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Phenol is particularly harmful among the numerous xenobiotic compounds produced by the
industry. A significant portion of the more than 1.5 million tons of sludge waste produced
globally for industrial use consists of phenol and phenolic compounds, some of which are
released into the environment without adequate safety assessment or control, leading to soil and
water pollution. The potential use of phenol as a carbon source by many bacterial species can
help mitigate phenol pollution through bioremediation of this hazardous material. This study
employs several microbial growth kinetics models that govern the growth rate of a bacterium on
phenol, with a focus on the comparative performance of the popular Haldane model alongside
other models. The specific maximum growth rate () was initially estimated using the no-lag
modified logistics model. Among the kinetic models evaluated, the Aiba model exhibited the
highest precision and accuracy, as demonstrated by statistical indices, including the lowest MPSD
and AICc values, and bias and accuracy factors closest to 1. Despite variability in its parameter
estimates, the Aiba model provided a meaningful kinetic description of phenol inhibition at high
concentrations. Models such as Monod, Moser, Pamukoglu and Kargi, and Han-Levenspiel
showed poor fitting. The maximum reduction rate, half-saturation constant for maximal
reduction, and half-inhibition constant were the designated values of the Aiba constants, which
were represented by (um, Ky, and K;) as 1.30£1.40 hr'! (S.E.), 524.64+753.63 mg/L (S.E.), and
609.78+196.34 mg/L (S.E.), respectively. The results of curve fitting interpolation should not be
regarded as the true value. The actual umax is defined as the point at which the slope's gradient
reaches zero; in this case, it was determined to be 0.295 h'! at a phenol concentration of 360 mg/L.
This study highlights the advantages of employing substrate inhibition models, such as the Aiba
and Haldane models, for accurately characterizing microbial growth in the presence of toxic
xenobiotics, like phenol, especially for optimizing bioprocesses, such as wastewater treatment.

INTRODUCTION

skin, and mucous membranes. The symptoms in humans include
tachycardia, dyspnea, impaired coordination, tremors, syncope,

The environment is chock-full of harmful chemicals, including
phenol, that are hazardous to human health. Globally, industries
generated more than 80,000 chemicals for industrial use, and
even more compounds were released into the atmosphere without
sufficient testing to ensure their safety [1]. Phenol is a unique and
ubiquitous industrial pollutant, as well as a potentially hazardous
chemical resulting directly from industrialization. The
contamination of soils and water bodies by phenol has escalated
throughout the years, immediately raising concerns over its
removal from the environment [2]. Symptoms of acute phenol
poisoning may result from inhalation of phenol or direct dermal
exposure. Phenol poses significant irritant effects on the eyes,

and even coma at high concentrations. Other symptoms include
irregular breathing patterns, tremors and muscle weakness, loss
of equilibrium, convulsions, coma, and respiratory failure.
Studies in rodents, including rats, mice, and rabbits, show
elevated acute toxicity following oral exposure to phenol [3-6].
The Reference Dose for phenol was established at 0.6 mg/kg/day
following studies on rats that indicated a reduction in fetal body
weights. The reference dosage is an oral exposure evaluation for
the general population, including sensitive subgroups, expected
to have no appreciable risk of harmful non-cancerous effects
during a lifetime. The reference dose is below the threshold at
which cancer may arise. Increased exposures beyond the
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reference dosage elevate the likelihood of adverse health effects.
Prolonged exposure beyond the recommended dosage does not
invariably preclude adverse health effects. The EPA possesses
limited trust in the study utilized to establish the reference dose
due to the administration method of gavage employed in that
research. Nonetheless, the evidence encompasses multiple
supplemental investigations (chronic, subchronic, and
reproductive/developmental), leading the EPA to possess
medium confidence in the reference dose overall [3,7-11].

The bioremediation process is currently the predominant
treatment technology for phenol-laden wastewater globally,
particularly at very low concentrations, and has attracted
significant interest. Compared to physicochemical approaches,
bioremediation offers numerous advantages, including a simple
pre-treatment process, minimal initial equipment investment,
high treatment capacity, sustainability, and the absence of
secondary pollutants. Consequently, researchers must investigate
bioremediation techniques for phenolic wastewater utilizing
phenol-degrading microorganisms. A significant number of
microorganisms capable of metabolizing phenol have been
identified so far [12—19].

