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INTRODUCTION 
 
The environment is chock-full of harmful chemicals, including 
phenol, that are hazardous to human health. Globally, industries 
generated more than 80,000 chemicals for industrial use, and 
even more compounds were released into the atmosphere without 
sufficient testing to ensure their safety [1]. Phenol is a unique and 
ubiquitous industrial pollutant, as well as a potentially hazardous 
chemical resulting directly from industrialization. The 
contamination of soils and water bodies by phenol has escalated 
throughout the years, immediately raising concerns over its 
removal from the environment [2]. Symptoms of acute phenol 
poisoning may result from inhalation of phenol or direct dermal 
exposure. Phenol poses significant irritant effects on the eyes, 

skin, and mucous membranes. The symptoms in humans include 
tachycardia, dyspnea, impaired coordination, tremors, syncope, 
and even coma at high concentrations. Other symptoms include 
irregular breathing patterns, tremors and muscle weakness, loss 
of equilibrium, convulsions, coma, and respiratory failure. 
Studies in rodents, including rats, mice, and rabbits, show 
elevated acute toxicity following oral exposure to phenol [3–6]. 
The Reference Dose for phenol was established at 0.6 mg/kg/day 
following studies on rats that indicated a reduction in fetal body 
weights. The reference dosage is an oral exposure evaluation for 
the general population, including sensitive subgroups, expected 
to have no appreciable risk of harmful non-cancerous effects 
during a lifetime. The reference dose is below the threshold at 
which cancer may arise. Increased exposures beyond the 
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 ABSTRACT 
Phenol is particularly harmful among the numerous xenobiotic compounds produced by the 
industry. A significant portion of the more than 1.5 million tons of sludge waste produced 
globally for industrial use consists of phenol and phenolic compounds, some of which are 
released into the environment without adequate safety assessment or control, leading to soil and 
water pollution. The potential use of phenol as a carbon source by many bacterial species can 
help mitigate phenol pollution through bioremediation of this hazardous material. This study 
employs several microbial growth kinetics models that govern the growth rate of a bacterium on 
phenol, with a focus on the comparative performance of the popular Haldane model alongside 
other models. The specific maximum growth rate (μₘ) was initially estimated using the no-lag 
modified logistics model. Among the kinetic models evaluated, the Aiba model exhibited the 
highest precision and accuracy, as demonstrated by statistical indices, including the lowest MPSD 
and AICc values, and bias and accuracy factors closest to 1. Despite variability in its parameter 
estimates, the Aiba model provided a meaningful kinetic description of phenol inhibition at high 
concentrations. Models such as Monod, Moser, Pamukoglu and Kargi, and Han-Levenspiel 
showed poor fitting. The maximum reduction rate, half-saturation constant for maximal 
reduction, and half-inhibition constant were the designated values of the Aiba constants, which 
were represented by (µm, Ks, and Ki) as 1.30±1.40 hr-1 (S.E.), 524.64±753.63 mg/L (S.E.), and 
609.78±196.34 mg/L (S.E.), respectively. The results of curve fitting interpolation should not be 
regarded as the true value. The actual µmax is defined as the point at which the slope's gradient 
reaches zero; in this case, it was determined to be 0.295 h-1 at a phenol concentration of 360 mg/L. 
This study highlights the advantages of employing substrate inhibition models, such as the Aiba 
and Haldane models, for accurately characterizing microbial growth in the presence of toxic 
xenobiotics, like phenol, especially for optimizing bioprocesses, such as wastewater treatment. 
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reference dosage elevate the likelihood of adverse health effects. 
Prolonged exposure beyond the recommended dosage does not 
invariably preclude adverse health effects. The EPA possesses 
limited trust in the study utilized to establish the reference dose 
due to the administration method of gavage employed in that 
research. Nonetheless, the evidence encompasses multiple 
supplemental investigations (chronic, subchronic, and 
reproductive/developmental), leading the EPA to possess 
medium confidence in the reference dose overall [3,7–11]. 
 

