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HISTORY ABSTRACT

Primary modeling of microbial growth is essential for determining key parameters such as the
maximum specific growth rate (u»), which are foundational for secondary modeling. Models such
as the modified Gompertz, modified Logistic, modified Richards, Buchanan-3-phase, Baranyi-
Roberts, modified Schnute, von Bertalanffy, and Morgan-Mercer-Flodin (MMF) models
clucidate the impact of substrates on bacterial growth and biotransformation processes, which are
vital for biotechnological applications such as wastewater treatment and bioremediation. In this
study, the growth of a previously isolated phenol-degrading Pseudomonas sp. strain Neni-4 on
phenol was modeled using the aforementioned primary models. Experimental data indicated that
phenol concentrations ranging from 500 to 2500 mg/L were toxic, slowing bacterial growth and
increasing lag periods from 5 to 7 hours. Among the primary models tested, the Huang model
provided the best fit, evidenced by a high adjusted coefficient of determination, low RMSE, and
AICc values, and favorable accuracy (AF) and bias factors (BF). The robustness of the Huang
model highlights its suitability for modeling bacterial growth under toxic conditions, providing
valuable insights for optimizing biotechnological processes that involve bacterial adaptation and
growth under stress conditions. This model's ability to accurately describe the growth kinetics
under such challenging conditions makes it a reliable tool for further bioprocess optimization and
environmental applications.
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INTRODUCTION but they come with high costs and generate additional

environmental contamination. The breakdown of phenol through

The chemical compound knownas phenol emerges from
industrial operations, including oil refining and petrochemical
production, as well as in the manufacturing of compounds like
phenolic resin, pigments, dyestuffs, paints, pharmaceutical and
coal processing, and electronics manufacturing. Phenol is a toxic
substance that contains a benzene ring structure with a hydroxyl
group. Phenol toxicity stems from its ability to disrupt cellular
membranes in acute toxicity and in long-term chronic toxicity by
causing  oxidative  stress, mitochondrial  dysfunction,
immunotoxicity, genotoxicity, and DNA damage, to name a few
[1]. The environmental buildup of phenol becomes severe
because this compound resists natural microbial breakdown
processes, as it is toxic to most microbes. Thus, phenol poses
substantial health risks and ecological threats to soil and river
ecosystems, as well as underground water sources. Industrial
facilities remove phenol from wastewater by implementing
physical extraction, chemical oxidation, and activated
carbon adsorption methods. These methods show effectiveness,

bacterial or microbial processes represents a cost-efficient and
environmentally beneficial method especially when pollution is
very dilute or in soils. Microorganisms utilize phenol as
their energy source to transformit into harmless by-products
through their biological metabolic activities.

The release of phenol intothe environment occurs
through both industrial accidents and unintentional spills. The
Indonesian tanker MV Endah Lestari, which capsized in 2001,
resulted in the release of 600 tonnes of phenol and 18 tonnes of
fuel into the ocean. The accident resulted in extensive pollution,
which led to the death of marine life in 85 offshore fish cages [2].
Phenol and its compounds are hazardous to humans and other
organisms, causing irritation to mucous membranes, skin, eyes,
and the respiratory tract. Prolonged skin contact can lead to third-
degree burns, and long-term exposure can result in liver and
kidney damage [1]. Their toxicity is due to hydrophobicity and
the production of phenoxyl radicals [3]. Phenol pollution is a
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significant environmental issue, exacerbated by coal mining
activities in Sumatra [4]. Primary models can accurately fit the
sigmoidal characteristics of bacterial growth curves, including
the lag, log (exponential), and stationary phases. This
understanding facilitates the prediction of bacterial responses to
environmental changes and nutrient availability. Establishing
bacterial growth under control, non-inhibitory conditions is
essential prior to investigating the effects of inhibitors, as this
baseline facilitates comparative analysis in secondary modeling.
Primary models elucidate growth under non-stressful conditions,
while secondary models can forecast the impact of inhibitors on
growth kinetics. The integration of primary and secondary
models establishes a framework that improves the prediction and
manipulation of microbial behavior in biotechnological
applications. Primary models serve as essential frameworks in
microbial kinetics, offering critical parameters and insights into
bacterial growth in controlled environments. The parameters are
essential for secondary models addressing substrate inhibition,
which is crucial for thorough bioprocess optimization.
Consequently, the integration of primary and secondary models
provides a comprehensive framework for analyzing and
influencing microbial growth across diverse industrial and
environmental contexts.