The optimization of biological transformation processes is
constrained by the lack of readily available quantitative and
mathematically processed or guided experimental data. Various
mathematical models have been employed to simulate the
metabolic characteristics of xenobiotics upon interaction with
isolated microbial populations or pure microbial cultures. A
valuable tool in bacterial growth in the presence of toxic
chemicals is the relationship between the inhibitory impact of
increased substrate concentration (S) and the maximum specific
growth rate (umax) of the bacteria. The Monod equation is
traditionally used as a common tool to characterize the
relationship between growth and substrate consumption on
nontoxic substrates [20,21]. Conversely, when a substrate
inhibits its own biodegradation, the original Monod model
demonstrates limited applicability. The development of new
constant-carrying derivatives has occurred to enable substrate-
related modifications.

The Haldane model represents substrate inhibition of
growth or degradation rates and is prevalent in numerous
published studies. Despite evidence indicating that alternative
models exhibit greater accuracy when simultaneously
considering numerous substrate-inhibiting chemicals, such as
phenol, this model remains extensively utilized. The Haldane
model is not the sole model presently accessible [22]. Other less-
utilized models include Luong [23,24] and Edward [25]. In
certain situations, the Haldane may become less optimal due to
the adoption of more comprehensive models that are presently
available. It is therefore inadvisable to utilize the Haldane model
indiscriminately without conducting a thorough statistical
analysis or error function analysis, and exploring alternative
models using previously gathered data on growth or degradation
rates. This study advances previous research by predicting the
impact of substrate or phenol on bacterial growth rates through
various substrate inhibition kinetic models.

MATERIALS AND METHODS

Data from primary modeling, especially the um data from the
growth of Bacillus sp. strain Neni-10 on phenol [28], were
utilized in this study. The ten models of inhibition kinetics are
shown in Table 1.

Table 1. Various mathematical models have been developed for
degradation kinetics involving substrate inhibition of phenol in B.
subtilis strain Neni-10.

Author Degradation Rate Author
Monod
HinaxS [26]
S+ K
Haldane
HinaxS [27]
S2
S+ K+ (—)
L
Pamukoglu and [28]
Kargi HiaxS
Sm
S+K+ (%)
Teissier S S
“ 1-exp (——) —exp (—) 29
max Ki KS [ ]
Aiba S N
Hmax g 5P\ 7k, [30]
Yano and Koga HinaxS
S2 S [31]
S+ K+ (—) 1+
s+ (%) (1+%)
Han and Levenspiel [32]
< n :
e 1= 5,) "
m S
S+K, (1 - (s_)>
s sy
“ 1-(3) [33]
Luong TS + K ( Sm
Moser Mo S™ [34]
Ks +s™
Webb N [35]
nasS (1+ %)
2
S+ K+ e
L
Hinshelwood S [36]
Y7 —(1-K,P
max Ks +S ( P )
Note:
Mmax  maximal specific growth rate
K half saturation constant
Ki inhibition constant
Sm maximal concentration of substrate tolerated
Ky product inhibition constant
m, n, K curve parameters
N substrate concentration
P product concentration

Fitting of the data

Fitting of the inhibition curves using various growth models was
performed using the CurveExpert Professional software (Version
1.6) by nonlinear regression, utilizing the Marquardt algorithm.

Error function analyses

The error function tests for statistical discrimination utilized in
this study are root-mean-squared error (RMSE), adjusted
coefficient of determination (R?) [37], HQ (Hannan and Quinn's
Criterion) [38], Accuracy Factor (AF) and Bias Factor (BF) [39],
Marquardt's percent standard deviation (MPSD) [40-42],
corrected Akaike Information Criterion (AICc) [43,44], Bayesian
Information Criterion (BIC) [45]. In general, Obi and Pdi
represent the predicted and observed values, respectively, n is the
total number of observations, and p is the total number of
parameters in the model [46].

RMSE was calculated using the following formula;

RMSE — [ P=Pdi=ob?
n-p

(Eqn. 1)
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BF and AF were calculated using the following formula;
Bias factor = 10 ( 1 log% (Eqn. 2)

|(Pdi/0bi)|) (Eqn. 3)

n
AICc was calculated using the following formula;

AICc = 2p + nln (B2) 4 LB (g 4

n n-p-2
BIC was calculated using the following formula;

BIC = nin (22) + kin(n) (Eqn. 5)

Accuracy factor = 10( ™, log

HQC was calculated using the following formula;
HQC = nin (RSS) + 2kIn(In n) (Eqn. 6)

n
Adjusted coefficient of determination (R?) was calculated using
the following formula;

