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INTRODUCTION 

 
Catechol is a metabolic byproduct of phenol degradation by 
microbes. Its toxicity to water flea, trout, rabbit, cat, rat,zebra 
fish, mouse and for human cell lines has been long demonstrated 
[1–3]. Its presence in the environment at toxic concentrations has 
been demonstrated [4,5]. The mechanism of toxicity has been 
studied. For instance it reacts with sulphydryl groups of proteins 
and glutathione leading to protein cross-linking and glutathione 
dimer formation and cause cessation of enzyme and metabolic 
activity in general [6]. Catechol in combination with heavy 
metals (e.g. Cu2+, Fe3+) and molecular oxygen causes DNA 
strand breaks [7,8]. It is also inhibitory to the oxidative 
phosphorylation in rat liver mitochondria [9]. Its degradation and 
assimilation by microorganism is a potential tool for its 
bioremediation [10,11]. Like many xenobiotics, the growth on 
this toxic substrate exhibit a significant lag phase due to the 
needs of the cell to tolerate and initiate detoxification and 

degradation of enzymes upon exposure to catechol before 
assimilation can take place. The growth profile exhibits several 
phases where the specific growth rate starts at the value of zero 
followed by a stagnation of the rate associated with the lag time 
(λ). This is followed by acceleration to a maximal value (µm) for 
a given period of time. Finally the growth curves exhibit a final 
phase where the rate decreases and eventually reaches zero or an 
asymptote (A) [12]. A valuable parameter of the growth is the 
maximum growth rate (µm) [13]. This value is important for the 
development of secondary models such as growth kinetics [12]. 
In a large number of publications, this parameter is often 
estimated manually by deciding subjectively the part of the curve 
that is nearly linear and then the slope of this curve section is 
then determined usually by linear regression. A better method is 
to describe the entire set of data with a nonlinear regression 
growth model and then estimate µmax, λ, and A from the model. 
In addition many published works produced the growth curve but 
did not attempt any further to fitting the data to available models 
[12]. 

        

 

HISTORY 

Received: 21st July 2014 

Received in revised form: 21st of September 2014 
Accepted: 25th of November 2014 

 

 ABSTRACT 

Predictive microbiology is a field often associated with food microbiology as it allows prediction 
of food spoilage. One of the key features of bacterial growth on solid and complex food under 
low water and oxygen is a long lag time. This long lag time is often observed in bacteria growing 
on toxic xenobiotics. In this work we modelled the growth of the yeast strain of Candida 

parapsilopsis based on available published work in the literature using several growth models 
such as modified logistic, modified Gompertz, modified Richards, modified Schnute, Baranyi-
Roberts, Von Bertalanffy, Huang and the Buchanan  three-phase linear model. Statistical analysis 
results indicated that the Buchanan model was the best with highest adjusted R2, lowest RMSE 
and AICc values and Bias and Accuracy Factor values closest to unity. The fitted value of 
maximal growth rate showed a decline when the concentration of catechol was higher than 114 
mg/L indicating substrate inhibition. The other fitted parameters such as lag period and maximal 
growth asymptote showed a general increase and a general decrease for the former and latter 
parameters, respectively. The results from this work can be used in the further optimization 
works of this alga in the future. 
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The sigmoidal curve can be fitted by different mathematical 

functions, such as Logistic [12,14], Gompertz [12,15], Richards 
[16], Schnute [12], Baranyi-Roberts [13] and Von Bertalanffy 
[17,18], Buchanan three-phase [19] and more recently Huang 
models [20] (Table 1). Apart from demonstrating predictive 
ability and internal consistency, which is a must, the usefulness 
of a model should also be judged by its mathematical simplicity, 
flexibility, the number of its adjustable parameters and, where 
appropriate, whether they have intuitive meaning.  
 

