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HISTORY ABSTRACT

Biohydrogen production in anaerobic granular sludge reactors has led to the development of
stable microbial communities that enhance substrate conversion rates. The fermentation process
of sucrose by these microbial communities is a sustainable approach to hydrogen production,
making biological dark fermentation an effective method for renewable biohydrogen generation.
This study analyzed biohydrogen production data from granular sludge in a packed-bed upflow
reactor processing sucrose-containing wastewater at 26 °C for more than 500 days, using multiple
Anasrobic granular sludge predictive kinetic models. The biohydrogen production data were converted to natural logarithms
MOORA to improve linearity and reduce variance. The Morgan—Mercer—Flodin (MMF) model, coupled
MMF model with the Multi-Objective Optimization by Ratio Analysis (MOORA) approach, achieved the best
statistical results among nine tested predictive models based on error functions, including the
highest adjusted R? value and the lowest RMSE, AICc, BIC, and HQC values. The MMF model
successfully predicted all stages of hydrogen production sigmoidal growth while also modeling
zinc-induced stimulation and inhibition effects. The combination of multi-criteria analysis
(MOORA) with classical error-function analyses improved model discrimination, enabling a
deeper understanding of microbial growth patterns under different environmental conditions to
optimize biohydrogen production systems.
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INTRODUCTION

Photofermentation in purple nonsulfur photosynthetic bacteria,
including Rhodobacter sphaeroides and Rhodopseudomonas
palustris, converts organic acids into hydrogen gas, achieving

Biohydrogen production is touted as a promising solution to
sustainable energy needs because it simultaneously enables

cleaner power generation and waste elimination. In biohydrogen
production, microorganisms convert different organic materials
into hydrogen through their metabolic activities [1,2]. The
biotechnological method is gaining popularity because it aligns
with global efforts to establish carbon-neutral energy systems
and clean up environmental contamination [3]. Biohydrogen
production occurs through dark fermentation, photofermentation,
and biophotolysis, each of which depends on distinct microbial
communities. The main microorganisms used in dark
fermentation studies include anaerobic bacteria from Clostridium
spp., Thermoanaerobacterium spp., Enterobacter spp., and
Caldicellulosiruptor spp., as well as diverse microbial
communities [4-7]. These microorganisms can metabolize
simple sugars and complex compounds into hydrogen gas while
simultaneously generating organic acids and alcohols through
fermentation [8,9].

higher substrate-based hydrogen yields. These organisms use
light energy but exhibit increased sensitivity to environmental
changes, and research applications remain limited due to
engineering constraints [10]. In another route, the water
biophotolysis process for microalgae that produce hydrogen gas
occurs under specific light exposure but is tightly linked to strict
management of several interrelated factors, including substrate
choice, temperature, pH levels, nutrient supply, and good reactor
design.

The production of fermentative hydrogen from agricultural
waste benefits most from carbohydrate-based substrates,
including glucose, xylose, and hydrolysates, which offer
excellent biodegradability and stable conversion rates [11,12].
The hydrogen production rate depends heavily on temperature
because both mesophilic (3040 °C) and thermophilic (50-80
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°C) ranges are commonly used. Thermotoga spp. and
Caldicellulosiruptor bescii exhibit enzyme stability and
environmental adaptability. These two factors enable these
organisms to perform optimally under extreme thermophilic
temperatures [5,13,14]. Dark fermenters have an optimal pH
range for hydrogen production of 5-7. On the other hand,
photofermentative bacteria require a pH range of 6.8-7.5 for
optimal performance [15,16]. The overall yields depend on
factors like mass transfer efficiency and redox balance. These
factors are affected by buffer composition, agitation rate, and gas

sparging.