Adjusted (R?) =1 — RS—’”;S (Eqn. 7)

Adjusted (R?) = 1 — &=R@-D

C— (Eqn. 8)

MPSD was calculated using the following formula;

1 ob;—Pd;\?
MPSD = 100 \/E n (T) (Eqn. 9)
RESULTS AND DISCUSSION

The results of the RMSE, AICc, adjustedR?, F-test, and bias and
accuracy factor comparisons demonstrate that the Aiba model is
the most accurate and precise of the kinetic models considered
(Table 2). The Aiba model exhibited the lowest values for
MPSD, AICcc, HQC, BIC, RMSE and adjR?, BF, and AF, closest
to 1, and was the second-best model based on the rest of the error
function scores. The resultant fittings (Figs. 1 to 9) demonstrate
a satisfactory fit, except for the Luong, Moser, Monod,
Pamukoglu, and Kargi and Han Levenspiel models.
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Fig 2.The growth data as fitted concerning phenol concentration using
the model of Monod.
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Fig 3. The growth data as fitted with respect to phenol concentration
using the model of Haldane.
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Fig 4. The growth data as fitted with respect to phenol concentration
using the model of Teissier.
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Fig 5. The growth data as fitted with respect to phenol concentration
using the model of Aiba.
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Fig 6. The growth data as fitted with respect to phenol concentration
using the model of Yano and Koga.
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Fig 7. The growth data as fitted with respect to phenol concentration
using the model of Han and Levenspiel.
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Fig 8. The growth data as fitted with respect to phenol concentration
using the model of Moser.
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Fig 9. The growth data as fitted with respect to phenol concentration
using the model of Webb.

Table 2. Statistical analysis of the various fitting models.

Model p RMSE adR? MPSD AICc BIC HQC BF AF
Luong 4 0212 na. na. n.a. n.a. n.a. n.a. n.a.
Yano 4 0.045 0.74 6150 -7.335 -47.017 -49.478 1.362 1.545
Tessier-

Edward 3 0.046 0.74 56.84 -25.700 -46.795 -48.641 1.363 1.607
Aiba 3 0.034 0.87 4448 -30.698 -51.793 -53.639 1.248 1.397
Haldane 3 0053 0.59 63.05 -23.563 -44.658 -46.504 1.534 1.796
Monod 2 0.104 -8.26 9647 -22.450 -34.291 -35.522 1.396 2.430
Han and

Levenspiel 5 0.596 -11.3 123.61 89.865 -5.738 -8.814 5.669 5.669
Moser 3 0.093 -13.0 16991 -14.388 -35.483 -37.329 1.127 2.540
Hinshlewood4  0.141 -2.7 13451 11.081 -28.601 -31.062 0.925 1.567
Webb 4 0.042 0.77 6099 -8324 -48.007 -50.468 1.547 1.651
Note:

P no of parameters

RMSE Root Mean Square Error
AdjR?> Adjusted Coefficient of determination
MPSD Marquardt's percent standard deviation
BF Bias factor

AF  Accuracy factor

na. notavailable

Maximum reduction rate, half saturation constant for
maximal reduction, and half inhibition constant were the
designated values of the Aiba constants, which are represented
by fimax, Ks, and K; were 1.30+1.40 hr'! (S.E. or Standard error),
524.64+753.63 mg/L (S.E.), and 609.78+196.34 mg/L (S.E.),
respectively. The results of curve fitting interpolation should not
be regarded as the true value. The actual gima is defined as the
point at which the slope's gradient reaches zero; in this case, it
was determined to be 0.295 h'!' at a phenol concentration of 360
mg/L. The equation for the Aiba model, utilizing the values
derived from the fitting, is presented as follows;

S
- 130——— (_ —)
Hm 52464+ 5 P\ 609.78

Models such as those proposed by Luong, Teissier, and
Hans Levenspiel have been established to address scenarios
where the growth rate approaches zero at elevated substrate
concentrations, a limitation of the earlier Monod model.
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Excessive substrate concentrations can exert toxic and
inhibitory effects on microbial growth. The current application of
the Haldane model for assessing the impact of toxic xenobiotics
on xenobiotic-degrading bacteria primarily focuses on phenol-
degrading microorganisms. This is subsequently referenced by
Teissier. Other models were found to be less frequently reported,
primarily because, in many instances, only the Haldane model
was employed to assess the impact of phenol on the growth or
degradation rate of microorganisms in phenol [47,48,48-50]. In
1930, Haldane introduced his model, which is now referred to as
the Haldane model.