The objective of the first part of this work is to evaluate 
similarities and differences between the models using published 
available data from Rigo et al [11] that lacks the initial modelling 
and to deal with the question of which model(s) can be used, on 
the basis of statistical reasoning. This would be followed by a 
second part where the evaluation of several growth kinetic 
models on the resultant initial growth rate against substrate 
concentration obtained from the first part would be carried out 
and compared to the model used by the same author but with 
further statistical analysis. This should give new data and results 
that could spur further information and improvement in the 
works already done by researchers. 
 

 
Table 1. Growth models used in this study. 
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Note: 
A= bacterial lower asymptote; 
µmax= maximum specific growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
ymax= bacterial upper asymptote; 
e = exponent (2.718281828) 
t = sampling time 
α,β, k = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the cells. The lag time (day-1) can be calculated as 
h0=µmax 

y = A, if x < lag 
y=A + k(x ̶ λ), if λ ≤ x ≥ xmax 

y = ymax, if x ≥ xmax 

 
 
 

MATERIALS AND METHOD 

 

Acquisition of Data 

In order to process the data, the graphs were scanned and 
electronically processed using WebPlotDigitizer 2.5 [22] which 
helps to digitize scanned plots into table of data with good 
enough precision [23]. Data were acquired from the works of 
Rigo et al. [11], from Figures 2 and 3 which show the effect of 
different concentration of the substrate catechol on the growth of 
Candida parapsilopsis measured over several hours and then 
replotted. 
 

Fitting of the data 

One of the growth data i.e. at catechol concentration of 308 mg/L 
was fitted nonlinearly using nonlinear regression software 
(CurveExpert Professional software, Version 1.6) that uses the 
Marquardt algorithm. This algorithm minimizes the sums of 
square of residuals between the predicted and experimental 
values. The program can be used in the manual mode or 
automatic mode where it calculates starting values by searching 
for the steepest ascent of the curve normally using four datum 
points to estimate the µmax. The intersection of this line with the x 
axis is the estimation value of the lag time or λ while the final 
datum point is the estimation of the asymptote (A). The Huang’s 
model needs to be solved numerically as it is a differential 
equation. The differential equation was solved numerically using 
the Runge-Kutta method. A differential equation solver (ode45) 
in MATLAB (Version 7.10.0499, The MathWorks, Inc., Natick, 
MA) was used to solve this equation. 
 

Accuracy Factor (AF) and Bias Factor (BF) to test for the 
goodness-of-fit of the models as suggested by Ross [26] were 
also used.  The Bias Factor equal to1 indicate a perfect match 
between predicted and observed values. For microbial growth 
curves or degradation studies, a bias factor with values < 1 
indicates a fail-dangerous model while a bias factor with values > 
1indicates a fail-safe model. The Accuracy Factor is always ≥ 1, 
and higher AF values indicate less precise prediction. 
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RESULTS AND DISCUSSION 

 
One of the most important results from curve fitting in growth 
curve model is the ability to use a growth model that have a 
strong underlying mechanistic function based on sound 
theoretical knowledge of the system. One of the best of such 
model is the Michaelis-Menten kinetics that models the effect 
substrate on the initial enzyme activity of the enzyme. In order to 
find the best model, eight different growth models were used in 
this study to match the experimental data. The resultant fitting 
shows visually acceptable fitting for the models of Huang, 
modified Gompertz, Von Bertalanffy, Baranyi-Robert and 
Buchanan three phase models (Fig. 1-4). Other models gave poor 
fitting and were not shown. The statistical analysis results (Table 

2) indicated that the Buchanan model was the best with highest 
adjusted R2, lowest RMSE and AICc values and Bias and 
Accuracy Factor values closest to unity. The Buchanan three 
phase model was then used to fit the rest of the initial catechol 
concentrations and the resultant fitted values obtained (Table 3). 
The fitted value of maximal growth rate showed a decline when 
the concentration of catechol was higher than 114 mg/L 
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indicating substrate inhibition. The other fitted parameters such 
as lag period and maximal growth asymptote showed a general 
increase and a general decrease for the former and latter 
parameters, respectively. 
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Fig. 1. Growth curves of Candida parapsilopsis fitted by the Modified 
Gompertz growth model. The optical density was transformed into 
natural logarithm. 
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Fig. 2. Growth curves of Candida parapsilopsis fitted by the Von 
Bertalanffy growth model. The optical density was transformed into 
natural logarithm. 
 
