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INTRODUCTION 
 
Biohydrogen production is touted as a promising solution to 
sustainable energy needs because it simultaneously enables 
cleaner power generation and waste elimination. In biohydrogen 
production, microorganisms convert different organic materials 
into hydrogen through their metabolic activities [1,2]. The 
biotechnological method is gaining popularity because it aligns 
with global efforts to establish carbon-neutral energy systems 
and clean up environmental contamination [3]. Biohydrogen 
production occurs through dark fermentation, photofermentation, 
and biophotolysis, each of which depends on distinct microbial 
communities. The main microorganisms used in dark 
fermentation studies include anaerobic bacteria from Clostridium 
spp., Thermoanaerobacterium spp., Enterobacter spp., and 
Caldicellulosiruptor spp., as well as diverse microbial 
communities [4–7]. These microorganisms can metabolize 
simple sugars and complex compounds into hydrogen gas while 
simultaneously generating organic acids and alcohols through 
fermentation [8,9].  

 
Photofermentation in purple nonsulfur photosynthetic bacteria, 
including Rhodobacter sphaeroides and Rhodopseudomonas 
palustris, converts organic acids into hydrogen gas, achieving 
higher substrate-based hydrogen yields. These organisms use 
light energy but exhibit increased sensitivity to environmental 
changes, and research applications remain limited due to 
engineering constraints [10]. In another route, the water 
biophotolysis process for microalgae that produce hydrogen gas 
occurs under specific light exposure but is tightly linked to strict 
management of several interrelated factors, including substrate 
choice, temperature, pH levels, nutrient supply, and good reactor 
design.  
 

The production of fermentative hydrogen from agricultural 
waste benefits most from carbohydrate-based substrates, 
including glucose, xylose, and hydrolysates, which offer 
excellent biodegradability and stable conversion rates [11,12]. 
The hydrogen production rate depends heavily on temperature 
because both mesophilic (30–40 °C) and thermophilic (50–80 
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 ABSTRACT 
Biohydrogen production in anaerobic granular sludge reactors has led to the development of 
stable microbial communities that enhance substrate conversion rates. The fermentation process 
of sucrose by these microbial communities is a sustainable approach to hydrogen production, 
making biological dark fermentation an effective method for renewable biohydrogen generation. 
This study analyzed biohydrogen production data from granular sludge in a packed-bed upflow 
reactor processing sucrose-containing wastewater at 26 °C for more than 500 days, using multiple 
predictive kinetic models. The biohydrogen production data were converted to natural logarithms 
to improve linearity and reduce variance. The Morgan–Mercer–Flodin (MMF) model, coupled 
with the Multi-Objective Optimization by Ratio Analysis (MOORA) approach, achieved the best 
statistical results among nine tested predictive models based on error functions, including the 
highest adjusted R² value and the lowest RMSE, AICc, BIC, and HQC values. The MMF model 
successfully predicted all stages of hydrogen production sigmoidal growth while also modeling 
zinc-induced stimulation and inhibition effects. The combination of multi-criteria analysis 
(MOORA) with classical error-function analyses improved model discrimination, enabling a 
deeper understanding of microbial growth patterns under different environmental conditions to 
optimize biohydrogen production systems. 
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°C) ranges are commonly used. Thermotoga spp. and 
Caldicellulosiruptor bescii exhibit enzyme stability and 
environmental adaptability. These two factors enable these 
organisms to perform optimally under extreme thermophilic 
temperatures [5,13,14]. Dark fermenters have an optimal pH 
range for hydrogen production of 5-7. On the other hand, 
photofermentative bacteria require a pH range of 6.8-7.5 for 
optimal performance [15,16]. The overall yields depend on 
factors like mass transfer efficiency and redox balance. These 
factors are affected by buffer composition, agitation rate, and gas 
sparging. 
 