The model is considered an advancement of the Monod
model. The model incorporates a third constant, Ki, to address
the inhibition of the specific growth rate that is dependent on
substrate  concentration. = The  substrate  concentration
corresponding to a specific growth rate that is half of the
maximum growth rate, in the absence of inhibition, is defined as
the inhibition constant, or Ks. High concentrations of hazardous
substrates may impede the specific growth rate of an organism.
The model is capable of handling both hazardous and non-
hazardous substrates. The Haldane model effectively
characterizes all stages of growth rate kinetics. The Haldane
model was extensively employed due to its -effective
representation of growth rates across both low and high substrate
concentrations. Prior to the widespread adoption of the Haldane
model, the classical Monod model was the most frequently
employed model.

In 1942, Jacques Monod introduced the Monod model to
elucidate the relationship between specific growth rate and
substrate consumption rate in a bioreactor. The Michaelis-
Menten equation and the Monod equation, although similar in
appearance, are grounded in theoretical frameworks rather than
empirical observations [26]. The Monod equation for the specific
growth rate parallels the Michaelis-Menten expression for
enzyme kinetics and can be articulated using constants. The
methods provided for calculating vmar and Kn in enzyme
reactions can theoretically be applied to determine 4max and Ks as
well. The model can be defined in its various versions using
substrate concentration alone or in conjunction with biomass
concentration. X represents biomass concentration, K denotes
the half-saturation constant, the specific bacterial growth rate is
indicated, and zimax refers to the maximum bacterial growth rate.
The maximum growth rate and the half-saturation constant of
bacteria remain unchanged. The Monod model in the bioreactor
assumes the presence of a single substrate that limits growth.

The Monod model has several limitations regarding its
applicability as a model [51]. At elevated substrate
concentrations, the initial restriction becomes evident. The
maximum specific growth rate remains unaffected by substrate
concentration at elevated levels. A second restriction arises under
conditions of low substrate concentration. Growth at low
substrate concentrations is contingent upon the specific substrate
utilized. The Monod model is not applicable in the presence of
substrate inhibition [29,32,52]. Analogous to the Michaelis-
Menten kinetics model, at low substrate concentrations, the
growth rate exhibits first-order behavior with respect to substrate
concentrations, whereas at high substrate concentrations, the
growth rate demonstrates zero-order behavior with respect to
substrate concentrations. The Haldane model and various
substrates exhibit inhibition at elevated substrate concentrations,
as evidenced by the negative slope of the growth rate, indicating
a negative order of reaction. In numerous xenobiotics or
hazardous compounds, bioremediation is effective; however,
toxic substrates that inhibit bacterial growth and substrate

consumption render the Monod models ineffective, necessitating
the use of alternative substrate inhibition models [53—-57]. The
Aiba model is the second-most popular model, after the Haldane
model, and it recognizes the substrate inhibition model, which
illustrates microbial growth under inhibitory substrate
concentrations (Table 3). The Aiba model is frequently
applicable in bioprocesses involving growth on hazardous
compounds, including phenol. The classical or traditional Monod
model posits that increased substrate availability enhances
microbial growth until saturation is attained. The Aiba model, on
the other hand, posits that excessive substrate may inhibit
microbial activity, providing a more accurate depiction of
scenarios where substrate toxicity constrains microbial function,
especially when grown on toxic substrates. The model describes
microbial growth that initially increases with substrate
concentration, but at high substrate concentrations, it will decline
due to inhibition after a specific threshold concentration. The
exponential inhibition term describes or models the extent to
which elevated substrate concentrations diminish microbial
activity. The Aiba model, like the Haldane model, is predicated
on the interaction between enzymes and substrates.

The Aiba model has been utilized to model substrate
inhibition kinetics of numerous microbial bioprocesses [71-80],
and will continue to find utility after the Haldane model. It has
been extensively utilized in modeling wastewater treatment,
particularly when the growth rate of phenol- or other xenobiotic-
degrading bacteria is diminished at elevated substrate
concentrations. The model is beneficial in fermentation
processes, bioengineering, and process control, as it helps
understand how substrates behave at specific concentrations and
how to determine the optimal substrate quantities to manage their
toxicity, thereby improving treatment effectiveness and microbial
consistency.