The bioremediation process is currently the predominant 
treatment technology for phenol-laden wastewater globally, 
particularly at very low concentrations, and has attracted 
significant interest. Compared to physicochemical approaches, 
bioremediation offers numerous advantages, including a simple 
pre-treatment process, minimal initial equipment investment, 
high treatment capacity, sustainability, and the absence of 
secondary pollutants. Consequently, researchers must investigate 
bioremediation techniques for phenolic wastewater utilizing 
phenol-degrading microorganisms. A significant number of 
microorganisms capable of metabolizing phenol have been 
identified so far [12–19]. 
 
The optimization of biological transformation processes is 
constrained by the lack of readily available quantitative and 
mathematically processed or guided experimental data. Various 
mathematical models have been employed to simulate the 
metabolic characteristics of xenobiotics upon interaction with 
isolated microbial populations or pure microbial cultures. A 
valuable tool in bacterial growth in the presence of toxic 
chemicals is the relationship between the inhibitory impact of 
increased substrate concentration (S) and the maximum specific 
growth rate (μmax) of the bacteria. The Monod equation is 
traditionally used as a common tool to characterize the 
relationship between growth and substrate consumption on 
nontoxic substrates [20,21]. Conversely, when a substrate 
inhibits its own biodegradation, the original Monod model 
demonstrates limited applicability. The development of new 
constant-carrying derivatives has occurred to enable substrate-
related modifications.  
 

The Haldane model represents substrate inhibition of 
growth or degradation rates and is prevalent in numerous 
published studies. Despite evidence indicating that alternative 
models exhibit greater accuracy when simultaneously 
considering numerous substrate-inhibiting chemicals, such as 
phenol, this model remains extensively utilized. The Haldane 
model is not the sole model presently accessible [22]. Other less-
utilized models include Luong [23,24] and Edward [25]. In 
certain situations, the Haldane may become less optimal due to 
the adoption of more comprehensive models that are presently 
available. It is therefore inadvisable to utilize the Haldane model 
indiscriminately without conducting a thorough statistical 
analysis or error function analysis, and exploring alternative 
models using previously gathered data on growth or degradation 
rates. This study advances previous research by predicting the 
impact of substrate or phenol on bacterial growth rates through 
various substrate inhibition kinetic models. 
 
MATERIALS AND METHODS 
 
Data from primary modeling, especially the μm data from the 
growth of Bacillus sp. strain Neni-10 on phenol [28], were 
utilized in this study. The ten models of inhibition kinetics are 
shown in Table 1. 
 

Table 1. Various mathematical models have been developed for 
degradation kinetics involving substrate inhibition of phenol in B. 
subtilis strain Neni-10. 
 
Author 
 

Degradation Rate Author 

Monod  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑆𝑆 + 𝐾𝐾𝑠𝑠

 
 
[26] 

Haldane  
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
�
 

 
[27] 

Pamukoglu and 
Kargi 

 
µ𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
𝑚𝑚

𝐾𝐾𝑖𝑖
�
 

[28] 

Teissier 
µ𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
𝐾𝐾𝑖𝑖
�−𝑒𝑒𝑒𝑒𝑒𝑒 �

𝑆𝑆
𝐾𝐾𝑠𝑠
�� 

 

 
[29] 

Aiba µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝐾𝐾𝑠𝑠 + 𝑆𝑆 𝑒𝑒𝑒𝑒𝑒𝑒 �−
𝑆𝑆
𝐾𝐾𝑖𝑖
� 

 

 
[30] 

Yano and Koga µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + �𝑆𝑆
2

𝐾𝐾𝑖𝑖
� �1 + 𝑆𝑆

𝐾𝐾�
  

[31] 

 
Han and Levenspiel 
 

 

µ𝑚𝑚𝑚𝑚𝑚𝑚 �1 − �
𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

⎝

⎜
⎛ 𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠 �1 − � 𝑆𝑆𝑆𝑆𝑚𝑚
��

𝑚𝑚

⎠

⎟
⎞

 

 

 
[32] 

 
 
Luong 

µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝑆𝑆 + 𝐾𝐾𝑠𝑠
�1 − �

𝑆𝑆
𝑆𝑆𝑚𝑚
��

𝑛𝑛

 
 
[33] 

Moser µ𝑚𝑚𝑚𝑚𝑚𝑚𝑠𝑠
𝑛𝑛

𝐾𝐾𝑠𝑠 + 𝑠𝑠𝑛𝑛 
[34] 

