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Kinetic equations, which describe the activity of an enzyme or a microorganism on a particular 

substrate, are crucial in understanding many phenomena in biotechnological processes. They 

allow the mathematical prediction of growth parameters important for identifying key parameters 

for controlling growth. We remodeled the published work on chromate reduction by Bacillus sp. 

(JUBTCR3) using several more growth kinetic models such as Monod, Teissier, Andrews and 

Noack, Aiba, Webb (Edward), Yano and Koga, Han and Levenspiel and Luong and evaluated the 

accuracy of the fitted model using statistical analysis such as root mean square (rmse), adjusted 

coefficient of determination (R2), corrected Akaike Information Criterion (AICc), Bias Factor, 

Accuracy Factor and f-test. the calculated value for the Haldane constants in this work such as 

maximal growth rate, half saturation constant and half inhibition constant rate symbolized by umax, 

ks, and ki, were 0.07 hr-1, 17.4 mg/dm3 and 102.95 mg/dm3, respectively. The true umax where the 

gradient for the slope is zero for the Haldane model was approximately 0.037 h-1 at 42 mg/dm3 

chromate. the results indicate that the exhaustive use of mathematical models on available 

published results could support published results using comparative analyses of more models 

backed by statistical analyses that can provide new knowledge on the way toxic substance inhibit 

growth rate in microbes. 
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INTRODUCTION 

A variety of mathematical models have been proposed to describe 

the dynamics of metabolism of compounds exposed to pure 

cultures of microorganisms or microbial populations of natural 

environment. The relationship between the specific growth rate 

(µ) and the substrate concentration (s) is a valuable tool in 

predictive biotechnology. The most widely used model; the 

Monod equation has been widely used to describe growth-linked 

substrate utilization rate [1,2]. However, when a substrate exhibits 

inhibition towards its own biodegradation or bioreduction, the 

original Monod model could not be used. In this case, its 

derivatives that have new constants that provided corrections for 

substrate have been devised instead. A variety of microbial 

reduction kinetics model available is shown in table 1. The 

generalization of the use of the Haldane model in literature to 

model substrate inhibition to growth or degradation rate is 

numerous literatures. This is despite the fact, that for a single 

substrate-inhibiting compound such as phenol, several other 

models have been demonstrated to be more accurate. For instance, 

aside from the predominantly reported Haldane model [3], several 

other different models have been found to be optimal such as 

Luong [4,5] and Edward [6]. Hence, the use of extensive models 

available could replace the Haldane in some circumstances. 

without actually fitting these other models to the available growth 

or degradation rate data and proper statistical evaluation, the 

exclusive use of the Haldane model should not be used liberally. 

 

Hence, the objective of this work is to evaluate similarities and 

differences between the models using published available data for 

further more comprehensive modeling and to deal with the 

question of which model(s) can be used, on the basis of statistical 

reasoning. This should give new data and results that could spurn 

and reveal new information and improvement in the works already 

done by researchers. 

 

MATERIALS AND METHODS 

 

Acquisition of Data 

In order to process the data, the graph showing the growth rate 

against the substrate chromate published by Samanta et al. [15] by 

Bacillus sp. (JUBTCR3)  on figure 4 was electronically processed 

using Webplotdigitizer 2.5 [16] which helps to digitize scanned 

plots into table of data with good enough precision [17].  

 

Fitting of The Data 

The non-linear equations were fitted to growth data by nonlinear 

regression with a Marquardt Algorithm that minimizes sums of 

square of residuals using Curveexpert professional software 

(Version 1.6). This is a search method to minimize the sum of the 

squares of the differences between the predicted and measured 

values.  

 

Statistical Analysis 

To decide whether there is a statistically substantial difference 

between models with different number of parameters, in terms of 

the quality of fit to the same experimental data was statistically 

assessed through various methods such as the root-mean-square 

error (RMSE), adjusted coefficient of determination (R2), bias 

factor (BF), accuracy factor (AF), corrected AICc (Akaike 

Information Criterion) and F-test [18]. 

 

 

 
Table 1. Various mathematical models developed for growth kinetics 

involving substrate inhibition. 