CONCLUSION

In this work, we found that the growth rate of Baccillus sp.
strain Neni-10 was significantly impeded at exceedingly high
concentrations of phenol/, and the Aiba model demonstrated
strong utility in describing microbial growth inhibition at
elevated phenol concentrations. Its exponential inhibition term
effectively captured the decline in specific growth rate due to
substrate toxicity, a limitation of the classical Monod model.
While the Haldane model remains the most robust and widely
applied for xenobiotic biodegradation, the Aiba model offers a
valuable alternative for modeling systems where phenol acts as
both substrate and inhibitor. Its future applications in bioreactor
optimization and wastewater treatment systems underline its
relevance in environmental biotechnology. In general, both
models enhance our ability to understand and predict microbial
behavior under inhibitory substrate conditions, thereby allowing
for improved process control and environmental remediation
strategies.

Note on Use of AI Tools

The authors utilized various computer tools to assist in
writing and reviewing this manuscript. ChatGPT (by OpenAl)
was used to help organize ideas, explain scientific terms more
clearly, and write better sentences. Grammarly helped to correct
grammar and spelling mistakes. QuillBot was used to rephrase
some sentences and make them easier to read. All the writing
produced by these tools was carefully reviewed and edited by the
authors. The authors ensured that all information is accurate and
adheres to academic standards. The authors are fully responsible
for everything written in this paper, including the results and
conclusions.
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Table 3. A summary of selected secondary modelling of the best models and kinetic parameters governing the phenol-degrading bacterium.

Microorganism Best Temp Max Hmax K, K; S, K; or K, Reference

Model °C phenol (b)) (mgL™") (mgL™") (mgL™")

Pseudomonas putida Haldane 26+£0.5 500 0.436 6.19 54.1 - [58]
Rhodococcus Haldane 35 1110 0.11 99.03 354 - [22]
AQ5NOL1

Pseudomonas putida Haldane 30 - 0.569 18.539 99.374 - [59]
Mixed consortium Han- 27 800 0.4029 110.93 790 [60]

Levenspiel

Pseudomonas sp. Haldane 20+2 400 0.0324 0.0324 0.0324 - [61]
Pseudomonas sp. Luong 29+2 400 0.0238 0.0238 - 400 [61]
Mixed bacterial culture Luong 30 350 1.04 153.2 - 540 [23]
Bacillus cereus MTCC Luong 30 - 0.755 925.8 - 1859.3 [62]
9817

Pseudomonas 1ES-Ps-1 Luong 35 2000 0.38 111 - 2000 [63]
Pseudomonas IES-S  Luong 35 2000 0.63 77 - 2174 [63]
Basillus IES-B Luong 35 2000 1.2 102 - 2190 [63]
Pseudomonas Haldane 30 - 0.229 0.374 729 [64]
fluorescence

Pseudomonas Yano and 30 - 0.229 0.377 - 411 [64]
fluorescence Koga

Pseudomonas Aiba 30 - 0.229 0.376 2008 [64]
fluorescence

Sulfolobus Haldane 80 - 0.094 71.7 319.4 93 [65]
solfataricus 98/2

Candida tropicalis Haldane 30 2,400 0.3407 15.81 169.0 - [66]
PHBS

Mixed consortium of Haldane 30 800 0.1301 99.84 2209 - [67]
bacteria

Alcaligenes Haldane 30 1410 0.48 188.16 469.23 297.1 [68]
faecalis B6-2

Alcaligenes Haldane 30 1410 0.14 32.85 447.44 121.2 [68]
faecalis B8-1

Alcaligenes Haldane 30 1410 0.38 267.3 1847.82 702.8 [68]
faecalis D3-1

Acinetobacter Haldane 30 1410 0.55 483.83 2582.63 1117.8 [68]
Jjohnsonii D1

Pseudomonas

citronellolis PDB16 ~ Edwards 35t037 1200 0.385 13291 507.58 - [69]
Candida tropicalis First-order

PHBS (PBR) 30 2400 - - - - [70]
Pseudomonas

fredriksbergensis Haldane 28 700 0.062 11 121 - [71]
Rhodococcus sp. Strain Haldane

SKC 30 1500 0.3 36.40 418.79 [72]
Rhodococcus ruber C1 Haldane 40 2000 1.527 69.74 4895 [73]
Comamonas

testosteroni strain F4  Not available 30 1000 - - - [74]
Bacillus  sp.  Strain

Neni-10 Aiba 30 2000 1.30 524.64 609.78 This study
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