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INTRODUCTION 
 
The use of zero-valent iron (ZVI) in the elimination of harmful 
pollutants in groundwater and wastewater has gained widespread 
interest in recent years [1–3]. ZVI materials have been lengthily 
applied in reducing of aqueous organic pollutants owing to the 
fact of its ability as a reducing agent together with – 0.43 V 
standard electrode potential to which it possesses. Example of 
such reducible pollutants include chlorohydrocarbon [4] and 
chlorinated phenols [5], anions [e.g., CrO42- [6], AsO43- [7] and 
SeO42- [8]] and heavy metals [e.g., Pb (II) [9] and Hg(II) [10]], 
as a result of large particular surface area, relative low price and 
remarkable surface reactivity [11]. 

 
The nanoscale zero valent iron (nZVI) displayed many 

benefits, including low dosage and high reactivity, relative to 
microscale ZVI, with decreasing particle size and 
correspondingly large specific surface area. This provides nZVI 
with great opportunities for contaminant remediation. However, 
given the strong magnetic force between particles and high 
surface energy, which restricts use, the major challenges 
associated with nZVI include strong agglomeration and rapid 
oxidation in air [12]. It is possible to classify the countermeasures 
into two major groups, i.e. surface decoration with surfactants 
and support delivery. Surfactants are used widely to relieve the 

accumulation of particles and improve properties of adsorption 
[13], thus, enhancing the reactivity of nZVI can improve the 
reactivity of nZVI. Nevertheless, the diffusion and desorption of 
surfactants into a liquid phase can lead to lesser pollution [14]. 
Stabilizing nanoparticles on aids, which may be more promising 
to increase stability, is another promising method. Not only does 
this routine increase the distribution of nZVI particles, but it also 
encourages activity by nZVI interaction and facilitates activity 
[15]. Consequently, many supports ranging from Fe3O4 and TiO2 

[16], clay minerals [17,18] and Zeolites [19] have been 
established for nZVI. Drawbacks, such as a complicated planning 
phase and the high cost of carrier materials, exist, however. The 
discovery of cheaper and more usable carrier materials is 
therefore demanding but important. 

 
Biochar (BC) has recently attracted concern as a potential 

material for environmental remediation. BC is generated at low 
cost under oxygen-limited conditions from the pyrolysis of 
carbonaceous biomass or other solid waste [20]. BC can be 
applied to stabilize and spread engineered nanoparticles with its 
large specific surface area, rich porous composition, strong 
strength and abundant surface functional groups [21], which 
increases their mobility and durability, and decreases metal 
leachability. It is thus a promising medium of dispersion for 
nZVI. It was necessary to predict the flexible properties of BC 
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 ABSTRACT 
In most instances, there exists an inaccuracy in interpretation of adsorption/reduction of 
substances using linear technique as it can only provide an approximate value of the measured 
parameter; the specific adsorption rate. This paper provides for the first-time modelling of the 
effect of nZVI/BC, nZVI and Biochar (BC) on the adsorption/reduction of nitrobenzene as 
modelled using Pseudo-1st order (PFO), Pseudo-2nd Order (PSO), Elovich and Avrami models. 
Pseudo-1st Order was the best model for nZVIBCg, whereas Pseudo-2nd Order was the best 
model for nZVI and BC on Nitrobenzene (NB) removal based on statistical dependencies that 
were used such as root-mean-squire error (RMSE), bias factor (BF), Akaike information criterion 
(AICc) and the adjusted coefficient of determination. Justifiably from the results, coupling nZVI 
and BC together will help in reducing more of NB than when individual compounds are used. 
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assisting nZVI (nZVI/BC) in the purification of contaminants. In 
the one side, a mass of functional groups containing oxygen, e.g. 
carboxyl (-COOH) and hydroxyl (-OH), reinvest the great 
adsorption effects of BC against organic pollutants and heavy 
metals [22]. In the other hand, nZVI, by reduction after 
adsorption, is extremely active in the remediation of pollutants. 
In addition, BC will serve as an electron transfer mediator 
between nZVI and pollutants, which could speed up the reaction 
[23]. To date, nZVI/BC has acted as a sorbent for [24], Pb (II) 
[25] and tetracycline [26], a Cr (VI) reductant [27] and a 
trichloroethylene degradation persulfate activator [28]. However, 
the reducibility of nZVI/BC to organic contaminants has been 
less studied in comparison, particularly in terms of the synergistic 
effects between nZVI and BC and reaction state optimization, 
while trichloroethylene [29] and chloramphenicolol [30] have 
recently shown high removal efficiency. 
 