The optimized operating conditions are not the ultimate
factors that can limit hydrogen production and output. The
presence of heavy metals and the accumulation of end products,
such as volatile fatty acids (VFAs) including acetate and
butyrate, lead to pH drops that block hydrogen-evolving enzyme
activity through enzymatic inhibition when their removal or
recycling fails in the system [17,18]. The presence of other toxic
substances from environmental pollutants and substrate
breakdown  products, including antibiotics, furfural,
formaldehyde, nanoplastics, and lignocellulosic degradation
products, can also disrupt cellular metabolic equilibrium and
damage hydrogenase enzymes [19].

The production of high ammonia levels from a waste
biomass rich in nitrogen, coupled with excessive substrate
amounts, can drive fermentation toward acidogenic or
solventogenic pathways. These pathways decrease hydrogen
production while causing microbial damage [20,21]. The
produced hydrogen is consumed by methanogenesis and other
hydrogen-consuming processes carried out by methanogenic
archaea and hydrogenotrophic bacteria. Maintaining high
hydrogen production in batch and continuous bioreactors
depends on strategies that block methanogenic activity, including
the use of selective inhibitors, heat-treated inocula, and
controlled operational settings [22,23].

Research on biohydrogen production urgently needs precise
predictions, performance monitoring, and optimization of
fermentation operations under specific environmental conditions.
The biological systems that produce hydrogen through evolution
exhibit complex, dynamic behavior. This is because microbial
interactions, substrate conversion, and inhibitory feedback
mechanisms create nonlinear responses [4,14]. The real-time
operational dynamics of biohydrogen systems remain difficult to
predict through linear models when operational parameters
change. The modified Gompertz and modified Logistic models
are among the most commonly used nonlinear kinetic models for
analysis of biohydrogen systems [24]. These predictive models
have enabled researchers to analyze hydrogen production curves
and predict peak production rates and lag times. These
predictions help them optimize their systems for scaling up and
improving operational processes [25,26]. The analysis of
nonlinear systems reveals detailed microbial reaction
mechanisms and shows how systems respond to different
inhibitors, pH levels, substrate concentrations, and temperature
conditions. The process of model selection requires a
comprehensive quantitative evaluation of the fitted data.

The use of direct visual or empirical fit methods for model
evaluation can introduce several biases that may mask underlying
predictive and mechanistic properties. As a result, the evaluation
of models in recent times has included multiple standard error
functions due to their importance such as the adjusted R-squared
(adjR?) serves as a measure of model fit, which adjusts for
parameter count and penalizes models that overfit, Root Mean
Square Error (RMSE) measures the typical difference between
predicted and actual values of the response variable, which makes
it a direct indicator of model performance, Mean Percentage
Standard Deviation (MPSD) allows for the provision of a
standardized error measurement. This step enables researchers to
evaluate different datasets, and the Corrected Akaike Information
Criterion (AICc) provides a balance between model fit and
complexity, which proves essential for small sample sizes [26].

The evaluation of multiple error metrics, although it allows
researchers to gain a complete understanding of model reliability
and robustness, can become challenging when researchers base
their choices on nonobjective or merely unanimous preferences
or on visual assessments of models. To overcome these issues,
the MOORA (Multi-Objective Optimization on the basis of Ratio
Analysis) ranking system can provide an unbiased solution for
model selection through multi-criteria decision analysis. The
MOORA system for selecting primary models in biodegradation
work, including biohydrogen production, has never been
attempted, and Shukor was the first to use this approach in the
biodegradation field to select the best model that governs
degradation curves [27].

MOORA evaluates all selected error functions to generate
an objective ranking of candidate models. This ranking
eliminates the need for researcher-based decisions, which can be
biased by preferences or human errors. The MOORA method
enables researchers to evaluate models using normalized scores,
producing systematic results for model comparison [28-30]. The
combination of nonlinear models with multi-objective ranking
systems for hydrogenogenic studies, as carried out in this study,
is anticipated to accelerate laboratory-to-industry transitions
while maintaining methodological sophistication that matches
the biological intricacies of biohydrogen production systems.

