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INTRODUCTION 
 
The use of dyestuffs has risen steadily as a result of rapid 
industrialization and man's desire for colour [1]. Industrial 
effluents are highly coloured, and their disposal into receiving 
waters harms the environment as a result of the limited light 
penetration, it may disrupt photosynthetic activity in aquatic life 
and may also be harmful to some aquatic species due to the 
presence of aromatics and metals, chlorides, and other chemicals 
[1–3]. The biological oxygen demand (BOD), chemical oxygen 
demand (COD), total suspended solids (TSS), and metal 
pollution due to the presence of dye and additives have all been 
observed to be high in these sorts of effluents [4]. As a co-
pollutant, the azo dye Congo red is common. Annually, nearly 
one million tons of basic and diazo direct dye are produced. The 
Ecological and Toxicological Association of the Dyestuff 
Manufacturing Industry (ETAD) reports that it has the highest 
levels of toxicity [5]. In the tannery, textile, paper, food, 
cosmetics, and pharmaceutical industries, dye is used as a 

colorant during the dyeing process. It is also used in printing and 
dyehouses [1,2,6]. It tends to pass through traditional water 
treatment systems unscathed because it is brightly coloured and 
water-soluble. As a result, the textile finishing industry is well 
known for contributing to one of the highest levels of water 
pollution, as 10-15% of dyes are lost in the effluent during the 
dyeing process [5].  
 

Azo dye is a major source of concern because dye precursors 
or its biotransformation products, such as aromatic amines, has 
been linked to cancer and mutation [7]. The azo dye has a 
chromophore azo group (N=N) that gives the materials colour. 
Based on the number of azo groups present, azo dyes can be 
classified as monoazo, diazo, or polyazo dyes [8]. Azo dyes are 
characterised as direct, reactive, dispersion, metalized, cationic, 
and anionic azo dyes based on their applications [9]. The removal 
of dyes from wastewater effluent has been utilized by a variety 
of physical and chemical treatment processes, including 
ozonation, photooxidation, electrocoagulation, froth flotation 
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 ABSTRACT 
Industrial effluents (Azo dyes) are brightly coloured, making their disposal into receiving waters 
undesirable not only because many Azo dyes and their breakdown products are toxic to aquatic 
life and mutagenic to humans, but also because many Azo dyes and their breakdown products are 
harmful to aquatic life due to the presence of aromatics and metals, chlorides, and other 
chemicals. Various kinetic models, including modified Gompertz, Baranyi-Roberts, modified 
Richards, Von Bertalanffy, modified Logistics, modified Schnute, Buchanan three-phase, and the 
most recently presented Huang, were used in this study. Based on statistical tests, the modified 
Schnute model provided the best fit, with the lowest values for RMSE and corrected Akaike 
Information Criteria (AICc), the greatest value for adjusted R2, and the closest to unity for both 
Accuracy and Bias Factor. The Modified Schnute parameters such as λ (lag time), µmax (maximum 
specific bacterial growth rate) and curve fitting parameters α and β (Constant), were found to be 
-4.39 (95% confidence interval of -77.58 to 68.79), 57.00 (95% confidence interval of -2854.30 
to 2968.30), 0.78 (95% confidence interval of -0.34 to 1.89) and 0.96 (95% confidence interval 
of -0.85 to 2.78, respectively. 
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reverse osmosis, ion exchange, membrane filtering, and 
flocculation. These procedures, on the other hand, have the 
disadvantages of being expensive and commercially unviable, 
less efficient, producing difficult-to-dispose wastes, and 
potentially causing additional environmental problems. 
Biodegradation is a cost-effective and dependable method for 
removing pollutants from wastewater [1,6,8,10]. Using bacteria 
and other microorganisms such as Acinetobacter sp., White rot 
fungi, Shewanella oneidensis, and Aspergillus ochraceus, azo 
dyes can be degraded. During the process, the azo-bonds (–N=N–
) present in the dye are reductively cleaved, releasing aromatic 
amines and removing the effluent's colour [2,3]. Mathematical 
modeling analysis were employed where data from fig 2 of Xun-
an Ning, et. al. was used [2]. A variety of models for pollutant 
biodegradation have been published in several research [9,11–
15]. 
 
MATERIALS AND METHODS 
 
Data Origin 

The graphical data from Fig. 2. of the published work by Xun-an 
Ning et al. [2] of decolorization and biodegradation of the azo 
dye congo red by an isolated Acinetobacter baumannii YNWH 
226 was processed using the software Webplotdigitizer [16], 
which digitises the scanned graph and has been used and 
acknowledged by many researchers because of its precision and 
reliability [9,15,17,18]. After processing the data, it was 
modelled using the CurveExpert Professional software (Version 
2.6.5). 

Fitting of the data 
Nonlinear regression utilizing the Marquardt algorithm was used 
to fit the bacterial growth curve using several growth models 
(Table 1) using CurveExpert Professional software (Version 
2.6.5). The algorithm seeks the most efficient approach for 
reducing the sum of squares between predicted and measured 
values. The software can be manually or automatically coded to 
estimate parameter initial values and the sharpest gradient search 
of the curve between the four datum points was used to estimate 
the μmax. 
 
Statistical analysis 
The statistically significant difference between the models was 
calculated using several approaches such as the adjusted 
determination coefficient (R2), accuracy factor (AF), bias factor 
(BF), root-mean-square error (RMSE), and AICc (Akaike 
Information Criterion) corrected as previously [5,15,18,19]. Ross 
and McMeekin [20] were the first to suggest BF and AF. 
 
