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INTRODUCTION 
 
The chemical compound known as phenol emerges from 
industrial operations , including oil refining and petrochemical 
production, as well as in the manufacturing of compounds like 
phenolic resin, pigments, dyestuffs, paints, pharmaceutical and 
coal processing, and electronics manufacturing. Phenol is a toxic 
substance that contains a benzene ring structure with a hydroxyl 
group. Phenol toxicity stems from its ability to disrupt cellular 
membranes in acute toxicity and in long-term chronic toxicity by 
causing oxidative stress, mitochondrial dysfunction, 
immunotoxicity, genotoxicity, and DNA damage, to name a few 
[1]. The environmental buildup of phenol becomes severe 
because this compound resists natural microbial breakdown 
processes, as it is toxic to most microbes. Thus, phenol poses 
substantial health risks and ecological threats to soil and river 
ecosystems, as well as underground water sources. Industrial 
facilities remove phenol from wastewater by implementing 
physical extraction, chemical oxidation , and activated 
carbon adsorption methods. These methods show effectiveness, 

but they come with high costs and generate additional 
environmental contamination. The breakdown of phenol through 
bacterial or microbial processes represents a cost-efficient and 
environmentally beneficial method especially when pollution is 
very dilute or in soils. Microorganisms utilize phenol as 
their energy source to transform it into harmless by-products 
through their biological metabolic activities.  
 

The release of phenol into the environment occurs 
through both industrial accidents and unintentional spills. The 
Indonesian tanker MV Endah Lestari, which capsized in 2001, 
resulted in the release of 600 tonnes of phenol and 18 tonnes of 
fuel into the ocean. The accident resulted in extensive pollution, 
which led to the death of marine life in 85 offshore fish cages [2]. 
Phenol and its compounds are hazardous to humans and other 
organisms, causing irritation to mucous membranes, skin, eyes, 
and the respiratory tract. Prolonged skin contact can lead to third-
degree burns, and long-term exposure can result in liver and 
kidney damage [1]. Their toxicity is due to hydrophobicity and 
the production of phenoxyl radicals  [3]. Phenol pollution is a 
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 ABSTRACT 
Primary modeling of microbial growth is essential for determining key parameters such as the 
maximum specific growth rate (μm), which are foundational for secondary modeling. Models such 
as the modified Gompertz, modified Logistic, modified Richards, Buchanan-3-phase, Baranyi-
Roberts, modified Schnute, von Bertalanffy, and Morgan-Mercer-Flodin (MMF) models 
elucidate the impact of substrates on bacterial growth and biotransformation processes, which are 
vital for biotechnological applications such as wastewater treatment and bioremediation. In this 
study, the growth of a previously isolated phenol-degrading Pseudomonas sp. strain Neni-4 on 
phenol was modeled using the aforementioned primary models. Experimental data indicated that 
phenol concentrations ranging from 500 to 2500 mg/L were toxic, slowing bacterial growth and 
increasing lag periods from 5 to 7 hours. Among the primary models tested, the Huang model 
provided the best fit, evidenced by a high adjusted coefficient of determination, low RMSE, and 
AICc values, and favorable accuracy (AF) and bias factors (BF). The robustness of the Huang 
model highlights its suitability for modeling bacterial growth under toxic conditions, providing 
valuable insights for optimizing biotechnological processes that involve bacterial adaptation and 
growth under stress conditions. This model's ability to accurately describe the growth kinetics 
under such challenging conditions makes it a reliable tool for further bioprocess optimization and 
environmental applications. 
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significant environmental issue, exacerbated by coal mining 
activities in Sumatra [4]. Primary models can accurately fit the 
sigmoidal characteristics of bacterial growth curves, including 
the lag, log (exponential), and stationary phases. This 
understanding facilitates the prediction of bacterial responses to 
environmental changes and nutrient availability. Establishing 
bacterial growth under control, non-inhibitory conditions is 
essential prior to investigating the effects of inhibitors, as this 
baseline facilitates comparative analysis in secondary modeling. 
Primary models elucidate growth under non-stressful conditions, 
while secondary models can forecast the impact of inhibitors on 
growth kinetics. The integration of primary and secondary 
models establishes a framework that improves the prediction and 
manipulation of microbial behavior in biotechnological 
applications. Primary models serve as essential frameworks in 
microbial kinetics, offering critical parameters and insights into 
bacterial growth in controlled environments. The parameters are 
essential for secondary models addressing substrate inhibition, 
which is crucial for thorough bioprocess optimization. 
Consequently, the integration of primary and secondary models 
provides a comprehensive framework for analyzing and 
influencing microbial growth across diverse industrial and 
environmental contexts.  