The optimized operating conditions are not the ultimate 
factors that can limit hydrogen production and output. The 
presence of heavy metals and the accumulation of end products, 
such as volatile fatty acids (VFAs) including acetate and 
butyrate, lead to pH drops that block hydrogen-evolving enzyme 
activity through enzymatic inhibition when their removal or 
recycling fails in the system [17,18]. The presence of other toxic 
substances from environmental pollutants and substrate 
breakdown products, including antibiotics, furfural, 
formaldehyde, nanoplastics, and lignocellulosic degradation 
products, can also disrupt cellular metabolic equilibrium and 
damage hydrogenase enzymes [19].  

 
The production of high ammonia levels from a waste 

biomass rich in nitrogen, coupled with excessive substrate 
amounts, can drive fermentation toward acidogenic or 
solventogenic pathways. These pathways decrease hydrogen 
production while causing microbial damage [20,21]. The 
produced hydrogen is consumed by methanogenesis and other 
hydrogen-consuming processes carried out by methanogenic 
archaea and hydrogenotrophic bacteria. Maintaining high 
hydrogen production in batch and continuous bioreactors 
depends on strategies that block methanogenic activity, including 
the use of selective inhibitors, heat-treated inocula, and 
controlled operational settings [22,23]. 
 

Research on biohydrogen production urgently needs precise 
predictions, performance monitoring, and optimization of 
fermentation operations under specific environmental conditions. 
The biological systems that produce hydrogen through evolution 
exhibit complex, dynamic behavior. This is because microbial 
interactions, substrate conversion, and inhibitory feedback 
mechanisms create nonlinear responses [4,14]. The real-time 
operational dynamics of biohydrogen systems remain difficult to 
predict through linear models when operational parameters 
change. The modified Gompertz and modified Logistic models 
are among the most commonly used nonlinear kinetic models for 
analysis of biohydrogen systems [24]. These predictive models 
have enabled researchers to analyze hydrogen production curves 
and predict peak production rates and lag times. These 
predictions help them optimize their systems for scaling up and 
improving operational processes [25,26]. The analysis of 
nonlinear systems reveals detailed microbial reaction 
mechanisms and shows how systems respond to different 
inhibitors, pH levels, substrate concentrations, and temperature 
conditions. The process of model selection requires a 
comprehensive quantitative evaluation of the fitted data.  

 
 
 
 
 
 
 
 

The use of direct visual or empirical fit methods for model 
evaluation can introduce several biases that may mask underlying 
predictive and mechanistic properties. As a result, the evaluation 
of models in recent times has included multiple standard error 
functions due to their importance such as the adjusted R-squared 
(adjR²) serves as a measure of model fit, which adjusts for 
parameter count and penalizes models that overfit, Root Mean 
Square Error (RMSE) measures the typical difference between 
predicted and actual values of the response variable, which makes 
it a direct indicator of model performance, Mean Percentage 
Standard Deviation (MPSD) allows for the provision of a 
standardized error measurement. This step enables researchers to 
evaluate different datasets, and the Corrected Akaike Information 
Criterion (AICc) provides a balance between model fit and 
complexity, which proves essential for small sample sizes [26]. 
 

The evaluation of multiple error metrics, although it allows 
researchers to gain a complete understanding of model reliability 
and robustness, can become challenging when researchers base 
their choices on nonobjective or merely unanimous preferences 
or on visual assessments of models. To overcome these issues, 
the MOORA (Multi-Objective Optimization on the basis of Ratio 
Analysis) ranking system can provide an unbiased solution for 
model selection through multi-criteria decision analysis. The 
MOORA system for selecting primary models in biodegradation 
work, including biohydrogen production, has never been 
attempted, and Shukor was the first to use this approach in the 
biodegradation field to select the best model that governs 
degradation curves [27]. 
 

MOORA evaluates all selected error functions to generate 
an objective ranking of candidate models. This ranking 
eliminates the need for researcher-based decisions, which can be 
biased by preferences or human errors. The MOORA method 
enables researchers to evaluate models using normalized scores, 
producing systematic results for model comparison [28–30]. The 
combination of nonlinear models with multi-objective ranking 
systems for hydrogenogenic studies, as carried out in this study, 
is anticipated to accelerate laboratory-to-industry transitions 
while maintaining methodological sophistication that matches 
the biological intricacies of biohydrogen production systems. 
 