Webb µ𝑚𝑚𝑚𝑚𝑚𝑚𝑆𝑆 �1 + 𝑆𝑆
𝐾𝐾�

𝑆𝑆 + 𝐾𝐾𝑠𝑠 + 𝑆𝑆2
𝐾𝐾𝑖𝑖

 
[35] 

Hinshelwood µ𝑚𝑚𝑚𝑚𝑚𝑚
𝑆𝑆

𝐾𝐾𝑠𝑠 + 𝑆𝑆 �
1 − 𝐾𝐾𝑝𝑝𝑃𝑃� 

[36] 

   
Note: 
µmax maximal specific growth rate 
Ks  half saturation constant 
Ki  inhibition constant 
Sm  maximal concentration of substrate tolerated 
Kp product inhibition constant 
m, n, K curve parameters 
S substrate concentration 
p product concentration 
 
 
Fitting of the data 
Fitting of the inhibition curves using various growth models was 
performed using the CurveExpert Professional software (Version 
1.6) by nonlinear regression, utilizing the Marquardt algorithm.  
 
Error function analyses 
The error function tests for statistical discrimination utilized in 
this study are root-mean-squared error (RMSE), adjusted 
coefficient of determination (R²) [37], HQ (Hannan and Quinn's 
Criterion) [38], Accuracy Factor (AF) and Bias Factor (BF) [39], 
Marquardt's percent standard deviation (MPSD) [40–42], 
corrected Akaike Information Criterion (AICc) [43,44], Bayesian 
Information Criterion (BIC) [45]. In general, Obi and Pdi 
represent the predicted and observed values, respectively, n is the 
total number of observations, and p is the total number of 
parameters in the model [46]. 
 
RMSE was calculated using the following formula; 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
   (Eqn. 1) 
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BF and AF were calculated using the following formula; 
𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛

𝑖𝑖=1
(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)

𝑛𝑛
�  (Eqn. 2) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 10 �∑ 𝑙𝑙𝑙𝑙𝑙𝑙𝑛𝑛
𝑖𝑖=1

|(𝑃𝑃𝑃𝑃𝑖𝑖/𝑂𝑂𝑂𝑂𝑖𝑖)|
𝑛𝑛

� (Eqn. 3) 
AICc was calculated using the following formula; 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 2𝑝𝑝 + 𝑛𝑛ln �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2(𝑝𝑝+1)+2(𝑝𝑝+2)

𝑛𝑛−𝑝𝑝−2
 (Eqn. 4) 

BIC was calculated using the following formula; 
𝐵𝐵𝐵𝐵𝐵𝐵 = 𝑛𝑛In �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 𝑘𝑘In(𝑛𝑛)   (Eqn. 5) 

 
HQC was calculated using the following formula; 
𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑛𝑛𝑛𝑛𝑛𝑛 �𝑅𝑅𝑅𝑅𝑅𝑅

𝑛𝑛
� + 2𝑘𝑘In(In 𝑛𝑛)  (Eqn. 6) 

Adjusted coefficient of determination (R²) was calculated using 
the following formula; 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅

𝑆𝑆𝑌𝑌2
       (Eqn. 7) 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)
(𝑛𝑛−𝑝𝑝−1)

  (Eqn. 8) 
 
MPSD was calculated using the following formula; 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 100� 1
𝑛𝑛−𝑝𝑝

∑ �𝑂𝑂𝑂𝑂𝑖𝑖−𝑃𝑃𝑃𝑃𝑖𝑖
𝑂𝑂𝑂𝑂𝑖𝑖

�
2

𝑛𝑛
𝑖𝑖=1   (Eqn. 9) 

 
RESULTS AND DISCUSSION 
 
The results of the RMSE, AICc, adjustedR2, F-test, and bias and 
accuracy factor comparisons demonstrate that the Aiba model is 
the most accurate and precise of the kinetic models considered 
(Table 2). The Aiba model exhibited the lowest values for 
MPSD, AICcc, HQC, BIC, RMSE and adjR2, BF, and AF, closest 
to 1, and was the second-best model based on the rest of the error 
function scores. The resultant fittings (Figs. 1 to 9) demonstrate 
a satisfactory fit, except for the Luong, Moser, Monod, 
Pamukoglu, and Kargi and Han Levenspiel models.  
 

 
Fig 2.The growth data as fitted concerning phenol concentration using 
the model of Monod. 

