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INTRODUCTION 
 
Organonitriles are carcinogenic and mutagenic. They are widely 
used in industry such as the synthesis of plastics, rubber, 
herbicides, pharmaceuticals, drug intermediates, and pesticides. 
In addition, acetonitrile, an organonitrile, is extensively utilized 
in laboratories as a solvent and extractant for HPLC (High 
Performance Liquid chromatography). Organonitriles are 
classified as priority pollutants. The global industrial 
consumption of acetonitrile alone is more than 4 × 104 tonne in 
2001 [1,2]. Consequently, wastewaters from the various usages 
of organonitriles often contain high contents of organonitrile 
compounds. Bioremediation of acetonitrile has been touted as a 
more economical and feasible method compared to physical and 
chemical approaches. Santoshkumar et al [3] has isolated a 
bacterial strain that could grow on acetonitrile. The growth 
profile of the strain showed inhibition of growth at elevated 
concentrations of acetonitrile. Modelling of the growth curves 
can yield important parameters that could be used for further 

secondary modelling exercise such as the inhibitory effect of 
substrate on growth.  
 

The bacterial growth curve can be fitted by various 
mathematical functions such as Logistic, Gompertz, Richards, 
Schnute [4], Baranyi-Roberts [5] and Von Bertalanffy [6,7], 
Buchanan three-phase [8] and more recently the Huang model [9] 
(Table 1). Apart from demonstrating predictive ability and 
internal consistency, which is a must, the usefulness of a model 
should also be judged by its mathematical simplicity, flexibility, 
the number of its adjustable parameters and, where appropriate, 
whether they have intuitive meaning.  
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 ABSTRACT 
Organonitriles are carcinogenic and mutagenic. Bioremediation of acetonitrile, an organonitrile, 
has been touted as a more economical and feasible method compared to physical and chemical 
approaches. In this work, we model the growth of growth of Paracoccus sp. SKG on acetonitrile 
from published literature to obtain vital growth constants. These growth constants can only be 
accurately obtained from mathematical modelling of the growth curves using various available 
primary models such as logistic, Gompertz, Richards, Schnute, Baranyi-Roberts, Von 
Bertalanffy, Buchanan three-phase and more recently Huang models. The Buchanan three-phase 
model was chosen as the best model based on statistical tests such as root-mean-square error 
(RMSE), adjusted coefficient of determination (R2), bias factor (BF), accuracy factor (AF) and 
corrected AICc (Akaike Information Criterion). Novel constants obtained from the modelling 
exercise would be useful for further secondary modelling implicating the effect of media 
conditions and other factors on the growth of this bacterium on acetonitrile. 
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Table 1. Growth models used in this study. 
 
Model n Equation 

 
 
Modified 
Logistic 

 
3 
 













 +−+

=
2)(4exp1 max t

A

Ay
λµ

 

 
Modified 
Gompertz 

 
3 

















+−−= 1)(expexp max t

A
eAy λµ  

 
 
Modified 
Richards 

 
 
4 







 −

















−






 ++++=

v
t

v
v

A
vvAy

1

max )(11)1(exp)1exp(1 λ
µ  

 
Modified 
Schnute 

 
4 β

β
αβαλβ

α
βµ

1

max 1
)1exp(1)1(








−

−−+−






 −

=
ty

 

 
Baranyi-
Roberts 
 

 
 
4 

 

( )ohxhx eeexAy −−−− −+++= max0maxln1
max

max
µµ

µ
µ  

( )

( )















−

+− −

−++ −−−−

Ay

eeex

e
e

hxhx

max

0max0max

max
max

11ln
ln1 µµ

µ
µ

 

 
Von 
Bertalanffy 

 
3 

3
3/3 3

1

exp11

































−−=














− Krx

K
AKy

 

 
Huang 

 
4 

( ) ( )( )xBAYA eeeeyAy maxmaxlnmax
µ−−+−+=  

( )
( )

αλ

λα

α e
exxB

x

+
+

+=
−−

1
1ln1  

 
Buchanan 
Three-Phase 
Linear Mode  

 
 
3 

 
y = A, if x < lag 
y=A + k(x ̶ λ), if λ ≤ x ≥ xmax 
y = ymax, if x ≥ xmax 

 
Note: 
A= bacterial lower asymptote; 
n= no of parameters 
µmax= maximum specific growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
ymax= bacterial upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the cells. the lag time 
(day-1) can be calculated as h0=µmax 

 
The objective of the first part of this work is to evaluate 
similarities and differences between the models using published 
available data from [3] that lacks the initial modelling and to deal 
with the question of which model(s) can be used, on the basis of 
statistical reasoning. This should give new data and results that 
could spur further information and improvement in the works 
already done by researchers. 
 