MATERIALS AND METHODS 
 
Fitting of the data 
Using the Marquardt nonlinear regression approach, which 
minimizes the sum of squared residuals, biohydrogen production 
data from Figure 1 [31] were fitted to nonlinear equations (Table 
1). This study utilized CurveExpert Professional software 
(Version 1.6). This iterative method achieves the best fit by 
minimizing the discrepancy between predicted and observed 
values. The program facilitates both manual and automated input 
of initial parameter estimates. A four-data point steepest ascent 
search yielded the maximum specific biohydrogen production 
rate (μm). The x-axis intercept of the projected line from the 
steepest ascent was utilized to determine the duration of the lag 
phase (λ). The final data point indicating the plateau period 
facilitated the estimation of the asymptotic value (A). 
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Table 1. Biohydrogen production models used in this study. 
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Note: 
A= Biohydrogen production upper asymptote; 
N0= Biohydrogen production lower asymptote; 
um= maximum specific biohydrogen production rate; 
v= affects near which asymptote maximum biohydrogen production occurs. 
p = no of parameters 
λ=lag time 
e = exponent (2.718281828) 
t = sampling time 
α,β,k,δ = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction process. 
For the Baranyi-Roberts model, the lag time (𝜆𝜆) (h-1) or (d-1) can be calculated as h0=µm 
For modified Schnute, A =m/a 
 
Statistical analysis 
The following tests for statistical discrimination or error 
functions were used in this study, where n is the total number of 
observations, Obi and Pdi are the predicted and observed values, 
and p is the total number of model parameters [32]. 
 
RMSE was calculated using the following formula; 
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BF and AF [33] were calculated using the following formula; 
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AICc [34,35] was calculated using the following formula; 
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BIC [36] was calculated using the following formula; 
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HQC [37] was calculated using the following formula; 
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Adjusted coefficient of determination (R²) [38] was calculated 
using the following formula; 
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MPSD [39–41] was calculated using the following formula; 
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Application of Multi-Objective Optimization by Ratio 
Analysis (MOORA) in Modeling 
The Multi-objective Optimization by Ratio Analysis (MOORA) 
was used for multi-criteria decision-making (MCDM) in the 
modeling exercise, as a combination of error-function superiority 
is frequently observed among the leading models. This method 
enables the identification of the best model by concurrently 
assessing various performance metrics. The methodology begins 
by normalizing the decision matrix to ensure comparability 
across performance metrics. The decision matrix was 
subsequently normalized. Due to the potential differences in units 
and magnitudes of these metrics, normalization must be 
performed using the following equation [27,29,42,43]; 
 
𝑋𝑋𝑖𝑖𝑖𝑖′ = 𝑋𝑋𝑖𝑖𝑖𝑖

�∑ 𝑋𝑋𝑖𝑖𝑖𝑖
2𝑛𝑛

𝑖𝑖=1

    (Eqn. 10) 

 
Where Xij is the original value of the jth metric for the ith model, 
and Xiij is the normalized value. 
 
Ratio System Analysis 
The normalized values were then aggregated using a ratio system 
approach. Beneficial criteria (those that should be maximized, 
adjR2) were summed up, while non-beneficial criteria (the rest of 
the error functions) or those that should be minimized were 
subtracted using the following formula: 
 
𝑌𝑌𝑖𝑖 = ∑ 𝑋𝑋𝑖𝑖𝑖𝑖′ −𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∑ 𝑋𝑋𝑖𝑖𝑖𝑖′𝑛𝑛𝑛𝑛𝑛𝑛−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏  (Eqn. 11)  
 
Where Yi is the final score for the ith model 
 

Weighted ratios should be used when certain criteria are 
more important. Weighted Ratios are not used because the 
literature has not agreed on which error functions are most 
important. Rating models by performance scores is the last step. 
High scores indicated excellence. Based on the decision criteria, 
the highest-valued model was best. This method objectively and 
systematically compared kinetic models to identify the best one, 
accounting for multiple performance metrics. 
 