In wastewater treatment, it is essential to understand the
specific growth rate (um), lag phase duration, and maximum
population density through primary models. These parameters
optimize conditions to enhance bacterial degradation of
contaminants. In bioremediation, understanding bacterial growth
and responses to vary pollutant concentrations is essential for
formulating effective environmental cleanup strategies. Primary
models such as the modified Gompertz, modified Logistic,
modified Richards, Baranyi-Roberts, and modified Schnute offer
essential data for these applications. Secondary models
developed by Haldane, Andrews, Yano, and Aiba build upon
foundational data to incorporate inhibitory effects, thereby
enhancing the understanding of microbial kinetics across diverse
conditions. This approach is essential for optimizing
biotechnological processes to enhance performance and
efficiency [5—13]. Previously, we have isolated several phenol-
degrading bacteria from Indonesian soils [14—16]. This study
reports the isolation of a novel and more efficient bacterial strain
capable of degrading phenol at a significantly faster rate than
many phenol-degrading strains reported to date. We intend to
utilize these strains in future local remediation of phenol-
contaminated soils, and the isolation of local phenol-degraders is
vital, as importing foreign, nonindigenous phenol-degraders
might cause unwanted ecological issues in the near future [17].
To support its biotechnological potential, growth modeling was
carried out using several well-established kinetic models,
including the modified Gompertz, modified Logistic, modified
Richards, Baranyi-Roberts, von Bertalanffy, MMF, Huang, and
modified Schnute models. The objective is to determine the most
suitable model for accurately describing the growth dynamics of
this high-performing strain, thereby enhancing predictive
capabilities and informing the optimization of phenol
biodegradation processes.

MATERIALS AND METHODS

Phenol-degrading bacterium growth medium

This bacterium was previously isolated as a molybdenum reducer
[18]. The growth of this bacterium on phenol was carried out
according to [15]. An aliquot of 0.1 mL from a freshly cultured
overnight suspension of the bacterium in nutrient broth was
transferred to 100 mL of medium contained within a 250 mL
volumetric flask. The growth medium used was Minimal Salt

Medium (MSM), which included phenol at various
concentrations from 550 to 2250 mg/L as the only carbon source
and (g/L) 0.50 NH4NOs, 0.50 KH2PO4, 0.50 MgSO4- 7H-0, 0.10
CaClz, 0.50 K-HPO4, 0.20 NaCl and 0.01 MnSOs*7H-0, 0.01
FeSOa4+7H-0 [4]. The pH of this medium was adjusted to pH 7.0.
For sterilization purposes, PTFE syringe filters (0.45 micron)
were employed. This culture was then incubated at 25°C on a
shaking incubator (Certomat R, USA) set to 150 rpm, continuing
for a period of 48 h. One mL samples from the bacterial culture
were serially diluted using sterile tap water for subsequent
enumeration of colony-forming units per milliliter (CFU/mL)
and then converted into biomass (mg) according to standard
method [19].

Fitting of the data

Nonlinear regression, utilizing the Marquardt method, was
employed to fit growth data to nonlinear equations (Table 1),
aiming to minimize the sum of squared residuals. This study
utilized CurveExpert Professional software (Version 1.6). This
iterative method achieves the best fit by minimizing the
discrepancy between predicted and observed values. The
program facilitates both manual and automated input of initial
parameter estimates. A four-data point steepest ascent search
yielded the maximum specific growth rate (u») for Mo-blue
production. The x-axis intercept of the projected line from the
steepest ascent was utilized to determine the duration of the lag
phase (/). The final data point indicating the plateau period
facilitated the estimation of the asymptotic value (4).

Table 1. Growth models used in this study.

Model p_ Equation
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Note:

A= Microorganism growth upper asymptote;

No=Microorganism growth lower asymptote;

u»= maximum specific microorganism growth rate;

v= affects near which asymptote maximum growth occurs.