 

 
Note: 

qmax Maximal Reduction Rate (h-1) 

ks   Half Saturation Constant For Maximal reduction (mg/dm3) 

Sm   Maximal Concentration of Substrate Tolerated (mg/dm3) 

m, n, k Curve Parameters 

s  Substrate Concentration (mg/dm3) 

p  Product Concentration (mg/dm3) 
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Figure 1. Replotted data of the growth rate against the substrate 

chromate concentration for Bacillus sp. (JUBTCR3). 
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The RMSE was calculated according to eq. (2), where pdi are the 

values predicted by the model and obi are the experimental  data, n 

is the number of experimental data, and p is the number of 

parameters of the assessed model. It is expected that the model 

with the smaller number of parameters will give a smaller RMSE 

values.  
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In linear regression models the coefficient of determination or r2 is 

used to assess the quality of fit of a model. However, in nonlinear 

regression where difference in the number of parameters between 

one model to another is normal, the adoption of the method does 

not readily provides comparable analysis. Hence an adjusted r2 is 

used to calculate the quality of nonlinear models according to the 

formula where RMS is Residual Mean Square and 2

ys is the total 

variance of the y-variable.  

 

( )
2

2 1
Ys

RMS
RAdjusted −=   (2) 

 

( ) ( )( )
( )1

11
1

2
2

−−

−−
−=

pn

nR
RAdjusted  (3) 

 

The Akaike Information Criterion (AIC) provides a means for 

model selection through measuring the relative quality of a given 

statistical model for a given set of experimental data [19]. AIC 

handles the trade-off relating to the goodness of fit of the model as 

well as the complexity of the model. It is actually established on 

information theory. The method provides a relative approximation 

of the information lost for each time a given model is utilized to 

represent the process that creates the information or data. For an 

output of a set of predicted model, the most preferred model 

would be the model showing the minimum value for AIC. This 

value is often a negative value, with for example; an AICc value 

of -10 more preferred than the one with -1. The equation 

incorporates number of parameters penalty, the more the 

parameters, the less preferred the output or the higher the aic 

value. Hence, aic not merely rewards goodness of fit, but in 

addition does not encourage using more complicated model 

(overfitting) for fitting experimental data. Since the data in this 

work is small compared to the number of parameter used a 

corrected version of AIC, the Akaike Information Criterion (AIC) 

with correction or aicc is used instead. The AICc is calculated for 

each data set for each model according to the following equation; 
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Where n is the number of data points and p is the number of 

parameters of the model. The method takes into account the 

change in goodness-of-fit and the difference in number of 

parameters between two models. For each data set, the model with 

the smallest AICc value is highly likely correct [18]. 

 

The f-test is a statistic test used to find the most significant model 

between available predicted curve-fitting models. the analysis 

procedure includes selecting the model with the smallest rss 

among all the models with the same or different number of fitting 

parameters followed by comparing the relative value of the f-ratio. 

in the event the f-ratio of the two models surpasses the upper 

quartile, the better complicated model is accepted as statistically 

significant [18]. Equation 5 is for models with same number of 

parameters while equation 6 is for models with different number 

of parameters; 
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Accuracy factor (AF) and bias factor (BF) to test for the 

goodness-of-fit of the models as suggested by Ross [20] were also 

used.  The bias factor equal to1 indicate a perfect match between 

predicted and observed values. For microbial growth curves or 

degradation studies, a bias factor with values < 1 indicates a fail-

dangerous model while a bias factor with values > 1indicates a 

fail-safe model. The accuracy factor is always ≥ 1, and higher AF 

values indicate less precise prediction. 
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RESULTS AND DISCUSSION 

 

The results of the curve fitting are shown in figures 2 to 5. Models 

such as Monod, Teissier, Andrews and Noack, and Han and 

Levenspiel failed to fit the experimental data and were omitted. 

