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The mathematical modelling of the effect of substrate concentration on growth rate of bacteria is 

crucial in the understanding of the many phenomena in xenobiotics biodegradation. The rate 

constants obtained from this modeling allow the mathematical prediction of growth parameters. 

We remodelled a previously published work on phenol degradation by Bacillus cereus MTCC 

9817 strain AKG1 using several more growth kinetic models such as Monod, Teissier, Andrews 

and Noack, Hinshelwood, Moser, Aiba, Webb (Edward), Yano and Koga, Han and Levenspiel 

and Luong and evaluated the accuracy of the fitted model using statistical analysis such as Root 

Mean Square (RMSE), adjusted Coefficient of Determination (R2), corrected Akaike Information 

Criterion (AICc), Bias Factor, Accuracy Factor and F-test. The calculated values for the best 

model- Luong’s such as maximal degradation rate, half saturation constant for maximal 

degradation, maximal concentration of substrate tolerated and curve parameter that defines the 

steepness of the growth rate decline from the maximum rate, symbolized by qmax, Ks, Sm, and n 

were 0.755 hr-1, 925.8 mg/L, 1859.3 mg/L and 0.329, respectively. The true value of qmax 

determined as the value where the gradient for the slope is zero was 0.093 h-1 at 500 mg/L phenol. 

The results indicate that the exhaustive use of mathematical models on available published results 

could gleam new optimal models that can provide new knowledge on the way toxic substance 

inhibit growth rate in microbes. 
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INTRODUCTION 

 

Quantitative experimental data is required for the design and 

optimization of biological transformation processes. A variety of 

mathematical models have been proposed to describe the 

dynamics of metabolism of compounds exposed to pure cultures 

of microorganisms or microbial populations of natural 

environment. The relation between the specific growth rate (µ) of 

a population of microorganisms and the substrate concentration (s) 

is a valuable tool in biotechnology. the Monod equation has been 

widely used to describe growth-linked substrate utilization rate 

[1–3]. However, when a substrate exhibits inhibition towards its 

own biodegradation, the original Monod model could not be used. 

In this case, its derivatives that have new constants that provided 

corrections for substrate have been devised instead. a variety of 

microbial growth of for this work biodegradation kinetic model 

available is shown in table 1. The generalization of the use of the 

Haldane model in literature to model substrate inhibition to 

growth or degradation rate is numerous literatures. This is despite 

the fact, that for a single substrate-inhibiting compound such as 

phenol, several other models have been demonstrated to be more 

accurate. for instance, aside from the predominantly reported 

Haldane model [4], several other different models have been 

found to be optimal such as Luong [5,6] and Edward [7]. Hence, 

the use of extensive models available could replace the Haldane in 

some circumstances. without actually fitting these other models to 

the available growth or degradation rate data and proper statistical 

evaluation, the exclusive use of the Haldane model should not be 

used liberally. 

 

Hence, the objective of this work is to evaluate similarities and 

differences between the models using published available data for 

further more comprehensive modeling and to deal with the 

question of which model(s) can be used, on the basis of statistical 

reasoning. This should give new data and results that could spurn 

and reveal new information and improvement in the works already 

done by researchers. 

 

MATERIALS AND METHODS 

 

Acquisition of data 

In order to process the data, the graph showing the degradation 

rate against substrate phenol concentration [15) for Bacillus 

cereus MTCC 9817 strain AKG1 in figure 3 were electronically 

processed using Webplotdigitizer 2.5 [16] which helps to digitize 

scanned plots into table of data with good enough precision [17].  
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Figure 1. Replotted data of the degradation rate against substrate phenol 

concentration for Bacillus cereus MTCC 9817 strain AKG1. 

 

 

Table 1. Various mathematical models developed for degradation kinetics 

involving substrate inhibition. 
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note: 

qmax maximal degradation rate (h-1) 

ks  half saturation constant for maximal degradation (mg/l) 

sm  maximal concentration of substrate tolerated and (mg/l) 

m, n, k curve parameters 

s substrate concentration (mg/l) 

p product concentration (mg/l) 

 

 

Fitting of the data 

The nonlinear equations were fitted to growth data by nonlinear 

regression with a Marquardt algorithm that minimizes sums of 

square of residuals using Curveexpert professional software 

(version 1.6). This is a search method to minimize the sum of the 

squares of the differences between the predicted and measured 

values. The program automatically calculates starting values by 

searching for the steepest ascent of the curve between four datum 

points (estimation of µmax), by intersecting this line with the x axis 

(estimation of λ), and by taking the final datum point as 

estimation for the asymptote (a). The huang’s model needs to be 

solved numerically as it is a differential equation. The differential 

equation was solved numerically using the Runge-Kutta method. 