A=lag time

e = exponent (2.718281828)

t = sampling time

a,p,k, &= curve fitting parameters

ho=a dimensionless parameter quantifying the initial physiological state of the reduction
process. For the Baranyi-Roberts model, the lag time (1) (h™') or (d"') can be calculated as ho=gim
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For modified Schnute, 4 =m/a

Statistical analysis

The following tests or statistical discrimination or error
functions include Bias Factor (BF), Accuracy Factor (AF) [20],
root-mean-squared error (RMSE), adjusted coefficient of
determination (R?) [21], and corrected Akaike Information
Criterion (AICc) [22,23]. In general, n is the total number of
observations, Obi and Pdi are the predicted and observed
values, and p is the total number of parameters of the model
[24].

RMSE was calculated using the following formula;

RMSE = \/@
n-p

BF and AF were calculated using the following formula;

(Eqn. 1)

Bias factor = 10 (2?:1 log %) (Eqn. 2)
Accuracy factor = 10 ( ™ log l(Pdinﬂ) (Eqn. 3)

AICc was calculated using the following formula;

_ RSS 2(p+1)+2(p+2)
AlCe = 2p +nln (22) + TR (Ban. 4)
Adjusted coefficient of determination (R?) was calculated using

the following formula;

RMS

Adjusted (R?) =1 — = (Eqn. 5)
Y
y 2y _ 1 _ A-RH(n-1)
Adjusted (R*) =1 D) (Eqn. 6)
RESULTS AND DISCUSSION

The growth of the bacterium on phenol

Phenol-degrading bacteria are optimal for phenol remediation
based on economic considerations. The Biodegradation of phenol
by microorganisms has been the subject of extensive global
research. Pseudomonas species are the main degraders [25-28],
Bacillus spp. [29-35], Alcaligenes sp. [36], Ochrobactrum sp.
[37], Acinetobacter sp. [38,39] and Rhodococcus species [40—46]
are also reported. Each degrader possesses distinct properties,
including tolerance to high concentrations of phenol, salinity, and
heavy metals, as well as the capacity to thrive at extreme pH
levels or temperatures. The presence of numerous bacteria
capable of phenol degradation renders bioremediation a more
effective method for this process. Currently, a limited number of
primary models have been employed. The growth of
Pseudomonas sp. strain Neni-4 on different concentrations of
phenol was initially transformed into natural logarithm (Fig. 1)
prior to modeling.

Bacterial growth on phenol often exhibits a unique phase
where the specific growth rate starts at zero and gradually
accelerates to a maximal value (tmax), resulting in a lag time (L)
[47]. The sigmoidal shape observed in bacterial growth curves
includes a lag phase, wherein bacterial cells adjust their growth
processes to new environmental conditions following a period of
dormancy, especially during storage.

2.0 4

—

——500 mg/L
—O—1000 mg/L
—4&— 1250 mg/L
——1500 mg/L
—4— 1750 mg/L
—>—2000 mg/L
—{1—2500 mg/L

Ln (OD600 nm)
P

0.5

Time (h)

Fig. 1. The growth of Pseudomonas sp. strain Neni-4 on various
concentrations of phenol.

The preparatory phase, referred to as the "lag period,"
involves cellular adjustments to new conditions before the onset
of exponential growth. Baranyi and Roberts characterized this
phase as a transitional period connecting two independent growth
systems. The authors argued that incorporating lag time or a
parameter in growth models is primarily for convenience rather
than offering a mechanistic explanation. This method facilitates
modeling and understanding bacterial growth patterns under
various conditions [48].

The values obtained, especially the maximum specific
growth rate (um), are essential for later phases in secondary
modeling. The parameters are essential as they offer foundational
insights required for precise modeling of microbial behavior
across diverse environmental conditions and stresses. Subsequent
analyses often utilize secondary models developed by Monod,
Haldane, Aiba, and Teissier to clarify the influence of substrates
on bacterial growth and the transformation rates of xenobiotics.
These models are crucial for understanding the influence of
varying substrate concentrations on microbial growth kinetics
and Dbiotransformation processes, which are essential in
biotechnological applications such as wastewater treatment,
bioremediation, and biochemical production [49,50].