The biochar, which was prepared by pyrolysis of oak 
sawdust, was assisted by nZVI in the original paper [31]. The 
anaerobic elimination of nitrobenzene has been tested for the 
adsorption and reduction properties of nZVI/BC (NB). In a 
variety of various manufacturing operations, including medicine, 
dyes, plastics, explosives and pesticides, NB is manufactured on 
a broad scale and commonly used as a raw material [32,33]. It 
has been shown to have high hydrophobicity, toxicity and 
persistence. At least 7 of the 1177 sites collected by the USEPA 
National Priorities List [34].  

 
Conventional biological methods are unsuccessful in the 

treatment of NB-rich wastewaters, where the NB concentration 
is above 100 mg/L [35], as a result of the electro-withdrawing 
effect of the nitro group [36]. Advanced oxidation processes 
(AOPs) are therefore not sufficient for the removal of NB, 
considering the downside of the high cost and yield of the 
extremely toxic by-product of 1,3-dinitrobenzene [37]. Given the 
low cost, environmental benignity, and high reduction potential 
of nZVI, the reduction of nitro-aromatic by nZVI could be 
promising. In addition, the reduction of NB to aniline (AN) 
transition will decrease toxicity and increase biodegradability, 
encouraging subsequent biological treatment [38]. 
 

Mathematical modelling is the practice of translating 
problems from a field of application into tractable mathematical 
formulas whose theoretical and numerical analysis provides 
inspiration, solutions, and advice useful for the originating 
application [6]. A model is a framework for describing and 
evaluating a system's logical or mathematical representation. For 
the first time the predictive mathematical modeling of the effect 
of nZVI/BC effect on the adsorption of NB was studied by 
utilizing Pseudo-1st-Order, Pseudo-2nd-Order, Elovich and 
Avrami models (Table 1). The objectives in this paper is to find 
out the best model for both nZVI/BC, nZVI and BC on NB 
removal and to compare the reactivity of nZVI/BC on the 
adsorption of NB as against individual nZVI and BC. 
 
MATERIALS AND METHODS 
 
The Webplotdigitizer 2.5 [31]software was used to process the 
data gotten from fig 3 of [31]. Moreover, the reliability of the 
software which was utilized in scanning the figure has been 
approved and acknowledged by various researchers [39,40]. 
 
 
 
 
 
 

Statistical analysis 
Many methods were used to distinguish between the models 
used. Such significant statistical difference was achieved by 
calculating the AICc (Akaike information criterion), bias factor 
(BF), adjusted coefficient of determination (R2) and root mean-
squire error (RMSE) among the methods of calculation used. 
 
Fitting of the data 
Pseudo-1st-Order, Pseudo-2nd-Order, Elovich and Avrami 
models were used in modelling and extracting fittings (see Table 
1) of the adsorption graphical curves which was conducted with 
nonlinear regression using Curve-Expert Professional software 
(version 2.6.3). modelling was done by plotting Qt (maximum 
adsorption at given time) on the Y-axis and T (time) on the X-
axis. 
 
Table 1. Models used in this work. 
 

Model P Equation 
Pseudo-1st Order 2 𝑞𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞[1 − Exp (− 𝑘𝑘𝑘𝑘 ∗ 𝑞𝑞)] 
Pseudo-2nd Order 2 𝑞𝑞𝑞𝑞 =

𝑘𝑘2𝑞𝑞𝑞𝑞2𝑞𝑞
1 + 𝑞𝑞𝑞𝑞𝑘𝑘2𝑞𝑞

 

Elovich 2 𝑞𝑞𝑞𝑞 = �
1

𝑏𝑏𝑏𝑏𝑏𝑏(𝑎𝑎𝑏𝑏)� + �
1

𝑏𝑏𝑏𝑏𝑏𝑏(𝑥𝑥)� 

Avrami 2 𝑞𝑞𝑞𝑞 = 𝑞𝑞𝑞𝑞[1− Exp(−𝑘𝑘𝑎𝑎𝑘𝑘𝑞𝑞)𝑏𝑏] 
 
Note: 
qt = maximum adsorption at given time 
qe = maximum adsorption capacity at equilibrium (experimental) should be computer calculated 
Kl = Equilibrium constant of adsorption reaction 
t = time 
 
RESULTS AND DISCUSSION 
 
The curves fittings in all the graphs presents acceptability (Figs 
2 to 13). Before conducting modelling, the data were converted 
to log unit. Performance of Pseudo-2nd-order model on the effect 
of nZVIBC on the adsorption of NB was found to be the best as 
a result of its lowest RMSE, AICc values coupled with its high 
adjusted R2 value. Moreover, values for BF and AF revealed the 
model’s good acceptability having values close to 1.0. However, 
poorest performance was seen with Avrami model (Table 2). 
Additionally, the performance also of Pseudo-1st-order model on 
the effect of nZVI on the adsorption of NB was found to be the 
best due to its lowest RMSE, AICc values together with its high 
adjusted R2 value. Values for BF and AF also shows the model’s 
good acceptability having values close to 1.0. Lastly, it was found 
that Pseudo-2nd-order still has the best performance on the effect 
of BC on the adsorption of NB due to its lowest RMSE, AICc 
values and high adjusted R2 value. Values for BF and AF also 
shows the model’s good suitability having values close to 1.0. 
 

