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INTRODUCTION 
 
The fungal breakdown of organic compounds such as dyes stems 
from their efficient use of biosorption, bioaccumulation, and 
biodegradation [1]. Among the various remediation strategies, 
fungi predominantly utilize biodegradation, which is attributed to 
their ability to secrete a broad spectrum of intra- and extracellular 
enzymes (like azoreductases, lignin peroxidases, manganese 
peroxidases, and laccases) that catalyze the mineralisation of 
different organic substrates [1,2]. 
In fungi, biosorption takes place through the adherence of dye 
molecules to specific functional groups present in the cell wall, a 
process that can be facilitated by either viable or non-viable 
biomass [3]. The low cost and high efficiency displayed by 
filamentous fungi make them an attractive alternative for dye 
removal, particularly given their potential to achieve complete 
mineralisation [4]. Fungal adsorption is pH-sensitive, displaying 
increased efficiency at a pH of 2–3, likely due to electrostatic 
interactions between the charged dye molecules and the 

oppositely charged fungal cell surface. At elevated temperatures, 
dye removal tends to decline, possibly due to thermal 
deactivation of the adsorbent or the loss of functional active sites 
[5]. Additionally, adsorption efficiency improves with rising dye 
concentrations, which suggests a positive correlation between 
dye load and fungal uptake capacity [6]. 
 

Singh and Sable [7] reported that native fungal strains hold 
a potential for treating dye-rich textile wastewater/effluents. This 
has gained global attention due to the metabolic versatility of 
white-rot fungi. Phanerochaete chrysosporium, one of the most 
researched species in this context, produces oxidative enzymes 
such as lignin peroxidases (LiP) and manganese-dependent 
peroxidases (MnP), enabling it to break down structurally 
complex compounds like lignin, dioxins, polychlorinated 
biphenyls (PCBs), azo dyes, and various chloro-organic 
pollutants [4,8,9,10]. Azo dyes, though resistant to degradation 
by most microorganisms, are susceptible to enzymatic attack by 
P. chrysosporium [11]. 
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 ABSTRACT 
Reactive dyes are one of the most common dyes used in fabric re-dyeing; as such, their 
indiscriminate discharge into the environment is causing serious pollution in urban Kano, 
Nigeria. This research was aimed at assessing the potential of fungal species isolated from one 
of the major dyeing sites in Kano: Kofar Na’isa dyeing pit for the remediation of reactive dyes. 
The fungal species (Aspergillus striatus NEF4, Candida tetrigidarum NRRL Y-48142 1, 
Fusarium equiseti SPF466, and F. oxysporum FusCic45B) were isolated and identified from the 
dye-contaminated soil using dilution plating, pour plate, streak culture techniques, and DNA 
analysis. The isolated organisms were used to assess their bioremediation potential through 
biosorption and biodecolourisation of dye wastewater. The highest dye removal efficiency 
through biomass biosorption and enzymatic action was recorded after 48 hours, at pH 11.3 and a 
temperature of 37 °C. The dye removal by biosorption and biodecolourisation was within the 
ranges of 19.7 – 86.9% and 58.9 – 71.4% for A. straitus, 23.9 – 84.4% and 50.6 – 80.8% for C. 
tetrigidarum, 18.3 - 97.9% and 47.7 - 86.7% for F. equiseti, respectively. However, F. oxysporum 
displayed a negative biosorption but achieved 53.6 – 90.2% colour removal by enzymatic action. 
Dye removal increased with an increase in contact time due to gradual mycelial absorption. The 
isolated fungal species have proven to be effective in the remediation of reactive dyes, and thus, 
can be employed in regulating environmental contamination caused by dyes. 
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In addition to well-studied species, other fungi such as 
Hirschioporus laricinus, Inonotus hispidus, Phlebia tremellosa, 
and Coriolus versicolor have been reported to possess dye-
decolourizing capabilities [1,3]. P. chrysoporium, in particular, 
is capable of mineralising recalcitrant aromatic pollutants 
through its robust ligninolytic enzyme system [1,11]. While 
fungal remediation proves to be very effective, its practical use is 
constrained by operational challenges like the need for acidic 
conditions, prolonged hydraulic retention period, and the 
possibility of suppressing coexisting microbial communities, 
which makes the approach less suitable for balanced microbial 
ecosystems [1,5,8,12]. 
 