Multiple primary models (Figs. 2-10) were employed to
analyze the growth rate, with the majority demonstrating visually
satisfactory fits. The Huang model emerged as the most effective
based on statistical analysis, exhibiting the highest adjusted
coefficient of determination and the lowest RMSE values.
Additionally, accuracy and bias factors fell within the optimal
range, with the exception of the AICc function (Table 2).
Modeling results demonstrate that phenol concentrations of 1000
mg/L and above, when used as the sole carbon source, exhibit
toxicity, inhibiting bacterial growth at elevated levels. This
toxicity leads to an extension of lag periods, varying from 5 to 7
hours (Fig. 11). Phenol concentrations exceeding 2500 mg/L are
impractical because of the elevated vaporization rate at these
levels, along with the potential toxicity of the vaporized phenol
to researchers. The experimental data obtained indicate that
phenol exhibits toxicity and inhibits growth rates at elevated
concentrations, consistent with findings from nearly all existing
studies on phenol biodegradation. The Huang model illustrates
the growth of the bacterium at different phenol concentrations
(Fig. 11) and its impact on the specific growth rate is presented
in Fig. 12.
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Fig. 2. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on
1000 mg/L phenol using the Huang model.
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Fig. 3. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on
1000 mg/L phenol using the Baranyi-Roberts model.
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Fig. 4. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on
1000 mg/L phenol using the modified Gompertz model.
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Fig. 5. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on
1000 mg/L phenol using the Buchanan-3-phase model.
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Fig. 6. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on
1000 mg/L phenol using the modified Richards model.
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Fig. 7. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on
1000 mg/L phenol using the modified Schnute model.
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Fig. 8. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on Fig. 11. Fitting the growth rate of Pseudomonas sp. strain Neni-4 at
1000 mg/L phenol using the modified Logistics model. various phenol concentrations using the Huang model (red lines).
Table 2. Statistical analysis of the growth models.
2 —_
Model p RMSE adR’ AF BF AlCc
—_ 24 Huang 4 0.024 0.998 1.012 1.003 19.697
£ Baranyi-Roberts 4 0.073  0.985 1.042 1.001 35.452
c
8 modified Gompertz 3 0.142  0.959  2.165 0.471 2.764
8 1 - Buchanan-3-phase 3 0.079 0985 1.051 1.000 -5.456
o) ® EXP modified Richards 4 0.126  0.957  1.172 0.940 43.123
: VB modified Schnute 4 0.090  0.978 1.172  0.940 38.377
= 14 modified Logistics 3 0.119  0.967 1.236 0.883 0.325
o von Bertalanffy 3 0157 0948 3269 0.329 4.119
0 MMF 4 0.038 0996 1.031 0.999 26.261
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Fig. 9. Growth fitting of the Pseud train Neni-4 B Bias Factor
ig. 9. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on AF  Accuracy Factor
1000 mg/L phenol using the von Bertalanffy model.
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Fig. 10. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on

- Fig. 12. The effec of phenol concentrations on the specific growth rate of
1000 mg/L phenol using the MMF model.

Pseudomonas sp. strain Neni-4 on phenol as modelled using the Huang
model.

-90 -

This work is licensed under the terms of the Creative Commons Attribution (CC BY) (http://creativecommons.org/licenses/by/4.0/).


https://doi.org/10.54987/jebat.v5i2

JEBAT, 2024, Vol 7, No 2, 86-93
https://doi.org/10.54987/jebat.v7i2.1049

Accurate modeling of bacterial growth and substrate
inhibitory effects in microbial kinetics is crucial for optimizing
bioprocesses, ensuring product safety, and enhancing the
understanding of microbial ecology. Key models, such as the
modified Gompertz, modified Logistic, modified Richards,
Baranyi-Roberts, modified Schnute, von Bertalanffy, and
Morgan-Mercer-Flodin (MMF) models, are essential in this
context. The models characterize bacterial growth in non-
inhibitory environments, quantifying essential parameters
including specific growth rate (u), lag phase duration, and
maximum population density. Comprehending these parameters
is essential for progressing to more intricate secondary modeling,
which integrates inhibitory effects through models such as
Haldane, Andrews, Yano, and Aiba. The primary models are
crucial for determining key growth parameters in microbiology
and biochemical engineering, specifically for defining the
replication speed of bacteria under specific conditions.

These models provide detailed insights into bacterial growth
dynamics, enabling researchers to predict bacterial responses to
environmental changes and variations in nutrient availability.
This is essential for applications including wastewater treatment,
bioremediation, and the production of biofuels and other
bioproducts [51-55]. Lihan Huang developed the Huang model
in 2013, which constitutes a significant step forward in the
predictive mathematical modeling of bacterial growth in the food
industry. However, it is now being used to study the effect of
stresses, especially when bacteria are grown in the presence of
xenobiotics, which are industrial chemicals not found in
biological systems. The Huang model differs from classical
models, such as the Gompertz or logistic equations, in that it
utilizes biologically interpretable parameters, which enhance its
predictive capabilities, particularly in complex scenarios like
polluted soils or industrial waste streams. The Huang model is
designed to better capture the lag phase, exponential growth, and
stationary phase of bacterial populations.