 
In wastewater treatment, it is essential to understand the 

specific growth rate (μm), lag phase duration, and maximum 
population density through primary models. These parameters 
optimize conditions to enhance bacterial degradation of 
contaminants. In bioremediation, understanding bacterial growth 
and responses to vary pollutant concentrations is essential for 
formulating effective environmental cleanup strategies. Primary 
models such as the modified Gompertz, modified Logistic, 
modified Richards, Baranyi-Roberts, and modified Schnute offer 
essential data for these applications. Secondary models 
developed by Haldane, Andrews, Yano, and Aiba build upon 
foundational data to incorporate inhibitory effects, thereby 
enhancing the understanding of microbial kinetics across diverse 
conditions. This approach is essential for optimizing 
biotechnological processes to enhance performance and 
efficiency [5–13]. Previously, we have isolated several phenol-
degrading bacteria from Indonesian soils [14–16]. This study 
reports the isolation of a novel and more efficient bacterial strain 
capable of degrading phenol at a significantly faster rate than 
many phenol-degrading strains reported to date. We intend to 
utilize these strains in future local remediation of phenol-
contaminated soils, and the isolation of local phenol-degraders is 
vital, as importing foreign, nonindigenous phenol-degraders 
might cause unwanted ecological issues in the near future [17]. 
To support its biotechnological potential, growth modeling was 
carried out using several well-established kinetic models, 
including the modified Gompertz, modified Logistic, modified 
Richards, Baranyi-Roberts, von Bertalanffy, MMF, Huang, and 
modified Schnute models. The objective is to determine the most 
suitable model for accurately describing the growth dynamics of 
this high-performing strain, thereby enhancing predictive 
capabilities and informing the optimization of phenol 
biodegradation processes. 
 
MATERIALS AND METHODS 
 
Phenol-degrading bacterium growth medium 
This bacterium was previously isolated as a molybdenum reducer 
[18]. The growth of this bacterium on phenol was carried out 
according to [15]. An aliquot of 0.1 mL from a freshly cultured 
overnight suspension of the bacterium in nutrient broth was 
transferred to 100 mL of medium contained within a 250 mL 
volumetric flask. The growth medium used was Minimal Salt 

Medium (MSM), which included phenol at various 
concentrations from 550 to 2250 mg/L as the only carbon source 
and (g/L) 0.50 NH₄NO₃, 0.50  KH₂PO₄, 0.50 MgSO₄･7H₂O, 0.10 
CaCl₂, 0.50 K₂HPO₄, 0.20 NaCl and 0.01 MnSO₄･7H₂O, 0.01 
FeSO₄･7H₂O [4]. The pH of this medium was adjusted to pH 7.0. 
For sterilization purposes, PTFE syringe filters (0.45 micron) 
were employed. This culture was then incubated at 25°C on a 
shaking incubator (Certomat R, USA) set to 150 rpm, continuing 
for a period of 48 h.  One mL samples from the bacterial culture 
were serially diluted using sterile tap water for subsequent 
enumeration of colony-forming units per milliliter (CFU/mL) 
and then converted into biomass (mg) according to standard 
method [19]. 
 
Fitting of the data 
Nonlinear regression, utilizing the Marquardt method, was 
employed to fit growth data to nonlinear equations (Table 1), 
aiming to minimize the sum of squared residuals. This study 
utilized CurveExpert Professional software (Version 1.6). This 
iterative method achieves the best fit by minimizing the 
discrepancy between predicted and observed values. The 
program facilitates both manual and automated input of initial 
parameter estimates. A four-data point steepest ascent search 
yielded the maximum specific growth rate (μm) for Mo-blue 
production. The x-axis intercept of the projected line from the 
steepest ascent was utilized to determine the duration of the lag 
phase (l). The final data point indicating the plateau period 
facilitated the estimation of the asymptotic value (A). 
 
Table 1. Growth models used in this study. 
 