RESULTS AND DISCUSSION 

 
Modified Schnute was shown to have the best performance based 
on the bacterial growth modelling (Figs. 1-8), with the lowest 
AICc, RMSE, and modified R2 values. The AF and BF values 
for the model were also good, with their values being the closest 
to 1.0. Modified Richards with the highest AICc and RMSE 
values had the worst result, failing to model the growth curve 
(Table 2). The Modified Schnute model coefficients parameters 
are shown in Table 3. 

 
 
 
 
 
 
 
 

Table 1. Growth model used in this research. 
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Note: 
A= Bacterial growth lower asymptote; 
μmax= maximum specific bacterial growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
ymax= Bacterial growth upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
The lag time (h-1) can be calculated as h0=μmax 
 
Table 2. Statistical tests for the various models used in modelling the 
growth curve of Acinetobacter baumannii YNWH 226 

 
Model p RMSE adR2 AF BF AICc 
Huang 4 0.136 0.975 3.084 2.57 44.14 
Baranyi-Roberts 4 0.090 0.989 3.004 2.47 38.29 
modified Gompertz 3 0.136 0.977 3.175 2.73 2.12 
Buchanan-3-phase 3 0.200 0.951 3.175 2.78 7.53 
modified Richards 4 0.157 0.965 3.100 2.73 46.14 
MS 3 0.082 0.992 3.026 2.48 -4.93 
modified Logistics 3 0.192 0.952 3.140 2.85 6.98 
von Bertalanffy 3 0.113 0.984 3.076 2.63 -0.40 

 
 
 
 
 
 
 
 
 
 
 
 

Y = A, IF X < LAG 
Y=A + K(X ̶ λ), IF λ ≤ X ≥ XMAX 
Y = YMAX, IF X ≥ XMAX 
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The Modified Schnute parameters such as λ (lag time), µmax 
(maximum specific bacterial growth rate) and curve fitting 
parameters α and β (Constant), were found to be -4.39 (95% 
confidence interval of -77.58 to 68.79), 57.00 (95% confidence 
interval of -2854.30 to 2968.30), 0.78 (95% confidence interval 
of -0.34 to 1.89) and 0.96 (95% confidence interval of -0.85 to 
2.78, respectively (Table 3). 

 
Table 3. Growth coefficients as predicted by the Modified Schnute model. 

 
 
 
Fig. 1. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the Huang model. 
 

Fig. 2. Fiq.1. Growth of Acinetobacter baumannii YNWH 226 modeled 
using the Buchanan-3-phase model. 
 
 

 
 
Fig. 3. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the Modified Schnute model 
 

 
Fig. 4. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the von Bertalanffy model. 
 
 

 
 
Fig. 5. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the Baranyi-Roberts model. 
 

 
Fig. 6. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the modified Logistics model 
 

 
 
 
Fig. 7. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the modified Gompertz model. 
 

0

1

2

3

0 1 2 3 4 5

(L
nO

D
60

0 
nm

)

Time (day)

EXP

HG

0

1

2

3

0 1 2 3 4 5(L
nO

D
60

0 
nm

)-
2

Time (day)

EXP

MS

0

1

2

3

0 1 2 3 4 5

(L
nO

D
60

0)
-2

Time (day)

EXP
VBr

0

1

2

3

0 1 2 3 4 5

(L
nO

D
60

0 
nm

)-
2

Time (day)

EXP
BR

0

1

2

3

0 1 2 3 4 5

(L
nO

D
60

0 
nm

)-
2

Time (day)

EXP
ML

0

1

2

3

0 1 2 3 4 5

(L
nO

D
60

0 
nm

)-
2

Time (day)

EXP
MG

 µmax 
(h-1) 

β α  λ  

Value 57.001004 0.965313 0.776127  -4.396026  
Std Err 914.799833 0.570316 0.350422  22.999094  

Range (95% 
Confidence) 

-2854.30 to 
2968.30 

 

-0.84 to 2.78 
 

-0.33 to 
1.89 

 

 -77.58 to 
68.79 

 

 

0

1

2

3

0 1 2 3 4 5

(L
nO

D
60

0)
-2

Time (day)

EXP

B3P

https://doi.org/10.54987/bstr.v9i2.625


JEBAT, 2021, Vol 4, No 1, 7-10 
DOI: https://doi.org/10.54987/jebat.v4i2.626 

 
 

- 10 - 
This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/). 

 

 

 
 
Fig. 8. Growth of Acinetobacter baumannii YNWH 226 modeled using 
the modified Richards model. 
 

In contrast to bacterial growth, fish growth does not appear 
to achieve or is difficult to establish its asymptotes. The Schnute 
model was developed to model fish growth. Schnute's model is 
comparable to Richards' approach in many respects. Depending 
on the predicted coefficients for a given data set, both of these 
models can represent various shape relationships, such as 
concave, parabolic and sigmoidal-shape growths. The Schnute 
model was also utilized in modeling β-carotene production by 
Dunaliella salina in comparison to other models such as the 
modified Logistic, Gompertz, Richards, and Stannard models 
[21]. In a number of cases, the four-parameter Schnute model 
[22] was statistically better than the three-parameter Gompertz 
model  in modelling the growth of P. putida and E. agglomerans 
[23]. The Schnute model was also a better model than other 
models such as  von Bertalanffy, logistic, Gompertz and Schnute-
Richards in modelling the growth of the Cortes geoduck Panopea 
globosa [24]. The Schnute model has also found application in 
modelling growth of forest species [25]. 
 
CONCLUSION 
 
In conclusion the Modified Schnute model was the best model in 
modeling the growth curves of the bacterium under study, based 
on statistical tests such as corrected AICc (Akaike Information 
Criterion), bias factor (BF). The modified Schnute parameters 
obtained from fitting were λ (lag time), µmax (maximum specific 
bacterial growth rate), α and β(Constant). As a result, the 
modified Schnute was found to be the best model for growing 
Acinetobacter baumannii YNWH 226 on Azo dye Congo red. 
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