 
Table 2. Statistical analysis of the various fitting models. 
 

Model p SSE MSE RMSE R2 adR2 AICc BF AF 
Modified 
Gompertz 3 0.0584 0.0027 0.0515 0.995 0.992 -142.67 1.001 1.008 

Buchanan 3 0.0257 0.0012 0.0342 0.998 0.997 -163.20 1.000 1.007 
Baranyi-
Robert 4 0.2652 0.0126 0.1124 0.975 0.963 -102.60 1.002 1.027 

Huang 4 0.0698 0.0033 0.0577 0.994 0.990 -135.96 1.000 1.009 
Von 
Bertalanffy 3 1.0193 0.0463 0.2152 0.889 0.844 -71.19 1.018 1.043 

 
Note: 
SSE  Sums of Squared Errors 
RMSE  Root Mean Squared Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICc Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
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Fig. 3. Growth curves of Candida parapsilopsis fitted by the Baranyi-
Robert growth model. The optical density was transformed into natural 
logarithm. 
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Fig. 4. Growth curves of Candida parapsilopsis fitted by the Buchanan 
three-phase growth model. The optical density was transformed into 
natural logarithm. 
 
 
Table 3. Fitted growth parameters according to the Baranyi-Roberts 
model. 
 
 
Catechol 
(mg/L) 

λ Lag Time (h) y0 ymax 
 

 
72 

 
0.145±0.018 

 
2.927±0.855 

 
-3.224±0.064 

 
-1.867±0.045 

114 0.207±0.031 5.759±0.730 -3.283±0.059 -1.928±0.021 
213 0.176±0.005 6.576±0.299 -3.252±0.039 -1.404±0.021 
308 0.153±0.002 5.814±0.207 -3.434±0.025 -1.130±0.025 
910 0.096±0.001 4.799±0.476 -4.529±0.036 -1.351±0.027 
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Fig. 5. Growth curves of Candida parapsilopsis at catechol 
concentrations of 72 (�), 114 (�), 213 (△), 308 (�) and 910 (X) mg/L 
fitted by the Buchanan three-phase growth model. The optical density 
was transformed into natural logarithm. 
 

Buchanan three phase growth model is one of the simplest 
mechanistic based predictive modeling to date. The traditional 
modeling practice hinges on the transformation of the observable 
exponential growth period of bacteria into a linear more 
manageable form in the form of natural logarithm (ln). Growth 
curve is then assigned to periods before (lag) and above (plateu) 
the exponential phase making the whole exercise a mechanistic 
in approach. The specific growth rate was then obtained via 
linear regression of the natural log-transformed portion of the 
exponential phase [19]. In the three-phase model, Buchanan limit 
the three phase into lines of constant concentration and abandon 
any attempt to model the smooth transitional curvature between 
phases, significantly simplifying the modeling process. Compare 
to the Gompertz equation, Buchanan three-phase model could 
model growth of bacteria under strong environmental pressure 
that results in long lag periods, minimal growth rate and the 
seemingly absence of stationary growth. Without an upper 
asymptote to model, the Gompertz model would run into 
difficulty whilst the solution adopts by the three-phase model is 
as simple as fixing Nmax with value bigger than any of the 
observed concentrations [27]. The Buchanan three-phase models 
have been successfully used to model growth of bacteria [28–39], 
algae [40] and worm [41]. 
 
CONCLUSION 

 
In conclusion, the various models used to fit the growth of 
Candida parapsilopsis on catechol as a substrate showed that the 
Huang, modified Gompertz, Von Bertalanffy, Baranyi-Robert 
and Buchanan three phase models could fit the experimental data 
but the best model according to statistical analysis is the 
Buchanan three phase. The results from this work can be used in 
the further optimization works of the algae. 
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