MATERIALS AND METHOD 
 
Acquisition of Data 
In order to process the data, graphs were scanned and 
electronically processed using WebPlotDigitizer 2.5 [10]. The 
software helps to digitize scanned plots into table of data with 
good enough precision [11]. Data were acquired from the works 
of Santoshkuma et al. [3] from Figure 4 and then replotted.  
 
Fitting of the data 
To decide whether there is a statistically substantial difference 
between models with different number of parameters, in terms of 
the quality of fit, data was statistically assessed through various 
methods such as the root-mean-square error (RMSE), adjusted 
coefficient of determination (R2), bias factor (BF), accuracy 
factor (AF) and corrected AICc (Akaike Information Criterion) 
[12]. 
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Fig. 1. Refitting of the natural logarithm of growth curve of Paracoccus 
sp. SKG on acetonitrile. The legends depict concentration of acetonitrile 
(% v/v). 
 
RMSE 
The RMSE was calculated according to Eq. (1), where Pdi are 
the values predicted by the model and Obi are the experimental  
data, n is the number of experimental data, and p is the number of 
parameters of the assessed model. It is expected that the model 
with the smaller number of parameters will give a smaller RMSE 
values (Eqn. 1).  
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In linear regression models, the coefficient of determination or R2 
is used to assess the quality of fit of a model. However, in 
nonlinear regression where difference in the number of 
parameters between one model to another is normal, the adoption 
of the method does not readily provides comparable analysis. 
Hence, an adjusted R2 is used to calculate the quality of nonlinear 
models according to the formula where RMS is Residual Mean 

Square and
2
ys is the total variance of the y-variable (Eqns. 2 and 

3).  
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Akaike information criterion with correction (AICc) 
The Akaike information criterion (AIC) provides a means for 
model selection through measuring the relative quality of a given 
statistical model for a given set of experimental data [13]. AIC 
deals with the trade-off regarding the goodness of fit of the 
model along with the intricacy of the model. It is in reality 
founded on information theory. The procedure offers a 
comparative approximation of the information lost for every time 
a certain model is employed to signify the process that produces 
the information or data. For any output of a collection of 
predicted models, the most accepted model is the model 
demonstrating the minimum value for AIC. This value is often a 
negative value, with for example; an AICc value of -10 more 
preferred than the one with -1. The formula includes a number of 
parameters punishment, the greater the parameters, the less 
favoured the end result or the greater the AIC value. Therefore, 
AIC not simply returns goodness of fit, but additionally, doesn't 
really encourage utilizing more complex model (overfitting) for 
fitting experimental data. Considering that the data within this 
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work is smaller compared to the number of parameter employed 
a remedied version of AIC, the Akaike information criterion 
(AIC) with correction or AICc is employed in its place. The 
AICc is computed for each and every data set for each model 
based on the following equation (Eqn. 4); 
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Where p is the number of parameters of the model and n is the 
number of data points. The procedure considers the alteration in 
goodness-of-fit and the improvement in number of parameters 
between two models. For each and every data set, the model 
having the smallest AICc value is extremely likely correct [13]. 
 
Accuracy Factor (AF) and Bias Factor (BF)  
Accuracy Factor (AF) and Bias Factor (BF) to test for the 
goodness-of-fit of the models as recommended by Ross [14] 
were also employed.  A Bias Factor equal to 1 indicates a perfect 
match between predicted and observed values. For microbial 
growth curves or degradation studies, a bias factor with values < 
1 indicates a fail-dangerous model while a bias factor with values 
> 1indicates a fail-safe model. The Accuracy Factor is always ≥ 
1, and higher AF values indicate less precise prediction (Eqns. 5 
and 6). 
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RESULTS AND DISCUSSION 
 
Essentially, the most vital results from curve fitting in growth 
curve model are the capacity to utilize a growth model that have 
a good fundamental mechanistic function in accordance with 
good theoretical understanding of the system. Among the finest 
of such model is the Michaelis-Menten kinetics that models the 
effects substrate on the initial enzyme activity of an enzyme. To 
get the best model, eight various growth models were put to use 
for this study to suit the experimental data. The ensuing fitting 
illustrates visually sufficient fitting for the models of Huang, 
modified Gompertz, modified logistics, Von Bertalanffy, 
Baranyi-Roberts and Buchanan-3-models (Figs. 2-8). Other 
models gave poor fitting and were not shown. The statistical 
analysis results (Table 2) indicated that the Buchanan-three-
phase model was the best with highest adjusted R2, lowest RMSE 
and AICc values, and Bias and Accuracy Factor values closest to 
unity. The Buchanan-three-phase model was then used to fit the 
data and the resultant fitted values obtained (Table 3).  
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Fig. 2. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
modified Schnute growth model.  
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Fig. 3. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
Baranyi-Roberts growth model.  
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Fig. 4. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
modified Gompertz growth model.  
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Fig. 5. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
Buchanan-3-phase growth model.  
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Fig. 6. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
modified logistics growth model.  
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Fig. 7. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
von Bertalanffy growth model.  
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Fig. 8. Growth curves of Paracoccus sp. SKG on acetonitrile fitted by the 
modified Richard growth model.  
 