Model p Equation 
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Note: 
A= Microorganism growth upper asymptote; 
N0= Microorganism growth lower asymptote; 
um= maximum specific microorganism growth rate; 
v= affects near which asymptote maximum growth occurs. 
λ=lag time 
e = exponent (2.718281828) 
t = sampling time 
α,β,k,δ = curve fitting parameters 
h0 = a dimensionless parameter quantifying the initial physiological state of the reduction 
process. For the Baranyi-Roberts model, the lag time (𝜆𝜆) (h-1) or (d-1) can be calculated as h0=µm 

Y = N0, IF X < LAG 
Y= N0+ K(X ̶ λ), IF λ ≤ X ≥ XMAX 

Y = A, IF X ≥ XMAX 
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For modified Schnute, A =m/a 
Statistical analysis 

The following tests or statistical discrimination or error 
functions include Bias Factor (BF), Accuracy Factor (AF) [20], 
root-mean-squared error (RMSE), adjusted coefficient of 
determination (R²) [21], and corrected Akaike Information 
Criterion (AICc) [22,23]. In general, n is the total number of 
observations, Obi and Pdi are the predicted and observed 
values, and p is the total number of parameters of the model 
[24]. 
 
RMSE was calculated using the following formula; 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �∑ (𝑃𝑃𝑃𝑃𝑖𝑖−𝑂𝑂𝑂𝑂𝑖𝑖)2𝑛𝑛
𝑖𝑖=1

𝑛𝑛−𝑝𝑝
   (Eqn. 1) 

 
BF and AF were calculated using the following formula; 
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AICc was calculated using the following formula; 
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Adjusted coefficient of determination (R²) was calculated using 
the following formula; 
 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − 𝑅𝑅𝑅𝑅𝑅𝑅
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       (Eqn. 5) 

 
𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝑅𝑅2) = 1 − (1−𝑅𝑅2)(𝑛𝑛−1)

(𝑛𝑛−𝑝𝑝−1)
  (Eqn. 6) 

 
RESULTS AND DISCUSSION  
 
The growth of the bacterium on phenol 
Phenol-degrading bacteria are optimal for phenol remediation 
based on economic considerations. The Biodegradation of phenol 
by microorganisms has been the subject of extensive global 
research. Pseudomonas species are the main degraders [25–28], 
Bacillus spp. [29–35], Alcaligenes sp. [36], Ochrobactrum sp. 
[37], Acinetobacter sp. [38,39] and Rhodococcus species [40–46] 
are also reported. Each degrader possesses distinct properties, 
including tolerance to high concentrations of phenol, salinity, and 
heavy metals, as well as the capacity to thrive at extreme pH 
levels or temperatures. The presence of numerous bacteria 
capable of phenol degradation renders bioremediation a more 
effective method for this process. Currently, a limited number of 
primary models have been employed. The growth of 
Pseudomonas sp. strain Neni-4 on different concentrations of 
phenol was initially transformed into natural logarithm (Fig. 1) 
prior to modeling. 
 

Bacterial growth on phenol often exhibits a unique phase 
where the specific growth rate starts at zero and gradually 
accelerates to a maximal value (µmax), resulting in a lag time (λ) 
[47]. The sigmoidal shape observed in bacterial growth curves 
includes a lag phase, wherein bacterial cells adjust their growth 
processes to new environmental conditions following a period of 
dormancy, especially during storage. 
 

 
Fig. 1. The growth of Pseudomonas sp. strain Neni-4 on various 
concentrations of phenol. 
 

 The preparatory phase, referred to as the "lag period," 
involves cellular adjustments to new conditions before the onset 
of exponential growth. Baranyi and Roberts characterized this 
phase as a transitional period connecting two independent growth 
systems. The authors argued that incorporating lag time or a 
parameter in growth models is primarily for convenience rather 
than offering a mechanistic explanation. This method facilitates 
modeling and understanding bacterial growth patterns under 
various conditions [48].  

 
The values obtained, especially the maximum specific 

growth rate (μm), are essential for later phases in secondary 
modeling. The parameters are essential as they offer foundational 
insights required for precise modeling of microbial behavior 
across diverse environmental conditions and stresses. Subsequent 
analyses often utilize secondary models developed by Monod, 
Haldane, Aiba, and Teissier to clarify the influence of substrates 
on bacterial growth and the transformation rates of xenobiotics. 
These models are crucial for understanding the influence of 
varying substrate concentrations on microbial growth kinetics 
and biotransformation processes, which are essential in 
biotechnological applications such as wastewater treatment, 
bioremediation, and biochemical production [49,50]. 
 