 

Y = N0, IF X < LAG 
Y= N0+ K(X ̶ λ), IF λ ≤ X ≥ XMAX 

Y = A, IF X ≥ XMAX 
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RESULTS AND DISCUSSION  
 
The long-term operation of hydrogen-producing granular sludge 
in anaerobic reactors often results in the development of a 
complex microbial consortium with enhanced substrate 
conversion efficiency. Such consortia possess diverse metabolic 
capabilities for sucrose fermentation and hydrogen generation, 
making biological dark fermentation an ideal approach for 
sustainable biohydrogen production. Despite extensive 
experimental research, only a limited number of primary kinetic 
models have been applied to describe the growth behavior and 
hydrogen production dynamics of these systems. In this study, 
the growth data for H₂-producing granular sludge obtained from 
a packed-bed upflow reactor operated at 26 °C on sucrose-
containing wastewater for over 500 days were first transformed 
to the natural logarithm (Fig. 1) prior to modeling using several 
predictive growth equations. 
 

 
Fig. 1. Modelling the growth kinetics of H₂-producing granular sludge 
sampled from a packed-bed upflow reactor (operated at 26 °C treating 
sucrose-containing wastewater for >500 days) using the x model at 
various Zn concentrations. 
 

Bacterial biohydrogen production often exhibits a sigmoidal 
profile similar to bacterial growth, with a distinct adaptation 
phase in which the specific growth rate is near zero and gradually 
increases to the maximal value (μₘₐₓ). This results in an 
observable lag time (λ) [44]. In the sigmoidal growth pattern, the 
lag period indicates a period of cellular adjustment during which 
hydrogen-producing bacteria acclimate to new environmental or 
substrate conditions. This adjustment is particularly important 
following inoculum storage or adaptation to fresh media. The lag 
phase is where cells synthesize key enzymes and cofactors. These 
compounds are required for hydrogenogenic metabolism to 
support exponential growth [45]. Baranyi and Roberts [46] 
suggested that this preparatory period represents a transitional 
phase that bridges two autonomous growth systems.  

 
The incorporation of lag time or related parameters into 

kinetic models is mainly a pragmatic choice to describe growth 
dynamics rather than to provide a mechanistic explanation. The 
most important estimated parameters—especially the maximum 
specific growth rate (μₘ)—can then be used for secondary 
predictive modeling and optimization of hydrogen yield. The 
effect of the substrate on the growth rate can be modeled using 
the secondary models of Monod, Haldane, Aiba, and Teissier. 
These models are often applied to explain the inhibitory effects 
of substrate, especially at high concentrations, and the potential 
inhibition of bacterial growth by heavy metals on hydrogen 
evolution rates. These models allow us to understand how 
varying substrate levels and environmental stresses influence the 

metabolism of microorganisms (metavolism), a feature that will 
be important for optimizing biohydrogen production systems, 
improving process stability, and enhancing the overall energy 
conversion efficiency [47,48]. Various primary models (Figs. 2-
10) were used to fit the hydrogen production rate, and most of 
them show visually acceptable fits. The best model, based on 
statistical analysis, was the MMF model, with the highest value 
for the adjusted coefficient of determination and the lowest 
values for RMSE, BIC, HQC, and AICc, and the accuracy and 
bias factors were in the optimal range (Table 2). Table 2 presents 
the ranking of nine kinetic models based on their MOORA 
(Multi-Objective Optimization by Ratio Analysis) scores for 
fitting hydrogen production over time. The Morgan–Mercer–
Flodin (MMF) model achieved the highest MOORA score 
(2.09020). This is followed by the Modified Logistic (ML) and 
Modified Schnute (MS) models, which indicate a superior overall 
performance across multiple error-based criteria.  