All of the other models tested gave reasonably good fitting based 

on software output and by visual observation. The accuracy and 

statistical analysis of the six kinetic models used shows that the 

best model was Haldane with the lowest value for RMSE, AICc 

and the highest value for adjusted R2. The AF and BF values were 

also excellent for Haldane with their values were the closest to 1.0 

(Table 2). F-test analysis showed that the likelihood that the 

Haldane model is better than Yano, Luong and Aiba were 97.6, 

98.3 and 69.25%, respectively; indicating in overall the Haldane 

model was the best. The original author for this data also 

concludes that the Haldane model is the best 

 

The calculated value for the Haldane constants in this work such 

as maximal growth rate, half saturation constant and half 

inhibition constant rate symbolized by umax, ks, and ki, were 0.07 

hr-1, 17.4 mg/dm3 and 102.95 mg/dm3, respectively. The 

calculated values for the Haldane constants in the work of 

Samanta et al. [15] for the growth rate of Bacillus sp. (JUBTCR3) 

such as umax, ks, and ki, were 0.056 hr-1, 9.43 mg/dm3 and 305.29 

mg/dm3, respectively.  

 

It needs to be cautioned that the umax value obtained based on 

curve fitting interpolation is not the true value as the true umax 

should be where the gradient for the slope is zero and in this case  
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Figure. 2. Fitting experimental data with the Yano model.  
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Figure. 3. Fitting experimental data with the Luong model.  
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Figure. 4. Fitting experimental data with the Haldane model.  
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Figure. 5. Fitting experimental data with the Aiba model.  

 

(Haldane) the value was approximately 0.037 h-1 at 42 mg/dm3 

chromate (Figure 4).  

 
Table 2. Statistical analysis of kinetic models. 

 

 

 

 

 

 
 

 

note: 

SSE  sums of squared errors 

RMSE  root mean squared error 

R2 coefficient of determination 

adR2 adjusted coefficient of determination 

AICC corrected akaike information criterion 

p no of parameters 

BF bias factor 

AF accuracy factor 

 

 
The most of the studies concerning substrate inhibition on 

microbial growth are carried out using toxic substrate such as 

aromatic and halogenated hydrocarbons [21,22] and hence it can 

be deducted that at high concentration growth rate will be severely 

affected and the normal use of the monod model will fail.  From a 

biological perspective, xenobiotic such as chromate is toxic to 

biological system by virtue of its ability to inhibit enzymes and 

biological systems  [23–26]. This indicates that the mathematical 

model developed based on enzyme inhibition such as Haldane and 

others do indeed have biological basis or mechanistic in properties 

and hence the parameters may have true biological meaning and 

not just empirical in character. 

 

There were other models for describing substrate inhibition 

kinetics developed during this period such as the discontinuous 

models of Wayman and Tseng [27]. the reason for the 

development of the discontinuous model is the previous models 

developed such as Haldane, Andrews And Noack, and Webb can 

describe inhibitory effect on microbial growth but could not 

explain or adequately model for certain situations where the 

growth rate completely ceased or becoming zero at very high 

Model p RMSE R2 adR2 AiCC BF AF 

Luong 4 0.0005 0.948 0.843 - 34.06 1.001 1.008 

Aiba 4 0.0005 0.952 0.856 - 33.68 0.999 1.007 

Yano 4 0.0005 0.956 0.867 - 35.02 1.001 1.007 

  

Haldane 3 0.0004 0.956 0.911 - 79.02 1.001 1.007 
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substrate concentration. However, the discontinuous fitting profile 

of the Wayman and Tseng model is a major drawback [28]. A 

continuous version of the above models developed by Luong have 

found popular support due to its close agreement to experimental 

data in a number of cases [4,5,29] including this one. a central 

attraction of the Luong model is its ability to successful predicting 

the value of sm, the maximum substrate concentration above which 

growth is completely inhibited. 

 

Most studies on the reduction kinetics of heavy metals such as 

mercury [30], arsenate [31] and chromate [32] reported a Haldane-

type inhibition by the substrate metal ions thus indicating the 

applicability and ubiquity of this model in fitting growth or 

biotransformation rate of heavy metals. Another model; the Luong 

model has been reported to optimally fit the molybdenum 

reduction rate in bacterium [29]. 

 

CONCLUSION 

 

Both growth and degradation kinetics of bacteria can be modelled 

using various models available in the literature. Literature survey 

has shown that for the same compound, various models have been 

found optimum in different systems and hence a comprehensive 

modelling exercise was carried out on available published works 

to demonstrate this observation. In this work, we demonstrated 

based on statistical analysis that the Haldane model is the best 

model in fitting the growth kinetics data of Bacillus sp. 

(JUBTCr3) grown in the presence of chromate. We have added 

more statistical analysis to back up the published works.  
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