 
 
Fig 3. The growth data as fitted with respect to phenol concentration 
using the model of Haldane. 
 

 
Fig 4. The growth data as fitted with respect to phenol concentration 
using the model of Teissier. 
 

 
Fig 5. The growth data as fitted with respect to phenol concentration 
using the model of Aiba. 
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Fig 6. The growth data as fitted with respect to phenol concentration 
using the model of Yano and Koga. 
 

 
 
Fig 7. The growth data as fitted with respect to phenol concentration 
using the model of Han and Levenspiel. 
 

 
 
Fig 8. The growth data as fitted with respect to phenol concentration 
using the model of Moser. 
 
 
 
 
 
 
 
 
 
 

 
 

 
Fig 9. The growth data as fitted with respect to phenol concentration 
using the model of Webb. 
 
Table 2. Statistical analysis of the various fitting models. 
 

Model p RMSE adR2 MPSD AICc BIC HQC BF AF 
Luong 4 0.212 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
Yano 4 0.045 0.74 61.50 -7.335 -47.017 -49.478 1.362 1.545 
Tessier-
Edward 3 0.046 0.74 56.84 -25.700 -46.795 -48.641 1.363 1.607 
Aiba 3 0.034 0.87 44.48 -30.698 -51.793 -53.639 1.248 1.397 
Haldane 3 0.053 0.59 63.05 -23.563 -44.658 -46.504 1.534 1.796 
Monod 2 0.104 -8.26 96.47 -22.450 -34.291 -35.522 1.396 2.430 
Han and 
Levenspiel  5 0.596 -11.3 123.61 89.865 -5.738 -8.814 5.669 5.669 
Moser 3 0.093 -13.0 169.91 -14.388 -35.483 -37.329 1.127 2.540 
Hinshlewood 4 0.141 -2.7 13451 11.081 -28.601 -31.062 0.925 1.567 
Webb 4 0.042 0.77 60.99 -8.324 -48.007 -50.468 1.547 1.651 

Note: 
p  no of parameters 
RMSE   Root Mean Square Error 
AdjR2 Adjusted Coefficient of determination 
MPSD Marquardt's percent standard deviation 
BF  Bias factor 
AF  Accuracy factor 
n.a.  not available  
 

Maximum reduction rate, half saturation constant for 
maximal reduction, and half inhibition constant were the 
designated values of the Aiba constants, which are represented 
by µmax, Ks, and Ki were 1.30±1.40 hr-1 (S.E. or Standard error), 
524.64±753.63 mg/L (S.E.), and 609.78±196.34 mg/L (S.E.), 
respectively. The results of curve fitting interpolation should not 
be regarded as the true value. The actual µmax is defined as the 
point at which the slope's gradient reaches zero; in this case, it 
was determined to be 0.295 h-1 at a phenol concentration of 360 
mg/L. The equation for the Aiba model, utilizing the values 
derived from the fitting, is presented as follows; 
 

𝜇𝜇𝑚𝑚 = 1.30
𝑆𝑆

524.64 + 𝑆𝑆
𝑒𝑒𝑒𝑒𝑒𝑒 �−

𝑆𝑆
609.78

� 
 

Models such as those proposed by Luong, Teissier, and 
Hans Levenspiel have been established to address scenarios 
where the growth rate approaches zero at elevated substrate 
concentrations, a limitation of the earlier Monod model.  
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Excessive substrate concentrations can exert toxic and 
inhibitory effects on microbial growth. The current application of 
the Haldane model for assessing the impact of toxic xenobiotics 
on xenobiotic-degrading bacteria primarily focuses on phenol-
degrading microorganisms. This is subsequently referenced by 
Teissier. Other models were found to be less frequently reported, 
primarily because, in many instances, only the Haldane model 
was employed to assess the impact of phenol on the growth or 
degradation rate of microorganisms in phenol [47,48,48–50]. In 
1930, Haldane introduced his model, which is now referred to as 
the Haldane model.  