The model is a sigmoidal function based on first-order
kinetics, but its parameters are based on real biological processes
such as lag time (A), maximum specific growth rate (max), and
the population density that approaches zero (A). this model is
easier to compute and fits real-world data, making it
straightforward to integrate with software tools commonly used
in microbiological and environmental research. huang's method
is especially helpful currently for modeling bacteria that thrive in
toxic environments, such as soils or water bodies exposed to or
contaminated by pesticides, pharmaceuticals, or industrial
solvents. it is crucial to understand how bacteria respond to
xenobiotics in order to monitor and clean up the environment
effectively. when bacteria come into contact with these types of
foreign substances, their growth is often slowed down, stopped,
or altered in ways that are difficult to predict. because they make
static assumptions and can't handle nonlinear dynamics caused
by chemical stressors, traditional growth models don't take this
complexity into account.

The Huang model can handle this kind of variability by
allowing the lag phase and growth rate to change based on the
findings of this study, where only the Huang model successfully
modeled the lag phase well. The model is also sensitive to the
size of the initial inoculum and various environmental factors,
such as pH and temperature, providing a comprehensive
understanding of how microbes respond. This makes it perfect
for simulating bioprocesses in the real world. Examples of the
Huang model's applications in modeling growth on xenobiotics
are beginning to be recognized [56—58]. One of its best features
is the Huang model's biological relevance, as each parameter has

a direct biological meaning. This makes it easier to use for testing
hypotheses and designing experiments. The model is resistant to
outliers and performs better with noisy data than many traditional
models, including the modified Gompertz model and the
modified logistic model.

Coefficients obtained from model-fitting exercises are
biologically relevant parameters used in subsequent modeling
efforts. Mechanistic models are essential in fundamental
research, as they improve our understanding of the physical,
chemical, and biological processes underlying observed growth
profiles. Mechanistic models exhibit greater efficacy under
constant conditions, as they elucidate the fundamental processes
that govern observed patterns. This foundation closely resembles
biological systems, rendering these models especially effective
and dependable for extrapolating beyond initially observed
conditions. Three-parameter models offer simplicity and ease of
use, enabling quicker understanding and implementation. Their
stability, resulting from less correlated parameters, ensures
consistent results across various datasets [59]. These models,
having fewer parameters to estimate, offer increased degrees of
freedom, which enhances the accuracy and reliability of
parameter estimation, particularly in small datasets. The
biological interpretation of model parameters guarantees
relevance and accuracy in depicting biological phenomena,
thereby increasing their utility in scientific research. Mechanistic
models enable researchers to analyze complex biological
processes, leading to discoveries that contribute to practical
applications in biotechnology, medicine, and environmental
science. They are effective for predictive modeling as they
closely replicate biological systems, rendering them valuable
tools for scientific research and practical applications [60].

CONCLUSION

The study of bacterial growth on phenol reveals a phase in which
the specific growth rate initially begins at zero and then
progressively increases to a maximum value, indicating a distinct
lag period. This phase serves as a preparatory adjustment period
for bacterial cells and is essential for comprehending bacterial
adaptation to new environmental conditions. The primary
modeling of microbial growth is crucial for identifying key
growth parameters, such as the maximum specific growth rate
(um), and offers essential insights for subsequent modeling
efforts. These insights are essential for biotechnological
applications, including wastewater treatment, bioremediation,
and biochemical production. The experimental data,
corroborated by multiple primary models, demonstrate that
phenol exhibits toxicity and suppresses bacterial growth at
elevated concentrations. The Huang model exhibited the optimal
fit among the tested models, as indicated by statistical analysis,
normality tests, and critical parameters including the adjusted
coefficient of determination, RMSE, accuracy, and bias factors.
The model parameters, particularly the value of um, will be
employed in future publications to model the inhibitory effect of
phenol on the growth rate of this bacterium. The study provides
valuable insights into microbial growth kinetics, which are
essential for optimizing biotechnological processes that involve
bacterial adaptation and growth under stress conditions.
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