MATERIALS AND METHODS

Fitting of the data

Using the Marquardt nonlinear regression approach, which
minimizes the sum of squared residuals, biohydrogen production
data from Figure 1 [31] were fitted to nonlinear equations (Table
1). This study utilized CurveExpert Professional software
(Version 1.6). This iterative method achieves the best fit by
minimizing the discrepancy between predicted and observed
values. The program facilitates both manual and automated input
of initial parameter estimates. A four-data point steepest ascent
search yielded the maximum specific biohydrogen production
rate (um). The x-axis intercept of the projected line from the
steepest ascent was utilized to determine the duration of the lag
phase (4). The final data point indicating the plateau period
facilitated the estimation of the asymptotic value (4).
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Table 1. Biohydrogen production models used in this study.

Model p__ Equation
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Three-phase VoA X~
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Flodin (MMF) 4 y=4- m

Note:

A= Biohydrogen production upper asymptote;

No= Biohydrogen production lower asymptote;

un= maximum specific biohydrogen production rate;

v= affects near which asymptote maximum biohydrogen production occurs.

p = no of parameters

/=lag time

e = exponent (2.718281828)

t = sampling time

a,f,k 6= curve fitting parameters

ho=a dimensionless parameter quantifying the initial physiological state of the reduction process.
For the Baranyi-Roberts model, the lag time (1) (h™") or (d!) can be calculated as ro=tn
For modified Schnute, 4 =m/a

Statistical analysis

The following tests for statistical discrimination or error
functions were used in this study, where n is the total number of
observations, Obi and Pdi are the predicted and observed values,
and p is the total number of model parameters [32].

RMSE was calculated using the following formula;

L, (Pd;—0by)?
n-p

RMSE = (Eqn. 1)

BF and AF [33] were calculated using the following formula;

Bias factor = 10 ( ™. log W) (Eqn. 2)
Accuracy factor = 10( ., log Wdinﬂ) (Eqn. 3)

AlICc [34,35] was calculated using the following formula;

AlCc = 2p +nln (RSS) + 2pr)+2(p+2)

o 2 (Eqn. 4)
BIC [36] was calculated using the following formula;

BIC = nin (22) + kin(n) (Eqn. 5)

HQC [37] was calculated using the following formula;

RSS
n

HQC = nIn( ) + 2kIn(In n) (Eqn. 6)

Adjusted coefficient of determination (R?) [38] was calculated
using the following formula;

RMS
s

Adjusted (R?) =1 — (Eqn. 7)
_ a-RHMm-1)

; 2y —
Adjusted (R*) =1 —

(Eqn. 8)

MPSD [39-41] was calculated using the following formula;

Ob,-—Pdi)Z

_ 1 gn
MPSD = 100Jn_p s (Zon

(Eqn. 9)

Application of Multi-Objective Optimization by Ratio
Analysis (MOORA) in Modeling

The Multi-objective Optimization by Ratio Analysis (MOORA)
was used for multi-criteria decision-making (MCDM) in the
modeling exercise, as a combination of error-function superiority
is frequently observed among the leading models. This method
enables the identification of the best model by concurrently
assessing various performance metrics. The methodology begins
by normalizing the decision matrix to ensure comparability
across performance metrics. The decision matrix was
subsequently normalized. Due to the potential differences in units
and magnitudes of these metrics, normalization must be
performed using the following equation [27,29,42,43];

Xij

X, = —— (Eqn. 10)

13} 5
1 X

Where Xj is the original value of the j* metric for the i model,
and X is the normalized value.

Ratio System Analysis

The normalized values were then aggregated using a ratio system
approach. Beneficial criteria (those that should be maximized,
adjR?) were summed up, while non-beneficial criteria (the rest of
the error functions) or those that should be minimized were
subtracted using the following formula:

Yi = Zbeneficial Xi,j - Znon—beneficial Xi,j (Eqn- 11)

Where Y is the final score for the i model

Weighted ratios should be used when certain criteria are
more important. Weighted Ratios are not used because the
literature has not agreed on which error functions are most
important. Rating models by performance scores is the last step.
High scores indicated excellence. Based on the decision criteria,
the highest-valued model was best. This method objectively and
systematically compared kinetic models to identify the best one,
accounting for multiple performance metrics.
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RESULTS AND DISCUSSION