MATERIALS AND METHODS 
 
Sampling methods 
Sterilised sampling containers were used to collect wastewater 
samples containing specific reactive dyes (reactive red 198 
(RR198), reactive yellow 176 (RY176), reactive green 19 
(RG19), reactive orange 122 (RO122), reactive red 195 (RR195) 
and reactive violet 1 (RV1)) from a local fabric re-dyeing pit 
situated at Kofar Na’isa, Kano, Nigeria. 
 
Fungal isolation and identification 
Fungal species were isolated from dye-contaminated soil 
collected from the dyeing site using the dilution plating and direct 
isolation techniques as outlined by Al-Mohanna [13]. Species 
identification was performed via DNA extraction followed by 
sequencing. Amplification of the 18S rRNA gene using specific 
primers (Fungi ITS-F (5ʹ - ATATGCTTAAGTTCAGCGGGT) 
and Fungi ITS-R (3ʹ - GTTCCGTAGGTGAACCTGC)) resulted 
in sequences (FASTA formats) that were submitted to the NCBI 
- BLAST database (USA) for taxonomic identification [14,15]. 
Pure cultures of the species were incubated on potato dextrose 
agar and broth at 37 ± 2 °C for five days to produce mycelia and 
enzymes required for the assays [16]. Following incubation, the 
harvested mycelial mats were transferred into sterile labelled test 
tubes, while the liquid phase was centrifuged (Centrifuge 80-2) 
at 10,000 rpm for 15 minutes to obtain the enzyme-rich 
supernatant for the biodecolourisation experiment. 
 
Biosorption experiments 
The biosorption process was initiated by introducing 0.4 g of 
fungal mycelia into separate test tubes containing 1.0 mL of 
wastewater (separate for each dye – RR198, RY176, RG19, 
RO122, RR195, and RV1) and 5.0 mL of sterile saline solution. 
Initial optical density was measured before incubating the 
samples at 37 °C. Spectrophotometric readings 
(spectrophotometer - Model 722) at the dye’s wavelength of 
maximum absorption (RR198 = 518 nm, RY176 = 429 nm, RG19 
= 636 nm, RO122 = 493 nm, RR195 = 542nm, and RV1 = 545 
nm) were taken periodically over a 48-hour period. 
Subsequently, the concentration of dye per gram of mycelia and 
corresponding biosorption percentage were computed using the 
following formulas [17]: 
 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (%) =  (𝐴𝐴−𝐵𝐵)

𝐴𝐴
× 100   

 
 𝑄𝑄𝑄𝑄 =  𝐴𝐴 − 𝐵𝐵 ×  𝑉𝑉

𝑀𝑀
    

 
Where, 
Qe = concentration of dye at equilibrium 
A = Initial concentration of dye in solution  
B = Final concentration of dye in solution 
V = volume of solution in millilitres, and  
M = quantity of biomass. 

Biodecolourisation was assessed using the cell-free 
supernatant obtained after mycelial removal. In sterilised test 
tubes, 9.0 mL of the supernatant was mixed with 1.0 mL of dye 
wastewater and stirred. The initial absorbance was measured at 
each dye’s wavelength of maximum absorption, which was then 
followed by incubation at 37 °C. Absorbance readings were taken 
at 24-hour intervals for 48 hours. Enzyme-mediated dye removal 
was quantified using the equation presented below [16,17]: 

 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (%) =  

(𝐴𝐴 − 𝐵𝐵)
𝐴𝐴 × 100 

 
Where, 
A = Initial concentration of the dye in solution  
B = Final concentration of dye in solution after enzyme activity 
 
All experimental trials were conducted in three replicates, and the 
data obtained were expressed as the mean with 
corresponding standard errors and analysed using the IBM SPSS 
statistical package (version 26) to determine statistical 
significance. 
 
RESULTS 
 
A total of four distinct fungal species were isolated from the dye-
contaminated soil. Morphological differentiation observed 
through both macroscopic colony features and microscopic 
hyphal structures indicated variability among the species (Fig. 1). 
  

