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INTRODUCTION 
 
PBDEs have been found in a wide range of environmental media, 
including soils, water, sediments, and even the air. 
Polybrominated diphenyl ethers (PBDEs) can biomagnify in food 
webs due to their strong lipotropy, posing a significant risk to 
human health. Furthermore, several PBDEs are dangerous and 
persistent in the environment due to their aromatic structures and 
bromide substituent groups [1–11]. To protect human health and 
the environment from polybrominated diphenyl ether (PBDE) 
pollution, these compounds in industrial effluent must be treated 
before being released into the environment. Adsorption is the 
most widely used treatment technology for removing 
contaminants from industrial wastewater because of its multiple 
advantages, which include simplicity, high efficiency, and ease 
of application. Another key adsorption challenge is the selection 
of efficient and cost-effective adsorbents, and many different 

materials have been examined in prior research initiatives to 
solve this issue. The current study is focusing on biochar (a type 
of charcoal made from biomass pyrolysis) as a potential low-cost 
adsorbent for sequestering toxins and reducing pollution spread 
[11–21]. 

 
A biochar-based soil amendment, biochar can limit the 

biological uptake, storage, and absorption of organic 
contaminants, hence reducing the danger to the environment. 4-
Bromophenyl phenyl ether (4-BE) and other brominated flame 
retardants (BFRs) have been utilised in a variety of consumer and 
commercial products for many years, including clothes and 
furniture. Since then, they have advanced to the status of a top-
priority environmental pollutant on a global scale, and they have 
been discovered in the tissues of practically everyone who has 
been tested thus far [22–29]. The chemical 4-Bromophenyl 
phenyl ether has been detected in raw drinking water, mineral 
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 ABSTRACT 
Because of their fire-retardant properties, polybrominated diphenyl ethers (PBDEs) are 
frequently used in the manufacturing industry. PBDEs are mixed with polymers as additives and 
employed in a range of sectors, including plastics and textiles. They are, nevertheless, capable of 
leaking from the surfaces of these items and into the environment since they are not chemically 
connected to plastics or textile materials. The adsorption of PBDEs onto biochar-immobilized 
bacteria is a useful method to remediate PBDEs from the environment. Understanding the 
kinetics of adsorption can be done by using models such as pseudo-1st or pseudo-2nd. The pseudo-
1st order kinetic model was previously found to best fit the data via a nonlinear regression exercise 
for brominated flame retardant 4-bromodiphenyl ether adsorption onto biochar-immobilized 
Sphingomonas sp. However, the use of nonlinear regression requires the residual of the fitted 
curve to be non-autocorrelated. The Durbin–Watson statistic, which is derived from the Durbin–
Watson distribution, is one of the most commonly used ways for determining whether or not there 
is autocorrelation. In this study, the calculated value of the Durbin-Watson statistics was d = 
2.260. The Durbin-Watson’s lower critical value for dL was 0.700, while the upper critical value 
dU was 1.252. Since the d value was greater than the upper critical value or dU, this resulted in 
the null hypothesis not being rejected or indicating that there is no evidence of autocorrelation. 
This demonstrates that the pseudo-1st model used in the nonlinear regression model is adequate. 
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water, and river water in other parts of the world. The United 
States Environmental Protection Agency (USEPA) recommends 
that the absolute maximum allowed level to protect freshwater 
aquatic life be 6.2 ug/L to protect aquatic life. When tested on the 
aquatic organism Daphnia magna (Water flea), the concentration 
that causes 50% fatality (LC50) was found to be 0.36 mg/L/48 
hours [30]. (4)-BDE is another refractory top priority pollutant in 
which a study using activated sludge microbes indicated that it 
must not be appreciably reduced in the least; a subsequent study 
under aerobic circumstances demonstrated that it degrades at 
extremely low levels. 

 
 
The degree of correlation (similarity) between two or more 

adjacent observations is measured by autocorrelation, which is 
defined as A variable's association with itself through time and 
space is measured by spatial autocorrelation, which can be either 
negative or positive depending on the variables involved. It is 
observed when undifferentiated values are found close to one 
another that there is negative spatial autocorrelation; on the other 
hand, positive spatial autocorrelation is observed when distinct 
values are discovered close to one another that there is positive 
spatial autocorrelation. Its properties and calculations are, 
however, frequently misinterpreted and distorted, even though it 
is a key theory in spatial statistics [31–35]. It has several pros as 
well as downsides. However, while it has advantages in that it 
allows for spatial interpolation, it also has downsides in that it 
makes statistical testing more complicated.  

