oxygen
demand (COD), total suspended solids (TSS), and metal
pollution due to the presence of dye and additives have all been
observed to be high in these sorts of effluents [4]. As a co-
pollutant, the azo dye Congo red is common. Annually, nearly
one million tons of basic and diazo direct dye are produced. The
Ecological and Toxicological Association of the Dyestuff
Manufacturing Industry (ETAD) reports that it has the highest
levels of toxicity [5]. In the tannery, textile, paper, food,
cosmetics, and pharmaceutical industries, dye is used as a

colorant during the dyeing process. It is also used in printing and
dyehouses [1,2,6]. It tends to pass through traditional water
treatment systems unscathed because it is brightly coloured and
water-soluble. As a result, the textile finishing industry is well
known for contributing to one of the highest levels of water
pollution, as 10-15% of dyes are lost in the effluent during the
dyeing process [5].

Azo dye is a major source of concern because dye precursors
or its biotransformation products, such as aromatic amines, has
been linked to cancer and mutation [7]. The azo dye has a
chromophore azo group (N=N) that gives the materials colour.
Based on the number of azo groups present, azo dyes can be
classified as monoazo, diazo, or polyazo dyes [8]. Azo dyes are
characterised as direct, reactive, dispersion, metalized, cationic,
and anionic azo dyes based on their applications [9]. The removal
of dyes from wastewater effluent has been utilized by a variety
of physical and chemical treatment processes, including
ozonation, photooxidation, electrocoagulation, froth flotation
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reverse osmosis, ion exchange, membrane filtering, and
flocculation. These procedures, on the other hand, have the
disadvantages of being expensive and commercially unviable,
less efficient, producing difficult-to-dispose wastes, and
potentially causing additional environmental problems.
Biodegradation is a cost-effective and dependable method for
removing pollutants from wastewater [1,6,8,10]. Using bacteria
and other microorganisms such as Acinetobacter sp., White rot
fungi, Shewanella oneidensis, and Aspergillus ochraceus, azo
dyes can be degraded. During the process, the azo-bonds (-N=N—
) present in the dye are reductively cleaved, releasing aromatic
amines and removing the effluent's colour [2,3]. Mathematical
modeling analysis were employed where data from fig 2 of Xun-
an Ning, et. al. was used [2]. A variety of models for pollutant
biodegradation have been published in several research [9,11—
15].

MATERIALS AND METHODS

Data Origin

The graphical data from Fig. 2. of the published work by Xun-an
Ning et al. [2] of decolorization and biodegradation of the azo
dye congo red by an isolated Acinetobacter baumannii YNWH
226 was processed using the software Webplotdigitizer [16],
which digitises the scanned graph and has been used and
acknowledged by many researchers because of its precision and
reliability [9,15,17,18]. After processing the data, it was
modelled using the CurveExpert Professional software (Version
2.6.5).

Fitting of the data

Nonlinear regression utilizing the Marquardt algorithm was used
to fit the bacterial growth curve using several growth models
(Table 1) using CurveExpert Professional software (Version
2.6.5). The algorithm seeks the most efficient approach for
reducing the sum of squares between predicted and measured
values. The software can be manually or automatically coded to
estimate parameter initial values and the sharpest gradient search
of the curve between the four datum points was used to estimate
the MUmax.

Statistical analysis

The statistically significant difference between the models was
calculated using several approaches such as the adjusted
determination coefficient (R2), accuracy factor (AF), bias factor
(BF), root-mean-square error (RMSE), and AICc (Akaike
Information Criterion) corrected as previously [5,15,18,19]. Ross
and McMeekin [20] were the first to suggest BF and AF.

RESULTS AND DISCUSSION

Modified Schnute was shown to have the best performance based
on the bacterial growth modelling (Figs. 1-8), with the lowest
AlCc, RMSE, and modified R2 values. The AF and BF values
for the model were also good, with their values being the closest
to 1.0. Modified Richards with the highest AICc and RMSE
values had the worst result, failing to model the growth curve
(Table 2). The Modified Schnute model coefficients parameters
are shown in Table 3.

Table 1. Growth model used in this research.