The long-term operation of hydrogen-producing granular sludge
in anaerobic reactors often results in the development of a
complex microbial consortium with enhanced substrate
conversion efficiency. Such consortia possess diverse metabolic
capabilities for sucrose fermentation and hydrogen generation,
making biological dark fermentation an ideal approach for
sustainable  biohydrogen production. Despite extensive
experimental research, only a limited number of primary kinetic
models have been applied to describe the growth behavior and
hydrogen production dynamics of these systems. In this study,
the growth data for Hz-producing granular sludge obtained from
a packed-bed upflow reactor operated at 26 °C on sucrose-
containing wastewater for over 500 days were first transformed
to the natural logarithm (Fig. 1) prior to modeling using several
predictive growth equations.

0mg/L

80 mg/L
400 mg/L
1000 mg/L
1500 mg/L
2000 mg/L
5000 mg/L

o
L

v
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'
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w
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~
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0 T T T T \
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Time (h)

Fig. 1. Modelling the growth kinetics of H.-producing granular sludge
sampled from a packed-bed upflow reactor (operated at 26 °C treating
sucrose-containing wastewater for >500 days) using the x model at
various Zn concentrations.

Bacterial biohydrogen production often exhibits a sigmoidal
profile similar to bacterial growth, with a distinct adaptation
phase in which the specific growth rate is near zero and gradually
increases to the maximal value (Umax). This results in an
observable lag time (A) [44]. In the sigmoidal growth pattern, the
lag period indicates a period of cellular adjustment during which
hydrogen-producing bacteria acclimate to new environmental or
substrate conditions. This adjustment is particularly important
following inoculum storage or adaptation to fresh media. The lag
phase is where cells synthesize key enzymes and cofactors. These
compounds are required for hydrogenogenic metabolism to
support exponential growth [45]. Baranyi and Roberts [46]
suggested that this preparatory period represents a transitional
phase that bridges two autonomous growth systems.

The incorporation of lag time or related parameters into
kinetic models is mainly a pragmatic choice to describe growth
dynamics rather than to provide a mechanistic explanation. The
most important estimated parameters—especially the maximum
specific growth rate (um)—can then be used for secondary
predictive modeling and optimization of hydrogen yield. The
effect of the substrate on the growth rate can be modeled using
the secondary models of Monod, Haldane, Aiba, and Teissier.
These models are often applied to explain the inhibitory effects
of substrate, especially at high concentrations, and the potential
inhibition of bacterial growth by heavy metals on hydrogen
evolution rates. These models allow us to understand how
varying substrate levels and environmental stresses influence the

metabolism of microorganisms (metavolism), a feature that will
be important for optimizing biohydrogen production systems,
improving process stability, and enhancing the overall energy
conversion efficiency [47,48]. Various primary models (Figs. 2-
10) were used to fit the hydrogen production rate, and most of
them show visually acceptable fits. The best model, based on
statistical analysis, was the MMF model, with the highest value
for the adjusted coefficient of determination and the lowest
values for RMSE, BIC, HQC, and AICc, and the accuracy and
bias factors were in the optimal range (Table 2). Table 2 presents
the ranking of nine kinetic models based on their MOORA
(Multi-Objective Optimization by Ratio Analysis) scores for
fitting hydrogen production over time. The Morgan—Mercer—
Flodin (MMF) model achieved the highest MOORA score
(2.09020). This is followed by the Modified Logistic (ML) and
Modified Schnute (MS) models, which indicate a superior overall
performance across multiple error-based criteria.