 
Models such as modified Gompertz (MG), Huang (HG), and 

von Bertalanffy (VB) displayed moderate suitability, while 
Buchanan-3 -phase (B3P), Baranyi-Roberts (BR), and 
particularly modified Richards (MR) performed poorly, which 
yields a negative MOORA score (–0.03732), indicating its weak 
predictive capability. The MOORA method allows effective 
discrimination between models even when the combinations of 
error metrics were not unanimous. In the original publication, 
only the modified Gompertz model was utilized [31]. MOORA 
integrates multiple evaluation parameters (e.g., RMSE, R², SSE) 
into a single composite score. This multi-criteria approach is 
MOORA's central strength, enabling it to identify the most 
accurate and stable predictive models and provide a clear 
hierarchical ranking among models with otherwise conflicting 
performance indicators. Modelling results using the MMF 
models at various concentrations of zinc. The cumulative 
hydrogen production profiles of sucrose-fed granular sludge 
under different zinc (Zn) concentrations are shown in Fig. 11.  

 
The experimental data follow the Morgan–Mercer–Flodin 

(MMF) model accurately. The hydrogen production rates 
increased steeply during the initial phase, then decreased until a 
stable production level was achieved. Fast production rates at low 
Zn concentrations (0-400 mg/L) occurred because zinc supports 
essential microbial metabolic processes and enzymatic activities, 
especially hydrogenogenesis. A decrease in the total hydrogen 
production occurred at elevated Zn concentrations of 1000–1500 
mg/L and especially so between 2000 and 5000 mg/L where a 
near complete hydrogen production occurs likely due to toxic 
levels restricted microbial growth and substrate conversion 
efficiency (Fig. 11). The MMF model successfully modeled all 
the phases of the sigmoidal cumulative hydrogen production data 
at all tested Zn concentrations (Fig. 12). To reiterate, the specific 
hydrogen production rate reached its maximum value of 0.08 h⁻¹ 
as zinc acts as a micronutrient that boosted microbial enzymatic 
activity at low level including hydrogenase ctivity. At high Zn 
concentrations, a severe metabolic suppression occurred.  
 

In predictive modelling of microbial processes, converting 
growth or hydrogen production data to the natural logarithm (ln) 
form is necessary for accurate kinetic modelling. Biological 
systems often exhibit nonlinear behavior, and taking the ln allows 
linearization of this phase, which simplifies the estimation of the 
rate constants and improvess model fitting using nonlinear 
models such as the Morgan–Mercer–Flodin or the modified 
Gompertz models. This linearizing transformation also allows for 
the stabilization of the variance. This standardization ensures a 
constant error distribution and meets the assumptions of 
regression. By converting multiplicative biological effects to a 
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linear form, this enhances the interpretability of the parameters, 
including the specific production rate and lag period. In hydrogen 
production studies, ln-transformed data can better capture the 
transition from the exponential to the stationary phase, enabling 
smoother predictive modeling. Overall, the ln transformation can 
improve statistical reliability, reduce heteroscedasticity, and 
provide better biological insights. Thus, linearization allows a 
standard preprocessing step for analyzing predictive bioprocess 
models, including biohydrogen production [49–52]. 

 
Fig. 2. Modelling the growth kinetics of H₂-producing granular sludge 
sampled from a packed-bed upflow reactor (operated at 26 °C treating 
sucrose-containing wastewater for >500 days) using the Huang model. 

 
Fig. 3. Modelling the growth kinetics of H₂-producing granular sludge 
from the packed-bed upflow reactor using the Baranyi–Roberts model. 

 
Fig. 4. Predictive modelling of cumulative hydrogen-producing activity 
of granular sludge (26 °C, sucrose-fed reactor) using the Modified 
Gompertz model. 
 

 
Fig. 5. Growth curve simulation of H₂-producing granular sludge from 
long-term sucrose-fed reactor operation fitted to the Buchanan three-
phase model. 
 

 
Fig. 6. Fitting experimental hydrogenogenic growth data of granular 
sludge from the packed-bed reactor to the Modified Richards model. 
 