A differential equation solver (ode45) in Matlab (version 

7.10.0499, the Mathworks, Inc., Natick, MA) was used to solve 

this equation. 

 

Statistical analysis 

To decide whether there is a statistically substantial difference 

between models with different number of parameters, in terms of 

the quality of fit to the same experimental data was statistically 

assessed through various methods such as the root-mean-square 

error (RMSE), adjusted coefficient of determination (R2), bias 
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factor (BF), accuracy factor (AF), corrected AICc (akaike 

information criterion) and f-test [18]. 

 

The RMSE was calculated according to eq. (2), where pdi are the 

values predicted by the model and obi are the experimental  data, n 

is the number of experimental data, and p is the number of 

parameters of the assessed model. It is expected that the model 

with the smaller number of parameters will give a smaller RMSE 

values.  
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In linear regression models the coefficient of determination or r2 is 

used to assess the quality of fit of a model. However, in nonlinear 

regression where difference in the number of parameters between 

one models to another is normal, the adoption of the method does 

not readily provides comparable analysis. Hence an adjusted R2 is 

used to calculate the quality of nonlinear models according to the 

formula where RMS is Residual Mean Square and
2

ys is the total 

variance of the y-variable.  
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The Akaike Information Criterion (AIC) provides a means for 

model selection through measuring the relative quality of a given 

statistical model for a given set of experimental data [19]. AIC 

handles the trade-off relating to the goodness of fit of the model as 

well as the complexity of the model. It is actually established on 

information theory. The method provides a relative approximation 

of the information lost for each time a given model is utilized to 

represent the process that creates the information or data. For an 

output of a set of predicted model, the most preferred model 

would be the model showing the minimum value for AIC. This 

value is often a negative value, with for example; an AICc value 

of -10 more preferred than the one with -1. The equation 

incorporates number of parameters penalty, the more the 

parameters, the less preferred the output or the higher the aic 

value. Hence, AIC not merely rewards goodness of fit, but in 

addition does not encourage using more complicated model 

(overfitting) for fitting experimental data. Since the data in this 

work is small compared to the number of parameter used a 

corrected version of Aic, the Akaike Information Criterion (AIC) 

with correction or AICc is used instead. The AICc is calculated 

for each data set for each model according to the following 

equation; 
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Where n is the number of data points and p is the number of 

parameters of the model. The method takes into account the 

change in goodness-of-fit and the difference in number of 

parameters between two models. for each data set, the model with 

the smallest AICc value is highly likely correct [20]. 

 

The f-test is a statistic test used to find the most significant model 

between available predicted curve-fitting models. The analysis 

procedure includes selecting the model with the smallest rss 

among all the models with the same or different number of fitting 

parameters followed by comparing the relative value of the f-ratio. 

In the event the f-ratio of the two models surpasses the upper 

quartile, the better complicated model is accepted as statistically 

significant [20]. Equation 5 is for models with same number of 

parameters while equation 6 is for models with different number 

of parameters; 
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Accuracy factor (AF) and bias factor (BF) to test for the 

goodness-of-fit of the models as suggested by Ross [21] were also 

used.  The bias factor equal to1 indicate a perfect match between 

predicted and observed values. For microbial growth curves or 

degradation studies, a bias factor with values < 1 indicates a fail-

dangerous model while a bias factor with values > 1indicates a 

fail-safe model. The accuracy factor is always ≥ 1, and higher AF 

values indicate less precise prediction. 
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RESULTS AND DISCUSSION 

 

The results of the curve fitting are shown in figures 2 to 6. models 

such as Webb, Hinshelwood, Andrews and Noack, and Han and 

Levenspiel failed to fit the experimental data and were omitted. 