 
Fig. 1. Colony and microscopic views of fungal species isolated from 
dye-contaminated soil of Kofar Na'isa Dye Pit, Kano, Nigeria (mag. ×1/3 
for colonies and mag. ×100 for microscopy). 
 

 
 
 
Fig. 2. Percentage biosorption of dyes by fungal species within 48 Hours. 
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In the fungal biosorption, the highest dye absorption by the 
species was recorded after 48 hours of inoculation, except for F. 
oxysporum, which attained saturation after 24 hours (Fig. 2). 
Statistically, there was no statistical difference in dye absorption 
by individual species within 0-48 hours. However, there was a 
statistical difference in dye absorption among the four species 
(0.037) at the 0.05 level. In the decolourisation assay by the 
fungal species, the maximum decolourisation of the dyes was 
observed after 24 hours of incubation; however, a negative 
decolourisation was observed in some of the dyes after 48 hours. 
Statistically, there was no statistical difference in dye removal by 
individual species within 0-48 hours. However, there was a 
statistical difference in dye removal among the four species 
(0.013) at the 0.05 level (Fig. 3). 

 

 
 
Fig. 3. Percentage biodecolourisation of dyes by fungal Species within 
48 hours. 
 
DISCUSSION 
 
Numerous studies have demonstrated that certain soil-dwelling 
microfungi produce ligninolytic enzymes capable of breaking 
down lignocellulosic substrates and detoxifying xenobiotic 
substances like industrial dyes [1-5]. Microfungi can biosorb 
dyes through multiple processes, including complex formation, 
physical adsorption, precipitation, entrapment within mycelial 
matrices, surface ionisation driven by ion exchange and hydrogen 
bonding [1,6,10]. In the present study, the four fungal species 
isolated from the dye-contaminated soils were A. striatus, C. 
tetrigidarum, F. equiseti and F. oxysporum (Fig. 1).  
 

All the fungal species had the ability to biosorb and bleach 
the dyes at varying levels (Figures 2 and 3). Fungi have been 
found to be very effective in the decolourisation and degradation 
of textile wastewater because of the presence of various non-
selective enzymatic systems, which can act upon a wide range of 
substrates, enabling them to survive under harsh conditions 
[7,8,11]. The secretion of laccase, lignin peroxidases, and 
manganese peroxidase helps them in degrading the recalcitrant 
components of the wastewater [7].  
 

Research is still ongoing on the remediation of synthetic 
dyes by members of the genus Aspergillus. To date, there are no 
published articles on remediation by Aspergillus straitus, though 
many related species from the same genus have proven to be 
excellent bioremediators of synthetic dyes and other organic 
compounds. Mathur et al. [18] reported A. lentulus and A. 
fumigatus in the remediation of reactive dyes via 
bioaccumulation and biosorption. Tisma et al. [19] used 
Aspergillus ochraceus for the treatment of wastes from the food 
industry. They also observed the production of various exo-
enzymes that transformed different dyes. 

Non-ligninolytic fungi such as Aspergillus niger attain 
biosorption through production of dead biomass, which acts as 
an adsorbent [1,11]. Dead biomass of Aspergillus niger has been 
effectively utilized as a biosorbent, with an optimum pH of 5.0 
[2,4]. Previously, it was reported that Aspergillus species 
removed colour by 62.6%, 69.8%, and 87.0% from reactive 
black, reactive red, and remazol black B dyes solutions, 
respectively [9,20]. Akar et al. [21] reported A. paraciticus to 
biosorb RR198 dye within 50 minutes at a maximum dye 
biosorption capacity of 1.03x10-4 mol g-1. Congo red was 
completely remediated by A. niger; acid red 151 and orange II by 
A. flavus [1]. A. niger was also reported to have remediated 
reactive brilliant red K-2BP to 94.7% in 120 hrs [11]. A. 
bombycis has shown better dye decolourisation of RR31 (94.7%) 
in a short period of time (12 hrs) as compared to other reported 
fungal cultures [22]. Singh et al. [23] reported the percentage 
decolourisation of reactive yellow 17 by Aspergillus tamari to be 
58.8%. Biosorption of reactive green by A. niger was also 
observed by Kumari and Abraham [24]. 
 