 
Fig. 7. Evaluation of hydrogen production growth profile of granular 
sludge using the Modified Schnute model under mesophilic sucrose 
fermentation conditions. 
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Fig. 8. Simulation of microbial growth kinetics of H₂-producing granular 
sludge (from 26 °C reactor) using the Modified Logistic model. 
 

 
Fig. 9. Modelling the hydrogenogenic biomass development of granular 
sludge sampled from the upflow reactor using the von Bertalanffy model. 
 

 
Fig. 10. Predictive fitting of cumulative hydrogen production data of 
granular sludge (sucrose wastewater-fed reactor) using the Morgan–
Mercer–Flodin (MMF) model. 
 
 
 
 
 
 
 
 
 
 

Table 2. Statistical analysis of the growth models. 
 
Model P MPSD RMSE R2 adR2 AICc BIC HQC BF AF 
HG 4 8.34 0.083 1.00 0.995 -21.797 -45.59 -48.12 1.002 1.010 
BR 4 16.08 0.161 0.99 0.982 -8.662 -32.45 -34.99 1.002 1.017 
MG 3 8.87 0.089 1.00 0.995 -30.011 -45.10 -47.01 1.000 1.003 
B3P 3 16.19 0.162 0.99 0.982 -17.982 -33.07 -34.98 1.005 1.015 
MR 4 20.95 0.210 0.98 0.97 -3.365 -27.15 -29.69 0.995 1.012 
MS 4 6.77 0.068 1.00 0.997 -25.976 -49.77 -52.30 1.001 1.006 
ML 3 6.67 0.067 1.00 0.997 -35.725 -50.82 -52.72 1.002 1.008 
VB 3 11.78 0.118 0.99 0.991 -24.334 -39.43 -41.33 0.999 1.005 
MMF 4 2.69 0.027 1.00 0.999 -44.399 -68.19 -70.73 1.000 1.002 
Note: 
p parameter 
RMSE  Root Mean Square Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
n.a. Not available 
 
Table 3. Model ranking using MOORA method to effectively 
distinguishes predictive accuracy among the models. 
 
No Model MOORA Score Rank 
1 MMF 2.09020 1 
2 ML 1.50559 2 
3 MS 1.36732 3 
4 MG 1.23058 4 
5 HG 1.16664 5 
6 VB 0.91489 6 
7 B3P 0.49653 7 
8 BR 0.37934 8 
9 MR -0.03732 9 
 

The original intent in developing the MMF model was to 
provide a model that can relate the wide variety of nutrient-
response relationships observed in animals [53]. The growth of 
animals such as sheep, rabbits, and horses, as well as that of 
microorganisms, can now be successfully modeled [54–60]. The 
MMF model has also been used to model exopolysaccharide 
production by Klebsiella oxytoca [61], yeast growth [62], oil 
palm yield over time [63], ethanol production [64], and even total 
human deaths caused by COVID-19 complications [65–70]. One 
of the most recent uses of the model is in the modelling of the 
inhibitory effect of Zn on the biodegradation of SDS [71]. Similar 
to the modified Gompertz model, the MMF model even has uses 
in modelling financial growth [72].  
 

 
Fig. 11. Fitting (red lines) of cumulative hydrogen production data of 
granular sludge (sucrose wastewater-fed reactor) at various Zn 
concentrations using the Morgan–Mercer–Flodin (MMF) model. 
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Fig. 12. Effect of zinc (Zn) concentration on the specific biohydrogen 
production rate by sucrose-fed granular sludge. The experimental data 
were fitted using the Morgan–Mercer–Flodin (MMF) model.  
 

In microbial kinetics, accurately modeling bacterial growth 
and the inhibitory effects of substrates is essential for optimizing 
bioprocesses, ensuring product safety, and understanding 
microbial ecology.  