Models such as modified Gompertz (MG), Huang (HG), and
von Bertalanffy (VB) displayed moderate suitability, while
Buchanan-3 -phase (B3P), Baranyi-Roberts (BR), and
particularly modified Richards (MR) performed poorly, which
yields a negative MOORA score (—0.03732), indicating its weak
predictive capability. The MOORA method allows effective
discrimination between models even when the combinations of
error metrics were not unanimous. In the original publication,
only the modified Gompertz model was utilized [31]. MOORA
integrates multiple evaluation parameters (e.g., RMSE, R?, SSE)
into a single composite score. This multi-criteria approach is
MOORA's central strength, enabling it to identify the most
accurate and stable predictive models and provide a clear
hierarchical ranking among models with otherwise conflicting
performance indicators. Modelling results using the MMF
models at various concentrations of zinc. The cumulative
hydrogen production profiles of sucrose-fed granular sludge
under different zinc (Zn) concentrations are shown in Fig. 11.

The experimental data follow the Morgan—Mercer—Flodin
(MMF) model accurately. The hydrogen production rates
increased steeply during the initial phase, then decreased until a
stable production level was achieved. Fast production rates at low
Zn concentrations (0-400 mg/L) occurred because zinc supports
essential microbial metabolic processes and enzymatic activities,
especially hydrogenogenesis. A decrease in the total hydrogen
production occurred at elevated Zn concentrations of 1000-1500
mg/L and especially so between 2000 and 5000 mg/L where a
near complete hydrogen production occurs likely due to toxic
levels restricted microbial growth and substrate conversion
efficiency (Fig. 11). The MMF model successfully modeled all
the phases of the sigmoidal cumulative hydrogen production data
at all tested Zn concentrations (Fig. 12). To reiterate, the specific
hydrogen production rate reached its maximum value of 0.08 h™!
as zinc acts as a micronutrient that boosted microbial enzymatic
activity at low level including hydrogenase ctivity. At high Zn
concentrations, a severe metabolic suppression occurred.

In predictive modelling of microbial processes, converting
growth or hydrogen production data to the natural logarithm (In)
form is necessary for accurate kinetic modelling. Biological
systems often exhibit nonlinear behavior, and taking the In allows
linearization of this phase, which simplifies the estimation of the
rate constants and improvess model fitting using nonlinear
models such as the Morgan—Mercer—Flodin or the modified
Gompertz models. This linearizing transformation also allows for
the stabilization of the variance. This standardization ensures a
constant error distribution and meets the assumptions of
regression. By converting multiplicative biological effects to a
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linear form, this enhances the interpretability of the parameters,
including the specific production rate and lag period. In hydrogen 6 1
production studies, In-transformed data can better capture the
transition from the exponential to the stationary phase, enabling
smoother predictive modeling. Overall, the In transformation can
improve statistical reliability, reduce heteroscedasticity, and
provide better biological insights. Thus, linearization allows a
standard preprocessing step for analyzing predictive bioprocess
models, including biohydrogen production [49-52].

6 -

Ln H, production mL)

0+ T T T 3
0 50 100 150 200
-
E Time (h)
i<l
g Fig. 5. Growth curve simulation of H»-producing granular sludge from
B long-term sucrose-fed reactor operation fitted to the Buchanan three-
a phase model.
T
C
i
0+ T T T v 6 -
0 50 100 150 200
Time (h)

Fig. 2. Modelling the growth kinetics of Hz-producing granular sludge
sampled from a packed-bed upflow reactor (operated at 26 °C treating
sucrose-containing wastewater for >500 days) using the Huang model.

Ln H, production mL)

0+ T T T v
SE‘ 50 100 150 200
S Time (h)
E
3 Fig. 6. Fitting experimental hydrogenogenic growth data of granular
a sludge from the packed-bed reactor to the Modified Richards model.
T
c
-
0 4 r r r ) 6 1
0 50 100 150 200

Time (h)

Fig. 3. Modelling the growth kinetics of Hz-producing granular sludge
from the packed-bed upflow reactor using the Baranyi—Roberts model.

o
Ln H, production mL)

= 0 + v v v J
E 50 100 150 200
S
S Time (h)
8
a Fig. 7. Evaluation of hydrogen production growth profile of granular
T sludge using the Modified Schnute model under mesophilic sucrose
5 fermentation conditions.
0+ T T T J
0 50 100 150 200
Time (h)