Multiple primary models (Figs. 2-10) were employed to 
analyze the growth rate, with the majority demonstrating visually 
satisfactory fits. The Huang model emerged as the most effective 
based on statistical analysis, exhibiting the highest adjusted 
coefficient of determination and the lowest RMSE values. 
Additionally, accuracy and bias factors fell within the optimal 
range, with the exception of the AICc function (Table 2). 
Modeling results demonstrate that phenol concentrations of 1000 
mg/L and above, when used as the sole carbon source, exhibit 
toxicity, inhibiting bacterial growth at elevated levels. This 
toxicity leads to an extension of lag periods, varying from 5 to 7 
hours (Fig. 11). Phenol concentrations exceeding 2500 mg/L are 
impractical because of the elevated vaporization rate at these 
levels, along with the potential toxicity of the vaporized phenol 
to researchers. The experimental data obtained indicate that 
phenol exhibits toxicity and inhibits growth rates at elevated 
concentrations, consistent with findings from nearly all existing 
studies on phenol biodegradation. The Huang model illustrates 
the growth of the bacterium at different phenol concentrations 
(Fig. 11) and its impact on the specific growth rate is presented 
in Fig. 12. 
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Fig. 2. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the Huang model. 

 
Fig. 3. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the Baranyi-Roberts model. 
 

 
Fig. 4. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the modified Gompertz model. 
 

 
Fig. 5. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the Buchanan-3-phase model. 

 
Fig. 6. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the modified Richards model. 

 
Fig. 7. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the modified Schnute model. 
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Fig. 8. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the modified Logistics model. 
 
 

 
Fig. 9. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the von Bertalanffy model. 
 
 

 
Fig. 10. Growth curve fitting of the Pseudomonas sp. strain Neni-4 on 
1000 mg/L phenol using the MMF model. 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
Fig. 11. Fitting the growth rate of Pseudomonas sp. strain Neni-4 at 
various phenol concentrations using the Huang model (red lines).  
 
Table 2. Statistical analysis of the growth models. 
 
 
Model p RMSE adR2 AF BF AICc 
Huang 4 0.024 0.998 1.012 1.003 19.697 
Baranyi-Roberts 4 0.073 0.985 1.042 1.001 35.452 
modified Gompertz 3 0.142 0.959 2.165 0.471 2.764 
Buchanan-3-phase 3 0.079 0.985 1.051 1.000 -5.456 
modified Richards 4 0.126 0.957 1.172 0.940 43.123 
modified Schnute 4 0.090 0.978 1.172 0.940 38.377 
modified Logistics 3 0.119 0.967 1.236 0.883 0.325 
von Bertalanffy 3 0.157 0.948 3.269 0.329 4.119 
MMF 4 0.038 0.996 1.031 0.999 26.261 
Note: 
p parameter 
RMSE  Root Mean Square Error 
R2 Coefficient of Determination 
adR2 Adjusted Coefficient of Determination 
AICC Corrected Akaike Information Criterion 
BF Bias Factor 
AF Accuracy Factor 
 
 

 
 
Fig. 12. The effec of phenol concentrations on the specific growth rate of 
Pseudomonas sp. strain Neni-4 on phenol as modelled using the Huang 
model.  
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Accurate modeling of bacterial growth and substrate 
inhibitory effects in microbial kinetics is crucial for optimizing 
bioprocesses, ensuring product safety, and enhancing the 
understanding of microbial ecology.  Key models, such as the 
modified Gompertz, modified Logistic, modified Richards, 
Baranyi-Roberts, modified Schnute, von Bertalanffy, and 
Morgan-Mercer-Flodin (MMF) models, are essential in this 
context.  The models characterize bacterial growth in non-
inhibitory environments, quantifying essential parameters 
including specific growth rate (μm), lag phase duration, and 
maximum population density.  Comprehending these parameters 
is essential for progressing to more intricate secondary modeling, 
which integrates inhibitory effects through models such as 
Haldane, Andrews, Yano, and Aiba.  The primary models are 
crucial for determining key growth parameters in microbiology 
and biochemical engineering, specifically for defining the 
replication speed of bacteria under specific conditions.   

 
These models provide detailed insights into bacterial growth 

dynamics, enabling researchers to predict bacterial responses to 
environmental changes and variations in nutrient availability. 
This is essential for applications including wastewater treatment, 
bioremediation, and the production of biofuels and other 
bioproducts [51–55]. Lihan Huang developed the Huang model 
in 2013, which constitutes a significant step forward in the 
predictive mathematical modeling of bacterial growth in the food 
industry. However, it is now being used to study the effect of 
stresses, especially when bacteria are grown in the presence of 
xenobiotics, which are industrial chemicals not found in 
biological systems. The Huang model differs from classical 
models, such as the Gompertz or logistic equations, in that it 
utilizes biologically interpretable parameters, which enhance its 
predictive capabilities, particularly in complex scenarios like 
polluted soils or industrial waste streams. The Huang model is 
designed to better capture the lag phase, exponential growth, and 
stationary phase of bacterial populations.  