 
Table 2. Statistical analysis of the various fitting models. 
 
Model n RMSE R2 adR2 AF BF AICc 
Huang (HG) 4 n.a n.a n.a n.a n.a n.a 
Baranyi-Roberts (BR) 4 0.116 0.996 0.988 1.128 1.097 41.92 
Modified Gompertz (MG) 3 0.112 0.995 0.990 1.010 1.169 -0.52 
Buchanan-3-Phase (B-3-P) 3 0.060 0.999 0.997 1.010 1.000 -9.31 
Modified Richards (MR) 4 0.155 0.993 0.978 1.230 1.190 45.96 
Modified Schnute (MS) 4 0.094 0.997 0.992 1.021 1.011 39.02 
Modified Logistics (ML) 3 0.235 0.976 0.953 1.359 1.283 9.78 
Von Bertalanffy (VB) 3 0.092 0.997 0.993 1.147 1.121 -3.39 
Note: 
SSE  Sums of Squared Errors 
RMSE  Root Mean Squared Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICc Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
n No of parameter 
n.a. Not available 
 
 
Table 3. Fitted growth parameters according to the Buchanan-three-
phase model. 
 

Acetonitrile 1.5% 2.0% 2.5% 3.0% 3.5% 4.0% 
y0  -0.09 -0.06 -3.4 0.14 0.06 0.06 
µmax (h-1)  0.09 0.08 0.05 0.04 0.04 0.03 
lag (h) -5.20 -5.20 -76 1.76 9.32 3.40 
ymax  3.59 3.39 2.83 2.28 2.2 1.36 
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Fig. 9. Fitting of the growth curve of Paracoccus sp. SKG on acetonitrile 
using the Buchanan-three-phase model. The legends depict concentration 
of acetonitrile (% v/v).  
 
 
The choice of the Buchanan as the best model is apt since the 
model is the simplest amongst the eight and it is a three-
parameter model giving it a higher degree of freedom compared 
to four- or five-parameter models. This is important when a 
growth curve having a smaller number of points is used. In 
addition, all three parameters have biological meaning due to 
the highly mechanistic property of the model. The Buchanan 
three-phase model has been successfully used to model growth 
of bacteria [15–18], algae [19] and worm [20]. 
 
Nonlinear regression of the Baranyi-Roberts model could be 
problematic in some cases as it is rather sensitive to the 
number and distribution of data points [8,16]. Buchanan et 
al. [8] developed a simpler three-phase linear model to 
overcome this problem,  
 
The assumptions of the Buchanan model were as follows; 
 
(i) that the specific growth rate is equal to zero during the 
lag phase,  
(ii) the logarithm of the bacterial cells increases linearly 
with respect to time during the exponential phase and 
(iii) the specific growth rate is zero during the stationary 
phase. 
 
These assumptions can be expressed as follows; 
 
Lag Phase:  
  for t ≤ tlag, 
  Nt = No 
 
Exponential growth phase: 
  For tlag ˂ t ˂ tmax, 
  Nt = No + µ(t – tlag) 
 
Stationary phase: 
  For t ≥ tmax, 
  Nt = Nmax 

 
Where No = Log of initial population density (optical density) or 
bacterial cell number (CFU/ml); Nt = Log population density 
(optical density) or bacterial cell number (CFU/ml) at time t; 
Nmax = Log of the maximal population density (optical density) 
or bacterial cell number (CFU/ml); t = elapsed time (h); tmax = 
time (h) when the maximum population density (optical 
density) or bacterial cell number (CFU/ml) is reached; tlag = 
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time (h) at the end of the lag phase and µ = specific growth rate 
(log (CFU/ml)/h). 
 
The Buchanan model greatest advantage is its 
straightforwardness. Additionally, it supplies an 
approximation to the mathematical means microbiologists 
have usually used to calculate growth kinetic graphically [8]. 
Its disadvantage include the fact that it could only fit growth 
curves having an abrupt transition from the lag phase to 
exponential phase [21].  
 
Many experts have recommended that whenever a three-
parameter model is enough to explain the data, experts 
recommend over a four-parameter model since three-parameter 
model is significantly simpler and as a result much easier to use 
and solution is more stable for the reason that parameters are 
much less correlated. In addition to that, every time a three-
parameter model is employed, the estimates have more degrees 
of freedom, and this can be crucial every time a growth curve or 
generation curve with a small number of measured points is 
employed. Furthermore, it is necessary that all three parameters 
may be given a biological interpretation. 
 
CONCLUSION 
 
In conclusion, the various models used to fit the growth of 
Paracoccus sp. SKG on acetonitrile as a substrate showed that 
the best model was Buchanan-three-phase based on statistical 
analysis. The fitted data from this work can be used in the further 
optimization works of the microbe. 
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