Fig. 4. Predictive modelling of cumulative hydrogen-producing activity
of granular sludge (26 °C, sucrose-fed reactor) using the Modified
Gompertz model.
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Fig. 8. Simulation of microbial growth kinetics of H-producing granular
sludge (from 26 °C reactor) using the Modified Logistic model.
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Fig. 9. Modelling the hydrogenogenic biomass development of granular
sludge sampled from the upflow reactor using the von Bertalanffy model.

e EXP
MMF

Ln H, production mL)

0 100 200 300
Time (h)
Fig. 10. Predictive fitting of cumulative hydrogen production data of

granular sludge (sucrose wastewater-fed reactor) using the Morgan—
Mercer—Flodin (MMF) model.

Table 2. Statistical analysis of the growth models.

Model P MPSD RMSE R’ adR’>  AICc  BIC HQC BF AF
HG 4 834 0083 1.00 0995 -21.797-4559 -48.12 1.002 1.010
BR 4 16.08 0.161 099 0982 -8.662 -32.45 -3499 1.002 1.017
MG 3 8.87 0.08 1.00 0.995 -30.011-45.10 -47.01 1.000 1.003
B3P 3 16.19 0.162 099 0.982 -17.982-33.07 -34.98 1.005 1.015
MR 4 2095 0210 098 097 -3.365 -27.15 -29.69 0.995 1.012
MS 4 677 0.068 1.00 0.997 -25976-49.77 -52.30 1.001 1.006
ML 3 6.67 0.067 1.00 0.997 -35.725-50.82 -52.72 1.002 1.008
VB 3 1178 0.118 0.99 0.991 -24.334-39.43 -41.33 0.999 1.005
MMF 4 269 0.027 1.00 0.999 -44.399-68.19 -70.73 1.000 1.002
Note:

P parameter

RMSE Root Mean Square Error

R? Coefficient of Determination

adR?  Adjusted Coefficient of Determination
AICC Corrected Akaike Information Criterion
BF Bias Factor

AF  Accuracy Factor

na. Not available

Table 3. Model ranking using MOORA method to effectively
distinguishes predictive accuracy among the models.

z
5
<
9]
(=N
o

MOORA Score Rank

1 MMF 2.09020 1
2 ML 1.50559 2
3 MS 1.36732 3
4 MG 1.23058 4
5 HG 1.16664 5
6 VB 0.91489 6
7 B3P 0.49653 7
8 BR 0.37934 8
9 MR -0.03732 9

The original intent in developing the MMF model was to
provide a model that can relate the wide variety of nutrient-
response relationships observed in animals [53]. The growth of
animals such as sheep, rabbits, and horses, as well as that of
microorganisms, can now be successfully modeled [54—60]. The
MMF model has also been used to model exopolysaccharide
production by Klebsiella oxytoca [61], yeast growth [62], oil
palm yield over time [63], ethanol production [64], and even total
human deaths caused by COVID-19 complications [65—70]. One
of the most recent uses of the model is in the modelling of the
inhibitory effect of Zn on the biodegradation of SDS [71]. Similar
to the modified Gompertz model, the MMF model even has uses
in modelling financial growth [72].

7 A
o 0mg/L
6 ® 80mg/L
_ A 400 mg/L
E 5 A 1000 mg/L
= O 1500 mg/L
s W 2000 mg/L
B 4 & 5000 mg/L
=] —
-3
°3 _
Q —
E —_
c2
5 P
1 —
0 ]
0 50 100 150 200 250

Time (h)

Fig. 11. Fitting (red lines) of cumulative hydrogen production data of
granular sludge (sucrose wastewater-fed reactor) at various Zn
concentrations using the Morgan—-Mercer—Flodin (MMF) model.
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Fig. 12. Effect of zinc (Zn) concentration on the specific biohydrogen
production rate by sucrose-fed granular sludge. The experimental data
were fitted using the Morgan—Mercer—Flodin (MMF) model.