During remediation tests for RO122, it was observed that all 
the species had the potential to biosorb as well as reduce colour 
intensity of the dyes. Four fungal strains (A. flavus, A. niger, A. 
oryzae, A. terreus) and their consortia showed effective 
decolourisation of reactive dye orange M2R [12]. Under 
optimized conditions, degradation by A. niger was found to be 
93.0% and 80.0% for reactive red 195 and reactive green 11, 
respectively [2]. Abd El-Rahim et al. [25] observed that 
Aspergillus species have the ability to remediate a wide variety 
of azo dyes. They also observed that direct violet had a 
percentage decolourisation range of 71.1-93.3%. It was also 
reported by Gajera et al. [26] that A. niger discoloured reactive 
violet 5 to 58 % within 12 days. The fungal culture efficiency for 
dye removal could be affected by several operational conditions 
such as pH, temperature, concentration, and structure of the dyes, 
and the oxygen transfer rate [7]. Visvanathan et al. [10] stated 
that fungal decolourisation is usually accomplished either 
through adsorption or enzymatic degradation. 
 

The genus Fusarium comprises mostly pathogenic species 
that are capable of producing a wide variety of secondary 
metabolites; as such, members may display different methods of 
organic and inorganic matter remediation [27]. Al-Tohamy et al. 
[28] reported the effective degradation of toxic contaminants 
from wastewater by yeasts isolated from termite gut, which also 
revealed the complete removal of reactive blue 5 (RB5) dye 
within 24 hours due to its unique enzymatic system. 
Fusarium oxysporum is a soil-borne pathogenic ascomycete that 
causes Fusarium wilt in plants [29]. It has the ability to break 
down several organic compounds due to the possession of 
cellulases; as such, the species may thrive in various industrial 
effluents and wastewater [9]. Many studies have reported the use 
of F. oxysporum for the remediation of synthetic dyes. For 
instance, Porri et al. [30] reported 100.0% degradation and 
detoxification of a glycoconjugate azo dye (GAD). The ability of 
F. oxysporum to decolourise various dyes is well documented in 
the literature [1,4,31,32,33]. 
 

Fusarium equiseti is a known pathogenic microfungus 
causing a number of deformities in plants, such as crown and root 
rot, foliar necrosis, yellowing and wilting of leaves, etc. [34]. 
Most reports in the literature on F. equiseti are centered on its 
mycotoxin metabolism and toxicity [35] as well as the pathogenic 
effects of the species on plants [36]. F. equiseti was found to have 
a high potential for bioremediating reactive dyes in the present 
study; previously, the species had not been reported to have such 
a bioremediative potential. 
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Candida is a genus that comprises the popularly known yeast 
species, which have been reported to have great potential in 
removing various organic contaminants, such as dyes from 
industrial effluents [37]. Though the species (Candida 
tetrigidarum) used in this study has not been previously reported 
to have any remediation potential, many other species belonging 
to the same genus have been reported with such potential. 
Effective remediation of various synthetic dyes by Candida 
species is well documented in previous literature [38-40]. Fungal 
species with excellent bioremediation potential for synthetic dyes 
were isolated from the textile re-dyeing site. All the isolated 
species displayed effective remediation of the dyes and were 
identified as: Aspergillus striatus, Candida tetragidarum, 
Fusarium oxysporum, and F. equiseti. 
 
ABBREVIATIONS 
 
DNA: Deoxyribonucleic acid 
PCBs: Polychlorinated biphenyls 
LiP: Lignin peroxidase 
MnP: Manganese peroxidase 
RR198: Reactive red 198 
RY176: Reactive yellow 176 
RG19: Reactive green 19 
RO122: Reactive orange 122 
RR195: Reactive red 195 
RV1: Reactive violet 1 
FASTA: Federal Assets Sale Transfer Act 
BLAST: Basic Local Alignment Search Tool 
NCBI: National Centre for Biotechnology Information 
USA: United States of America 
ANOVA: Analysis of variance 
mag: magnification 
RB5: Reactive blue 5 
GAD: Glycoconjugate azo dye. 
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