 
The model is considered an advancement of the Monod 

model. The model incorporates a third constant, Ki, to address 
the inhibition of the specific growth rate that is dependent on 
substrate concentration. The substrate concentration 
corresponding to a specific growth rate that is half of the 
maximum growth rate, in the absence of inhibition, is defined as 
the inhibition constant, or Ks. High concentrations of hazardous 
substrates may impede the specific growth rate of an organism. 
The model is capable of handling both hazardous and non-
hazardous substrates. The Haldane model effectively 
characterizes all stages of growth rate kinetics. The Haldane 
model was extensively employed due to its effective 
representation of growth rates across both low and high substrate 
concentrations. Prior to the widespread adoption of the Haldane 
model, the classical Monod model was the most frequently 
employed model. 
 

In 1942, Jacques Monod introduced the Monod model to 
elucidate the relationship between specific growth rate and 
substrate consumption rate in a bioreactor. The Michaelis-
Menten equation and the Monod equation, although similar in 
appearance, are grounded in theoretical frameworks rather than 
empirical observations [26]. The Monod equation for the specific 
growth rate parallels the Michaelis-Menten expression for 
enzyme kinetics and can be articulated using constants. The 
methods provided for calculating vmax and Km in enzyme 
reactions can theoretically be applied to determine µmax and KS as 
well. The model can be defined in its various versions using 
substrate concentration alone or in conjunction with biomass 
concentration. X represents biomass concentration, Ks denotes 
the half-saturation constant, the specific bacterial growth rate is 
indicated, and μmax refers to the maximum bacterial growth rate. 
The maximum growth rate and the half-saturation constant of 
bacteria remain unchanged. The Monod model in the bioreactor 
assumes the presence of a single substrate that limits growth. 
 

The Monod model has several limitations regarding its 
applicability as a model [51]. At elevated substrate 
concentrations, the initial restriction becomes evident. The 
maximum specific growth rate remains unaffected by substrate 
concentration at elevated levels. A second restriction arises under 
conditions of low substrate concentration. Growth at low 
substrate concentrations is contingent upon the specific substrate 
utilized. The Monod model is not applicable in the presence of 
substrate inhibition [29,32,52]. Analogous to the Michaelis-
Menten kinetics model, at low substrate concentrations, the 
growth rate exhibits first-order behavior with respect to substrate 
concentrations, whereas at high substrate concentrations, the 
growth rate demonstrates zero-order behavior with respect to 
substrate concentrations. The Haldane model and various 
substrates exhibit inhibition at elevated substrate concentrations, 
as evidenced by the negative slope of the growth rate, indicating 
a negative order of reaction. In numerous xenobiotics or 
hazardous compounds, bioremediation is effective; however, 
toxic substrates that inhibit bacterial growth and substrate 

consumption render the Monod models ineffective, necessitating 
the use of alternative substrate inhibition models [53–57]. The 
Aiba model is the second-most popular model, after the Haldane 
model, and it recognizes the substrate inhibition model, which 
illustrates microbial growth under inhibitory substrate 
concentrations (Table 3). The Aiba model is frequently 
applicable in bioprocesses involving growth on hazardous 
compounds, including phenol. The classical or traditional Monod 
model posits that increased substrate availability enhances 
microbial growth until saturation is attained. The Aiba model, on 
the other hand, posits that excessive substrate may inhibit 
microbial activity, providing a more accurate depiction of 
scenarios where substrate toxicity constrains microbial function, 
especially when grown on toxic substrates. The model describes 
microbial growth that initially increases with substrate 
concentration, but at high substrate concentrations, it will decline 
due to inhibition after a specific threshold concentration. The 
exponential inhibition term describes or models the extent to 
which elevated substrate concentrations diminish microbial 
activity. The Aiba model, like the Haldane model, is predicated 
on the interaction between enzymes and substrates.  
 

The Aiba model has been utilized to model substrate 
inhibition kinetics of numerous microbial bioprocesses [71–80], 
and will continue to find utility after the Haldane model. It has 
been extensively utilized in modeling wastewater treatment, 
particularly when the growth rate of phenol- or other xenobiotic-
degrading bacteria is diminished at elevated substrate 
concentrations. The model is beneficial in fermentation 
processes, bioengineering, and process control, as it helps 
understand how substrates behave at specific concentrations and 
how to determine the optimal substrate quantities to manage their 
toxicity, thereby improving treatment effectiveness and microbial 
consistency.  