In microbial kinetics, accurately modeling bacterial growth
and the inhibitory effects of substrates is essential for optimizing
bioprocesses, ensuring product safety, and understanding
microbial ecology.

Primary models such as the modified Gompertz, modified
Logistic, modified Richards, Baranyi-Roberts, modified
Schnute, von Bertalanffy, and Morgan-Mercer-Flodin (MMF)
and Huang models are pivotal in this endeavor. These models
describe bacterial growth under non-inhibitory conditions and
estimate vital parameters, including specific growth rate (um), lag
phase duration, and maximum population density. Understanding
these parameters is crucial for advancing to more complex
secondary modeling that incorporates inhibitory effects using
models such as the Haldane, Andrews, Yano, and Aiba models.

These primary models are instrumental in determining key
growth parameters — fundamental to microbiology and
biochemical engineering — and in defining the replication speed
of bacteria under specific conditions. By providing detailed
insights into bacterial growth dynamics, these models enable
researchers to predict how bacteria will respond to various
environmental changes and nutrient availability, which is vital
for applications such as wastewater treatment, bioremediation,
and the production of biofuels and other bioproducts [44,73-76].

Table 4. Summary of the optimization of biohydrogen production by various microorganisms.

Mlcroorga'msm / Optimum Conditions Maximum Blo.h ydrogen Main Inhibitory Factors Inhibitory Model Predictive Model Used References
Consortium Production Used

Modified Andrews,
Clostridium butyricum / pH 5.5-7.0, 30-37 °C, VFAs, heavy metals, Han-Levenspiel Modified Gompertz, Logistic,
Clostridium spp. anaerobic 2-3 mol H/mol glucose substrate overload (metal and substrate Luedeking—Piret (11,31,77]

inhibition)
Clostridium Modified Han-

B pH 6.0-6.8, 35 °C 2.8 mol H2/mol glucose  Phenol, cresol, furfural Levenspiel (inhibitor Modified Gompertz [83,84]

pasteurtanum ..

toxicity)
Thermotoga neapolitanapH 67, 65-80 °C, extreme3-4.5 mol H2/mol Ammonia, acetate No inhibitory model Modified Gompertz, First-order, [25,85]
/ maritima thermophile glucose accumulation applied Luedeking—Piret ?
Caldicellulosiruptor .y ¢ 7 70 75 oC 1.8-2.2mol Hofmol oy o i compounds, NH, o (empirical —yp yiged Gompertz 5]
bescii glucose eq. inhibition)

S Modified Han- . .

Enterobacter cloacae / pH 67, 30-40 °C ~2 mol Ha/mol glucose Antibiotics, substrate Levenspiel (Cu, Fe Modlﬁed Gompertz, Logistic, 6.79]
aerogenes overload S First-order

inhibition)
Ethar'mlzgenens pH 5.5-6.7,35-40 °C 2.4 mol Hz/mol hexose  Acetate, ethanol None reported Modified Gompertz [18]
harbinense B49

. Modified Han- .

Thermoanaerobact? rzumpH 6-7,55-65 °C 2.5 mol Hz/mol glucose High ammonia, VFA Levenspiel (product Modified Gompertz, Monod- [78,78]
thermosaccharolyticum S type

inhibition)
Caloramator celer pH 7-8, 65 °C ~1.9 mol H2/mol glucose Substrate inhibition Modified Andrews  Modified Gompertz, Logistic ~ [86]

; . Modified Han- . .