Model Equation
A
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Richards y { p(l+v)exp 4 (1+v) " (A1)
dified 1
modifie 1
Schnute v=| pi (1-p) \ 1-Bexp(ai+l-p-at) | B
a -8
Baranyi- 1
o y=Atpxt—Infe"™ re™
m
m
Uy X ! o HmX =0 _y=tmx=ho
A, S Tnln( + )4
- e()"max’A)
P
von s ,L,mx 31\3]:
Bertalanffy y=K |{|7(%)1er, ( |
|
N
Huang y=A+Ymax —ln[eA _{ oYmax _,4 ]e— L B(x)
/
1, 14
B(x)=x+—In——
a 1+e”
Buchanan Y =A,IFX<LAG
three-phase Y=A + K(X-1), [F L < X > Xuax
li ’ Y = Ymax. IF X > Xuax
inear
model

Note:

A= Bacterial growth lower asymptote;

Hmax= maximum specific bacterial growth rate;

v= affects near which asymptote maximum growth occurs.
A=lag time

ymax= Bacterial growth upper asymptote;

e = exponent (2.718281828)

t = sampling time

o,B, k = curve fitting parameters

ho = a dimensionless parameter quantifying the initial physiological state of the reduction process.
The lag time (h™') can be calculated as ho={tmax

Table 2. Statistical tests for the various models used in modelling the
growth curve of Acinetobacter baumannii YNWH 226

Model p RMSE adR) AF  BF  AlCc
Huang 4 0.136 0975 3.084 2.57 4414
Baranyi-Roberts 0.090 0989 3.004 2.47 3829
modified Gompertz 0.136 0977 3.175 2.73 2.12
Buchanan-3-phase 0.200 0.951 3.175 2.78 7.53
modified Richards 0.965 3.100 2.73  46.14
MS 0.082 0992 3.026 248  -4.93
modified Logistics 0.192  0.952 3.140 2.85 6.98
von Bertalanffy 0.113 0984 3.076 2.63 -0.40
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The Modified Schnute parameters such as 4 (lag time), gmax
(maximum specific bacterial growth rate) and curve fitting
parameters a and P (Constant), were found to be -4.39 (95%
confidence interval of -77.58 to 68.79), 57.00 (95% confidence
interval of -2854.30 to 2968.30), 0.78 (95% confidence interval
of -0.34 to 1.89) and 0.96 (95% confidence interval of -0.85 to
2.78, respectively (Table 3).

Table 3. Growth coefficients as predicted by the Modified Schnute model.

Himax B o A
(h™)
Value 57.001004 0965313  0.776127 -4.396026
Std Err 914.799833 0.570316  0.350422 22.999094
Range (95%  -2854.30 to -0.84t02.78 -0.33 to -77.58 to
Confidence) 2968.30 1.89 68.79
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Fig. 1. Growth of Acinetobacter baumannii YNWH 226 modeled using
the Huang model.
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Fig. 2. Fiq.1. Growth of Acinetobacter baumannii YNWH 226 modeled
using the Buchanan-3-phase model.
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Fig. 3. Growth of Acinetobacter baumannii YNWH 226 modeled using
the Modified Schnute model

(LnOD600)-2

= =]
2
O EXP
. r VB
0
0 1 2 3

Time (day)

Fig. 4. Growth of Acinetobacter baumannii YNWH 226 modeled using
the von Bertalanffy model.
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Fig. 5. Growth of Acinetobacter baumannii YNWH 226 modeled using
the Baranyi-Roberts model.
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Fig. 6. Growth of Acinetobacter baumannii YNWH 226 modeled using
the modified Logistics model
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Fig. 7. Growth of Acinetobacter baumannii YNWH 226 modeled using
the modified Gompertz model.
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Fig. 8. Growth of Acinetobacter baumannii YNWH 226 modeled using
the modified Richards model.

In contrast to bacterial growth, fish growth does not appear
to achieve or is difficult to establish its asymptotes. The Schnute
model was developed to model fish growth. Schnute's model is
comparable to Richards' approach in many respects. Depending
on the predicted coefficients for a given data set, both of these
models can represent various shape relationships, such as
concave, parabolic and sigmoidal-shape growths. The Schnute
model was also utilized in modeling B-carotene production by
Dunaliella salina in comparison to other models such as the
modified Logistic, Gompertz, Richards, and Stannard models
[21]. In a number of cases, the four-parameter Schnute model
[22] was statistically better than the three-parameter Gompertz
model in modelling the growth of P. putida and E. agglomerans
[23]. The Schnute model was also a better model than other
models such as von Bertalanffy, logistic, Gompertz and Schnute-
Richards in modelling the growth of the Cortes geoduck Panopea
globosa [24]. The Schnute model has also found application in
modelling growth of forest species [25].

CONCLUSION

In conclusion the Modified Schnute model was the best model in
modeling the growth curves of the bacterium under study, based
on statistical tests such as corrected AICc (Akaike Information
Criterion), bias factor (BF). The modified Schnute parameters
obtained from fitting were A (lag time), gmar (maximum specific
bacterial growth rate), o and P(Constant). As a result, the
modified Schnute was found to be the best model for growing
Acinetobacter baumannii YNWH 226 on Azo dye Congo red.
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