 

Primary models such as the modified Gompertz, modified 
Logistic, modified Richards, Baranyi-Roberts, modified 
Schnute, von Bertalanffy, and Morgan-Mercer-Flodin (MMF) 
and Huang models are pivotal in this endeavor. These models 
describe bacterial growth under non-inhibitory conditions and 
estimate vital parameters, including specific growth rate (μm), lag 
phase duration, and maximum population density. Understanding 
these parameters is crucial for advancing to more complex 
secondary modeling that incorporates inhibitory effects using 
models such as the Haldane, Andrews, Yano, and Aiba models.  

 
These primary models are instrumental in determining key 

growth parameters — fundamental to microbiology and 
biochemical engineering — and in defining the replication speed 
of bacteria under specific conditions. By providing detailed 
insights into bacterial growth dynamics, these models enable 
researchers to predict how bacteria will respond to various 
environmental changes and nutrient availability, which is vital 
for applications such as wastewater treatment, bioremediation, 
and the production of biofuels and other bioproducts [44,73–76]. 
 
 
 

 
Table 4. Summary of the optimization of biohydrogen production by various microorganisms. 

 
Microorganism / 

Consortium Optimum Conditions Maximum Biohydrogen 
Production Main Inhibitory Factors Inhibitory Model 

Used Predictive Model Used References 

Clostridium butyricum / 
Clostridium spp. 

pH 5.5–7.0, 30–37 °C, 
anaerobic 2–3 mol H₂/mol glucose VFAs, heavy metals, 

substrate overload 

Modified Andrews, 
Han-Levenspiel 
(metal and substrate 
inhibition) 

Modified Gompertz, Logistic, 
Luedeking–Piret [11,31,77] 

Clostridium 
pasteurianum pH 6.0–6.8, 35 °C 2.8 mol H₂/mol glucose Phenol, cresol, furfural 

Modified Han-
Levenspiel (inhibitor 
toxicity) 

Modified Gompertz [83,84] 

Thermotoga neapolitana 
/ maritima 

pH 6–7, 65–80 °C, extreme 
thermophile 

3–4.5 mol H₂/mol 
glucose 

Ammonia, acetate 
accumulation 

No inhibitory model 
applied 

Modified Gompertz, First-order, 
Luedeking–Piret [25,85] 

Caldicellulosiruptor 
bescii pH 6–7, 70–75 °C 1.8–2.2 mol H₂/mol 

glucose eq. Phenolic compounds, NH₃ None (empirical 
inhibition) Modified Gompertz [5] 

Enterobacter cloacae / 
aerogenes pH 6–7, 30–40 °C ~2 mol H₂/mol glucose Antibiotics, substrate 

overload 

Modified Han-
Levenspiel (Cu, Fe 
inhibition) 

Modified Gompertz, Logistic, 
First-order [6,79] 

Ethanoligenens 
harbinense B49 pH 5.5–6.7, 35–40 °C 2.4 mol H₂/mol hexose Acetate, ethanol None reported Modified Gompertz [18] 

Thermoanaerobacterium 
thermosaccharolyticum pH 6–7, 55–65 °C 2.5 mol H₂/mol glucose High ammonia, VFA 

Modified Han-
Levenspiel (product 
inhibition) 

Modified Gompertz, Monod-
type [78,78] 

Caloramator celer pH 7–8, 65 °C ~1.9 mol H₂/mol glucose Substrate inhibition Modified Andrews Modified Gompertz, Logistic [86] 

Mixed anaerobic 
consortia (sludge-based) pH 5–7, 30–70 °C 0.5–2 L H₂/L·d VFAs, NH₃, nanoplastics 

Modified Han-
Levenspiel (acetate 
inhibition) 

Modified Gompertz, First-order, 
Monod [9,19,87] 

Rhodobacter 
sphaeroides 
(photofermentative) 

pH 6.8–7.3, 28–35 °C, 
light 

1.5–4 mol H₂/mol 
acetate/lactate NH₄⁺, light limitation None Modified Gompertz, Logistic [82,88] 