Mixed z}naeroblc pH 5-7,30-70 °C 0.5-2 L Ho/L-d VFAs, NHs, nanoplastics ~ Levenspiel (acetate Modified Gompertz, First-order, [9,19,87]
consortia (sludge-based) . Monod

inhibition)
Rhodobacter o
sphaeroides pH 6.8-7.3,28-35°C,  1.5-4 mol Ha/mol N, light limitation ~ None Modified Gompertz, Logistic  [82,88]

. light acetate/lactate
(photofermentative)
Rhodopseudomonas o 1: Up to 7 mol H2/mol Excess substrate, Modified Gompertz,
palustris PH 6-8,30-35 °C, light substrate byproducts None Luedeking—Piret, Monod [81,89]
Rhodobacter capsulatus pH 7.0, 30 °C 34 mol H2/mol acetate  Ammonium regulation None Modified Gompertz [90]
Microalgae (e.g., . .
Chlamydomonas pH 7-8,20-30 °C, light 11 mL Ho/L-h 02, heavy metals None Modified Gompertz, Light- ;)
. - response logistic

reinhardtii)
Azotobacter vinelandii  Aerobic, 28-32 °C Up to 1.5 mmol H2/L-h  Nitrogenous compounds ~ None Luedeking—Piret [91]
Kiebsiella oxytoca GS- 11 6 9 30 35 o¢ 2.8 mol Ho/mol xylose  Substrate inhibition Haldane/Modified 1 4ifieq Gompertz, Monod  [80]
4-08 Andrews
(T}lﬁiTganaerobacter pH 6.5-7,70 °C 3.5 mol Ho/mol glucose ~ Substrate inhibition Modified Andrews  Modified Gompertz [13]
Citrobacter sp. Y19 pH 6.8-7.0,37 °C 2.9 mol Hz/mol glucose  O: presence None Modified Gompertz [92]
Bacillus sp. / Biofilm 1.8-2.2 mol H2/mol Modified Han-

consortia pH 6-7,37-45 °C

substrate

VFAs, heavy metals

- 65 -

Levenspiel, Andrews

Modified Gompertz, First-order [7,93]
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The MMF model is rarely used to model biohydrogen
production. Most often, the modified Gompertz model is a widely
applied kinetic tool in biohydrogen research, providing a simple
yet physiologically meaningful framework for estimating
maximum hydrogen potential (Hy.y), production rate (Rya), and
lag time (4). It effectively captures sigmoidal hydrogen
production in Clostridium systems, describing adaptation,
exponential, and saturation phases under varying substrate and
metal conditions [11,31]. Integrating Gompertz kinetics with
Luedeking—Piret equations improves scale-up predictability [77].
The model remains valid for thermophiles such as Thermotoga
neapolitana and Caldicellulosiruptor bescii, achieving R? > 0.97
at 80 °C [25,78].

For facultative anaerobes like Enterobacter cloacae and
Klebsiella oxytoca, it accurately predicts hydrogen yield under
substrate or inhibitor stress [6,79,80]. Photofermenters such as
Rhodobacter sphaeroides and microalgae Chlamydomonas
reinhardtii also fit the model under variable light regimes
[10,81,82]. Overall, the Modified Gompertz model remains the
most popular for linking microbial hydrogen kinetics with
process optimization and scale-up design (Table 4), and in most
cases these reports use only the MG model despite the availability
of other, more suitable models, including MMF. The reason for
this is likely a lack of knowledge and awareness of the presence
of other predictive models.

CONCLUSION

This study demonstrated that the Morgan—Mercer—Flodin
(MMF) model provides excellent predictive capabilities for
understanding hydrogen production kinetics in granular sludge
systems. The MMF model outperformed traditional primary
models, including the Modified Gompertz, by providing precise
simulations of complete hydrogen production phases and
correctly representing zinc's dual effects on the process. The
application of logarithmic data transformation techniques
resulted in more stable model performance, which led to reliable
parameter estimation. The MOORA-based evaluation system
used multiple criteria to select the most precise and dependable
kinetic predictive models for ranking. This study demonstrates
that the Modified Gompertz model should not be the default
choice for biohydrogen studies, as other predictive models, such
as the MMF model, offer greater flexibility and a more detailed
mechanistic understanding. The research results enable better
optimization of biohydrogen reactor operating conditions,
leading to improved process stability and the development of
essential modeling tools for large-scale sustainable hydrogen
production.
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