 
The model is a sigmoidal function based on first-order 

kinetics, but its parameters are based on real biological processes 
such as lag time (λ), maximum specific growth rate (μₘₐₓ), and 
the population density that approaches zero (A). this model is 
easier to compute and fits real-world data, making it 
straightforward to integrate with software tools commonly used 
in microbiological and environmental research. huang's method 
is especially helpful currently for modeling bacteria that thrive in 
toxic environments, such as soils or water bodies exposed to or 
contaminated by pesticides, pharmaceuticals, or industrial 
solvents. it is crucial to understand how bacteria respond to 
xenobiotics in order to monitor and clean up the environment 
effectively. when bacteria come into contact with these types of 
foreign substances, their growth is often slowed down, stopped, 
or altered in ways that are difficult to predict. because they make 
static assumptions and can't handle nonlinear dynamics caused 
by chemical stressors, traditional growth models don't take this 
complexity into account.  

 
The Huang model can handle this kind of variability by 

allowing the lag phase and growth rate to change based on the 
findings of this study, where only the Huang model successfully 
modeled the lag phase well. The model is also sensitive to the 
size of the initial inoculum and various environmental factors, 
such as pH and temperature, providing a comprehensive 
understanding of how microbes respond. This makes it perfect 
for simulating bioprocesses in the real world. Examples of the 
Huang model's applications in modeling growth on xenobiotics 
are beginning to be recognized [56–58]. One of its best features 
is the Huang model's biological relevance, as each parameter has 

a direct biological meaning. This makes it easier to use for testing 
hypotheses and designing experiments. The model is resistant to 
outliers and performs better with noisy data than many traditional 
models, including the modified Gompertz model and the 
modified logistic model.  
 

Coefficients obtained from model-fitting exercises are 
biologically relevant parameters used in subsequent modeling 
efforts. Mechanistic models are essential in fundamental 
research, as they improve our understanding of the physical, 
chemical, and biological processes underlying observed growth 
profiles. Mechanistic models exhibit greater efficacy under 
constant conditions, as they elucidate the fundamental processes 
that govern observed patterns. This foundation closely resembles 
biological systems, rendering these models especially effective 
and dependable for extrapolating beyond initially observed 
conditions. Three-parameter models offer simplicity and ease of 
use, enabling quicker understanding and implementation. Their 
stability, resulting from less correlated parameters, ensures 
consistent results across various datasets [59]. These models, 
having fewer parameters to estimate, offer increased degrees of 
freedom, which enhances the accuracy and reliability of 
parameter estimation, particularly in small datasets. The 
biological interpretation of model parameters guarantees 
relevance and accuracy in depicting biological phenomena, 
thereby increasing their utility in scientific research. Mechanistic 
models enable researchers to analyze complex biological 
processes, leading to discoveries that contribute to practical 
applications in biotechnology, medicine, and environmental 
science. They are effective for predictive modeling as they 
closely replicate biological systems, rendering them valuable 
tools for scientific research and practical applications [60]. 
 
CONCLUSION 
 
The study of bacterial growth on phenol reveals a phase in which 
the specific growth rate initially begins at zero and then 
progressively increases to a maximum value, indicating a distinct 
lag period. This phase serves as a preparatory adjustment period 
for bacterial cells and is essential for comprehending bacterial 
adaptation to new environmental conditions. The primary 
modeling of microbial growth is crucial for identifying key 
growth parameters, such as the maximum specific growth rate 
(μm), and offers essential insights for subsequent modeling 
efforts. These insights are essential for biotechnological 
applications, including wastewater treatment, bioremediation, 
and biochemical production. The experimental data, 
corroborated by multiple primary models, demonstrate that 
phenol exhibits toxicity and suppresses bacterial growth at 
elevated concentrations. The Huang model exhibited the optimal 
fit among the tested models, as indicated by statistical analysis, 
normality tests, and critical parameters including the adjusted 
coefficient of determination, RMSE, accuracy, and bias factors. 
The model parameters, particularly the value of µm, will be 
employed in future publications to model the inhibitory effect of 
phenol on the growth rate of this bacterium. The study provides 
valuable insights into microbial growth kinetics, which are 
essential for optimizing biotechnological processes that involve 
bacterial adaptation and growth under stress conditions. 
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