 
Fig. 1. Data replotted on the effect of nZVI, BC and nZVI/BC on the 
adsorption/reduction of NB. 
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Fig 2. The effect of nZVI/BC on the adsorption of NB as modelled 
using the Pseudo-1st-order model. 

 
Fig 3. The effect of nZVI/BC on the adsorption of NB as modelled 
using the Pseudo-2st-order model. 
 
 
 

 
Fig 4. The effect of nZVI/BC on the adsorption of NB as modelled 
using the Elovich model. 
 

 
Fig 5. The effect of nZVI/BC on the adsorption of NB as modelled 
using the Avrami model. 
 

 
Fig 6. The effect of nZVI on the adsorption of NB as modelled using 
the Pseudo-1st-otder model. 

 

 
Fig 7. The effect of nZVI on the adsorption of NB as modelled using 
the Pseudo-2st-order model. 
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Fig 8. The effect of nZVI on the adsorption of NB as modelled using 
the Elovich model. 

 
Fig 9. The effect of nZVI on the adsorption of NB as modelled using 
the Avrami model. 

 
Fig 10. The effect of BC on the adsorption of NB as modelled using the 
Pseudo-1st-order model. 

 
Fig 11. The effect of BC on the adsorption of NB as modelled using the 
Pseudo-2st-order model. 

 
Fig 12. The effect of BC on the adsorption of NB as modelled using the 
Elovich model. 

 
Fig 13. The effect of BC on the adsorption of NB as modelled using the 
Avrami model. 
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Table 2. Statistical analysis for the models used in modelling the effect 
of nZVIBC on the adsorption of NB 

Model p RMSE Adr2 AICc AF BF 
Pseudo-1st Order 2 30.467 0.96943 80.10 1.040 1.000 
Pseudo-2nd Order 2 15.283 0.992 66.30 1.021 1.000 

Elovich 2 21.056 0.985 72.71 1.025 0.995 
Avrami 2 30.467 0.969 80.10 80.101 0.995 

 
Table 3. Statistical analysis for the models used in modelling the effect 
of nZVI on the adsorption of NB 

Model p RMSE Adr2 AICc AF BF 
Pseudo-1st Order 2 4.468 0.99385 41.71 1.021 1.002 
Pseudo-2nd Order 2 8.405 0.978 54.34 1.037 1.005 

Elovich 2 18.187 0.891 69.78 1.082 1.012 
Avrami 2 4.468 0.994 41.71 41.706 1.012 

 

Table 4. Statistical analysis for the models used in modelling the effect 
of BC on the adsorption of NB 

Model p RMSE Adr2 AICc AF BF 
Pseudo-1st Order 2 27.733 0.87913 78.22 1.216 0.893 
Pseudo-2nd Order 2 18.785 0.941 70.43 1.134 0.940 

Elovich 2 40.166 0.617 85.63 1.211 1.079 
Avrami 2 27.733 0.879 78.22 78.221 1.079 

Note: 
P: no of parameters 
adJR2 Adjusted coefficient of determination 
RMSE Root Mean Square Error 
BF:  Bias factor 
AF:  Accuracy factor 
 

Based on the statistical analysis presented in this paper, the 
Pseudo-1st order turn out to be the best model for nanoscale zero-
valent iron/Biochar, nZVI/BC effect on reduction/adsorption of 
nitrobenzene, NB. Similarly, it was seen separately that, the best 
model for the nanoscale zero-valent iron, nZVI and Biochar, BC 
effects on the reduction/adsorption of nitrobenzene is Pseudo-
2nd order. Such statistical dependencies that were used include 
the root-mean-squire error (RMSE), bias factor (BF), Akaike 
information criterion (AICc) and the adjusted coefficient of 
determination. The results indicate reliability of nZVI and BC as 
potential candidates for the adsorption of nitrobenzene and other 
compounds as many researchers suggested. Moreover, it also 
revealed that BC can effectively enhance the adsorption 
capability of nZVI when coupled together and more of a 
substance would be adsorbed as compared to when these 
compounds are used individually 
 
CONCLUSION 
 
In conclusion therefore, Pseudo-1st-Order and Pseudo-2nd-Order 
were the best models for modelling the effect of nZVI/BC, nZVI 
and BC adsorption on NB. There is also a clear evidence toward 
the enhancement of both nZVI and BC on the removal of NB 
when coupled together i.e nZVI/BC. Further study on other 
secondary models will indeed be a breakthrough. 
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