 
Temporal autocorrelation is an extension of this concept, 

however, it is a little more difficult to comprehend and implement 
than spatial autocorrelation. The time that simply moves in one 
direction is taken into consideration in temporal autocorrelation, 
whereas things with complicated shapes and more than two 
dimensions are taken into consideration in spatial 
autocorrelation, were recognising what is close by might be 
difficult to determine [36]. When a variable's structured spatial 
variation in a dataset is measured, it is referred to as organised 
spatial variation. Observed in areas that are close to one another 
and have values of variables that are indistinguishable from one 
another is positive spatial autocorrelation, which is a positive 
correlation between two or more variables. Because of this, the 
values that are adjacent to each other do not have the same value 
as one another whenever there is a negative spatial 
autocorrelation [37–43]. 

 
In normal nonlinear regression, the least-squares technique 

is used to ensure that data points do not rely on one another and 
that the value of a data point is not affected by the value of data 
points that came before or after it in the process. During the most 
extreme form of autocorrelation, temperature drift happens 
continuously throughout the duration of time measurements, and 
this drift has an impact on the findings of the measurements 
because they appear in a sequence of visually discernible 
patterns. Another example is a spectrophotometer that has been 
misused and has a tungsten light source attached to it.  

 
In some situations, such as when the number of creatures 

that appear each year in a specific area is highly associated with 
and dependent on the number of creatures that appeared the year 
before, autocorrelation cannot be avoided. For example, when the 
number of creatures that appear each year in a specific area is 
highly associated with and dependent on the number of creatures 
that appeared the year before [44].  

 
 

Among the most often employed approaches for 
determining whether or not there is autocorrelation is the Durbin–
Watson statistic, which is derived from the Durbin–Watson 
distribution. When determining the level of significance in this 
method, the researchers employ Draper and Smith's strategy for 
calculating the level of significance  [45–47]. In this study, the 
Durbin-Watson test was used to determine whether or not the  
pseudo-1st order kinetic model from a previously published work 
[48] for the adsorption of the brominated flame retardant 4-
bromodiphenyl ether onto biochar-immobilized Sphingomonas 
sp. was adequate in terms of autocorrelation. 
 
MATERIALS AND METHODS 
 
Acquisition of Data 
Residual data were acquired from a previously published work 
[48] from the pseudo-1st order Kinetic (2 regressors) modelling 
of adsorption of the brominated flame retardant 4-bromodiphenyl 
ether onto biochar-immobilized Sphingomonas sp. 
 
Durbin-Watson test 
In the Durbin–Watson test, a statistical calculation is carried out 
to test for the level of significance [46]. 
 

   (Eqn. 1) 
 

In this test, the usual hypothesis where H0: ρ= 0 versus the 
alternative H1: ρ > 0 is performed. The statistic is approximately 
equal to 2(1− p). When the value is zero, the Durbin-Watson test 
statistic is 2, and when the value is one, the Durbin-Watson test 
statistic is 0. Non-autocorrelation was indicated by a d value near 
2, while positive autocorrelation was indicated by a d value 
around 0. Negative autocorrelation is shown by d values 
approaching 4 (Eqn. 1).  
 

When the Durbin-Watson test statistics are low, the null 
hypothesis should be rejected because it indicates the presence of 
autocorrelation. Because there is no distribution of the -value in 
the Durbin-Watson test statistics associated with d, such as the t- 
or z-statistics, tables must be used in hypothesis testing. 
 
The decision rule for the Durbin-Watson bounds test is 
• if d > upper bound, fail to reject the null hypothesis of no serial 
correlation, or there is no autocorrelation. 
• if d < lower bound, reject the null hypothesis and reach the 
conclusion that positive autocorrelation exists., 
• if lower bound < d < upper bound, the test is inconclusive 
 
RESULTS AND DISCUSSION 
 

The calculated value of the Durbin-Watson statistics (Table 
1) was d = 2.260. The statistic is approximately equal to 2(1− p). 
We then test the hypothesis H0: ρ= 0 versus the alternative 
hypothesis of H1: ρ > 0. From the Durbin-Watson table [45,49] 
for 2 parameter models (k’=2) the lower critical value for dL was 
0.700, while the upper critical value dU was 1.252. According to 
to this, the d value was greater than the upper critical value or dU, 
resulting in the null hypothesis not being rejected or indicating 
that there is no evidence of autocorrelation. This demonstrates 
that the pseudo-1st model used in the nonlinear regression model 
can be adopted. 
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Table 1. The calculation for Durbin Watson statistics. 
 

et et2 (et − et−1)2 
0.00E+00 0.00E+00 0.00E+00 
1.17E-03 1.36E-06 1.36E-06 
-2.67E-04 7.10E-08 2.06E-06 
-2.60E-03 6.75E-06 5.44E-06 
1.39E-03 1.92E-06 1.59E-05 
-1.11E-03 1.22E-06 6.21E-06 
3.65E-04 1.33E-07 2.16E-06 
-5.33E-04 2.84E-07 8.06E-07 
4.33E-04 1.87E-07 9.32E-07 
-8.89E-04 7.90E-07 1.75E-06 
-3.92E-04 1.54E-07 2.47E-07 
-1.92E-03 3.68E-06 2.33E-06 
-1.18E-03 1.39E-06 5.49E-07 
-1.83E-04 3.34E-08 9.90E-07 
-2.52E-04 6.37E-08 4.83E-09 
  6.37E-08 