All of the other models tested with the exception of the Monod 

model gave reasonably good fitting based on visual observation.  
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Figure. 2. Fitting experimental data with the Yano model.  
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Figure. 3. Fitting experimental data with the Luong model.  
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Figure. 4. Fitting experimental data with the Haldane model.  
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Figure. 5. Fitting experimental data with the Monod model.  
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Figure. 6. Fitting experimental data with the Teissier-Edward model.  

 

The accuracy and statistical analysis of the six kinetic models used 

shows that the best model was Luong with low values for RMSE 

and AICc, highest adjusted r2 values, f-test and with bias factor 

and accuracy factor nearest to unity (1.0) (table 2). The calculated 

value for the Luong’s constants maximal degradation rate, half 

saturation constant for maximal degradation, maximal 

concentration of substrate tolerated and curve parameter that 

defines the steepness of the growth rate decline from the 

maximum rate symbolized by qmax, ks, sm, and n were 0.755 hr-1, 

925.8 mg/l, 1859.3 mg/l and 0.329, respectively. The best model 

according to Banerjee and Ghoshal [15] where the experimental 

data for this work was procured is Edward (Tesssier) with 

calculated maximal degradation rate, half saturation constant for 

maximal degradation, inhibition constant symbolized by qmax, ks 

and ki, are 0.4701 h-1, 407 mg/l and 431.3 mg/l, respectively. The 

same constants for the same model obtained in this work were 

quite similar with qmax, ks and ki values obtained were 0.993 h-1, 

514.3 mg/l and 391.3 mg/l, respectively. It needs to be cautioned 

that the qmax value obtained based on curve fitting interpolation is 

not the true value as the true qmax should be where the gradient for 

the slope is zero and in this case (Luong) the value was 

approximately 0.093 h-1 at 500 mg/l phenol (figure 3). 

 

 
Table 2. Statistical analysis of kinetic models. 

 
Model 

 

p 

 

RMSE 

 

R2 

 

adR2 

 

AICc 

 

BF 

 

AF 

 

Luong 4 0.013 0.881 0.851 -164.2 1.07 1.22 

Yano 4 0.015 0.799 0.749 -159.3 1.15 1.30 

Tessier-Edward 3 0.015 0.792 0.755 -163.1 1.29 1.45 

Aiba 3 0.015 0.780 0.741 -163.0 1.30 1.45 

Haldane 3 0.023 0.072 -0.091 -145.8 1.47 1.78 

Monod 2 0.035 -7.584 -8.538 -131.5 1.44 2.15 
note: 

sse  sums of squared errors 

RMSE root mean squared error 

p no of parameters 

R2 coefficient of determination 

adR2 adjusted coefficient of determination 

AICc corrected Akaike Information Criterion 

BF bias factor 

AF accuracy factor 

 

Most of the studies concerning substrate inhibition on microbial 

growth are carried out using toxic substrate such as aromatic and 

halogenated hydrocarbons [22,23], and hence it can be deducted 

that at high concentration growth rate will be severely affected 

and the normal use of the Monod model will fail. 

 

There were other models for describing substrate inhibition 

kinetics developed during this period such as the discontinuous 

models of Wayman and Tseng [24]. The reason for the 

development of the discontinuous model is the previous models 

developed such as Haldane, Andrews and Noack, and Webb can 

describe inhibitory effect on microbial growth but could not 

explain or adequately model for certain situations where the 

growth rate completely ceased or becoming zero at very high 

substrate concentration. however, the discontinuous fitting profile 

of the Wayman and Tseng model is a major drawback [25]. A 

continuous version of the above models developed by Luong have 

found popular support due to its close agreement to experimental 

data in a number of cases [5,6,26] including this one. A central 

attraction of the Luong model is its ability to successful predicting 
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the value of sm, the maximum substrate concentration above which 

growth is completely inhibited. 
 
CONCLUSION 

 

Both growth and degradation kinetics of bacteria can be modeled 

using various models available in the literature. Literature survey 

has shown that for the same compound, various models have been 

found optimum in different systems and hence a comprehensive 

modeling exercise was carried out on available published works to 

demonstrate this observation. In this work, we demonstrated based 

on statistical analysis that the Luong model is a better model than 

the Edward (Teissier) in fitting the degradation kinetics data from 

Bacillus cereus MTCC 9817 strain akg1. We predicted that many 

existing published models in the literature could be better 

modelled using the various kind of growth or degradation models 

available instead of the ubiquitous Haldane model for instance.  
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