CONCLUSION 
 
In this work, we found that the growth rate of Baccillus sp. 

strain Neni-10 was significantly impeded at exceedingly high 
concentrations of phenol, and the Aiba model demonstrated 
strong utility in describing microbial growth inhibition at 
elevated phenol concentrations. Its exponential inhibition term 
effectively captured the decline in specific growth rate due to 
substrate toxicity, a limitation of the classical Monod model. 
While the Haldane model remains the most robust and widely 
applied for xenobiotic biodegradation, the Aiba model offers a 
valuable alternative for modeling systems where phenol acts as 
both substrate and inhibitor. Its future applications in bioreactor 
optimization and wastewater treatment systems underline its 
relevance in environmental biotechnology. In general, both 
models enhance our ability to understand and predict microbial 
behavior under inhibitory substrate conditions, thereby allowing 
for improved process control and environmental remediation 
strategies. 
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Table 3. A summary of selected secondary modelling of the best models and kinetic parameters governing the phenol-degrading bacterium. 
 

 
Microorganism 

 
Best 
Model 

 
Temp 
oC 

 
Max 
phenol 

 
µmax 
(h-1) 

 
Ks 
(mgL-1) 

 
Ki 
(mgL-1) 

 
Sm, K1 or K2 
(mgL-1) 

 
Reference 

Pseudomonas putida Haldane 26±0.5 500 0.436  6.19  54.1 - [58] 
Rhodococcus 
AQ5NOL1 

Haldane 35 1110 0.11 99.03 354 - [22] 

Pseudomonas putida Haldane 30 - 0.569 18.539 99.374 - [59] 
Mixed consortium Han-

Levenspiel 
27 800 0.4029 110.93  790 [60] 

Pseudomonas sp. Haldane 29±2 400 0.0324 0.0324 0.0324 - [61] 
Pseudomonas sp. Luong 29±2 400 0.0238 0.0238 - 400 [61] 
Mixed bacterial culture Luong 30 350 1.04 153.2 - 540 [23] 
Bacillus cereus MTCC 
9817 

Luong  30 - 0.755 925.8 - 1859.3 [62] 

Pseudomonas IES-Ps-1 Luong 35 2000 0.38 111 - 2000 [63] 
Pseudomonas IES-S Luong 35 2000 0.63 77 - 2174 [63] 
Basillus IES-B  Luong 35 2000 1.2 102 - 2190 [63] 
Pseudomonas 
fluorescence 

Haldane 30 - 0.229 0.374  729 [64] 

Pseudomonas 
fluorescence 

Yano and 
Koga 

30 - 0.229 0.377 - 411 [64] 

Pseudomonas 
fluorescence 

Aiba 30 - 0.229 0.376  2008 [64] 

Sulfolobus 
solfataricus 98/2 

Haldane 80 - 0.094 77.7 319.4 93  [65] 

Candida tropicalis 
PHB5 

Haldane 30 2,400 0.3407 15.81 169.0 - [66] 

Mixed consortium of 
bacteria 

Haldane 30 800 0.1301 99.84 220.9 - [67] 

Alcaligenes 
faecalis B6-2 

Haldane 30 1410 0.48 188.16 469.23  297.1 [68] 

Alcaligenes 
faecalis B8-1 

Haldane 30 1410 0.14 32.85 447.44 121.2 [68] 

Alcaligenes 
faecalis D3-1 

Haldane 30 1410 0.38 267.3 1847.82  702.8 [68] 

Acinetobacter 
johnsonii D1 

Haldane 30 1410 0.55  483.83 2582.63 1117.8  [68] 

Pseudomonas 
citronellolis PDB16 Edwards 35 to 37 1200 0.385 132.91 507.58 - [69] 
Candida tropicalis 
PHB5 

First-order 
(PBR) 30 2400 - - - - [70] 

Pseudomonas 
fredriksbergensis Haldane 28 700 0.062 11 121 - [71] 
Rhodococcus sp. Strain 
SKC 

Haldane 
 30 1500 0.3 36.40 418.79  [72] 

 
 Rhodococcus ruber C1  Haldane 40 2000 1.527 69.74 4895  [73] 
Comamonas 
testosteroni strain F4 Not available 30 1000 - - -  [74] 
Bacillus sp. Strain 
Neni-10 Aiba 30 2000 1.30 524.64 609.78  This study 
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