Note  
et= residual 
 

Auto-related data causes the degree of freedom from statistics on 
inferential tests and leads to faux correlations between variables [50]. In 
a fundamental modelling exercise such as modified Gompertz and other 
models, the usage of the Durbin Watson test to test for autocorrelation 
data in time series are widespread [51–55]. The Breusch-Godfrey 
Lagrange multiplier test is another method of detection of 
autocorrelation. When autocorrelation is identified, the researcher can fix 
the condition using numerous methods of transformation, such as 
Cochrane-Orcutt [56], Hildreth-Lu, or Prais-Winsten that can alleviate 
the presence of autocorrelation [57]. 
 

The Durbin-Watson test statistic compares the null hypothesis that 
residuals in normal less-field regression are not auto-related to the 
alternative that residuals in an AR1 process, in which the current value is 
based on the immediately preceding value, are auto-related. Durbin-
Watson has a statistical range of 0 to 4. Non-self-correlation has a value 
close to 2; positive autocorrelation indicates a value close to 0, and 
negative autocorrelation indicates a value close to 4. Because any 
computed Durbin Watson value is dependent on the related data matrix, 
the exact critical values of Durbin-Watson statistic are not given in all 
possible cases [51,52].  

 
Durbin and Watson, on the other hand, established the critical 

values at the upper and lower boundaries. Because positive 
autocorrelation is far more common in practice than negative 
autocorrelation, the hypothesis of zero autocorrelation against the 
alternative positive self-relation of the first order is commonly used in 
tabular bounds. To utilise the table, cross-reference the sample size to the 
number of regressors, removing the constant from the regressors count. 
Traditional Durbin Watson tables are inapplicable when there is no 
permanent regression term. Instead, a suitable set of Durbin-Watson 
tables must be used. Traditional Durbin-Watson tables do not applicable 
when the lagged variable is shown on a regressor. Durbin proposed 
various testing procedures in this case. 
 

Several factors might have contributed to the introduction of 
autocorrelation into the data [58], including the following: 
1. Because of the regularity with which it occurs, carryover of effect is a 
primary cause of autocorrelation. Statistics on monthly household 
expenditures, for example, are influenced by the same category of 
spending from the previous month's data. Autocorrelation can be seen in 
cross-sectional and time-series data sets. When examining cross-
sectional data, the feature under discussion is common in that it enables 
the discovery of units that are equivalent to one another. When working 
with time series data, the element of time is what creates self-correlation. 
When certain sample units are ordered in the data, autocorrelation might 
occur. The effect of omitting specific variables from an equation is 
another aspect that contributes to autocorrelation. When employing 
regression modelling approaches such as regression modelling, it is not 
possible to include all of the variables in a regression model. There are 
several reasons for this, not the least of which is that some variables are 
qualitative in character, direct observations on the variable are not always 
available, and so on. The autocorrelation in the resulting data is created 

by the combined effect of the variables that were removed [59,60,33,61–
63]. 
 

The introduction of autocorrelation into the data could be due to an 
erroneously defined kind of connection. Its goal is to establish a linear 
relationship between the research and the explanatory variables in the link 
between the research and the explanatory variables. The data exhibits 
autocorrelation as a result of a log or exponential factor in the model. This 
is due to the model's linearity being called into question. When the 
discrepancy between observed and actual values is greater than one 
standard deviation, it is referred to as a measurement error or error–in–
variable for that variable. Furthermore, the presence of measurement 
errors in the dependent variable may result in undesired autocorrelation 
in the data set. It's also referred to as serial correlation or autocorrelation. 
It is defined as the time-delayed correlation of one signal with a delayed 
replica of itself. Informally, it is the degree to which two observations are 
similar as a function of the time interval between them.  
 
CONCLUSION 
 
When it comes to detecting recurring patterns, autocorrelation analysis is 
a mathematical method that can be used to determine the presence of a 
periodic signal that has been obscured by noise or to locate the missing 
fundamental frequency in a signal revealed by its harmonic frequencies. 
It is commonly used in signal processing to analyse functions or series of 
values, such as time-domain signals, and is very useful in signal 
processing. In this study, the calculated value of the Durbin-Watson 
statistics was d = 2.260. The Durbin-Watson’s lower critical value for dL 
was 0.700, while the upper critical value dU was 1.252. Since the d value 
was greater than the upper critical value or dU, this resulted in the null 
hypothesis not being rejected or indicating that there is no evidence of 
autocorrelation. This demonstrates that the pseudo-1st model used in the 
nonlinear regression model is adequate. 
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