Rhodopseudomonas 
palustris pH 6–8, 30–35 °C, light Up to 7 mol H₂/mol 

substrate 
Excess substrate, 
byproducts None Modified Gompertz, 

Luedeking–Piret, Monod [81,89] 

Rhodobacter capsulatus pH 7.0, 30 °C 3–4 mol H₂/mol acetate Ammonium regulation None Modified Gompertz [90] 
Microalgae (e.g., 
Chlamydomonas 
reinhardtii) 

pH 7–8, 20–30 °C, light 11 mL H₂/L·h O₂, heavy metals None Modified Gompertz, Light-
response logistic [10] 

Azotobacter vinelandii Aerobic, 28–32 °C Up to 1.5 mmol H₂/L·h Nitrogenous compounds None Luedeking–Piret [91] 
Klebsiella oxytoca GS-
4-08 pH 6–7, 30–35 °C 2.8 mol H₂/mol xylose Substrate inhibition Haldane/Modified 

Andrews Modified Gompertz, Monod [80] 

Thermoanaerobacter 
GHL15 pH 6.5–7, 70 °C 3.5 mol H₂/mol glucose Substrate inhibition Modified Andrews Modified Gompertz [13] 

Citrobacter sp. Y19 pH 6.8–7.0, 37 °C 2.9 mol H₂/mol glucose O₂ presence None Modified Gompertz [92] 
Bacillus sp. / Biofilm 
consortia pH 6–7, 37–45 °C 1.8–2.2 mol H₂/mol 

substrate VFAs, heavy metals Modified Han-
Levenspiel, Andrews Modified Gompertz, First-order [7,93] 
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The MMF model is rarely used to model biohydrogen 
production. Most often, the modified Gompertz model is a widely 
applied kinetic tool in biohydrogen research, providing a simple 
yet physiologically meaningful framework for estimating 
maximum hydrogen potential (Hₘₐₓ), production rate (Rₘₐₓ), and 
lag time (λ). It effectively captures sigmoidal hydrogen 
production in Clostridium systems, describing adaptation, 
exponential, and saturation phases under varying substrate and 
metal conditions [11,31]. Integrating Gompertz kinetics with 
Luedeking–Piret equations improves scale-up predictability [77]. 
The model remains valid for thermophiles such as Thermotoga 
neapolitana and Caldicellulosiruptor bescii, achieving R² > 0.97 
at 80 °C [25,78].  

 
For facultative anaerobes like Enterobacter cloacae and 

Klebsiella oxytoca, it accurately predicts hydrogen yield under 
substrate or inhibitor stress [6,79,80]. Photofermenters such as 
Rhodobacter sphaeroides and microalgae Chlamydomonas 
reinhardtii also fit the model under variable light regimes 
[10,81,82]. Overall, the Modified Gompertz model remains the 
most popular for linking microbial hydrogen kinetics with 
process optimization and scale-up design (Table 4), and in most 
cases these reports use only the MG model despite the availability 
of other, more suitable models, including MMF. The reason for 
this is likely a lack of knowledge and awareness of the presence 
of other predictive models. 

 
CONCLUSION 
 
This study demonstrated that the Morgan–Mercer–Flodin 
(MMF) model provides excellent predictive capabilities for 
understanding hydrogen production kinetics in granular sludge 
systems. The MMF model outperformed traditional primary 
models, including the Modified Gompertz, by providing precise 
simulations of complete hydrogen production phases and 
correctly representing zinc's dual effects on the process. The 
application of logarithmic data transformation techniques 
resulted in more stable model performance, which led to reliable 
parameter estimation. The MOORA-based evaluation system 
used multiple criteria to select the most precise and dependable 
kinetic predictive models for ranking. This study demonstrates 
that the Modified Gompertz model should not be the default 
choice for biohydrogen studies, as other predictive models, such 
as the MMF model, offer greater flexibility and a more detailed 
mechanistic understanding. The research results enable better 
optimization of biohydrogen reactor operating conditions, 
leading to improved process stability and the development of 
essential modeling tools for large-scale sustainable hydrogen 
production. 
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