Mercury Sorption onto Rice Husk Ash: An Isothermal Remodelling

Authors

  • Bilal Ibrahim Dan-Iya Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Faggo Abdullahi Ada Department of Microbiology, Faculty of Science, Bauchi State University Gadau, P.M.B 065, Bauchi, Nigeria.
  • Muhammed Abdullahi Ubana Department of Biochemistry and Molecular Biology, Faculty of Natural and Applied Sciences, Nasarawa State University, P.M.B 1022, Keffi, Nigeria.
  • Ismaila Haruna Department of Microbiology, Faculty of Science, Bauchi State University Gadau, P.M.B 065, Bauchi, Nigeria.
  • Aisha Grema Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.
  • Mohd Yunus Shukor Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, D.E, Malaysia.

DOI:

https://doi.org/10.54987/bstr.v11i1.833

Keywords:

Mercury, Rice Husk, Remodelling, Isotherms, Freundlich

Abstract

The rice milling process produces rice husk as a by-product. It is one of the most important agricultural leftovers in terms of volume. The data of the sorption isotherm of Hg (II) (CV) sorption onto rice husk ash, which was plotted using linearized plots of isothermal models were reanalyzed using isothermal models using nonlinear regression. As the datapoints were small, nineteen isotherm models with parameters of only up to three were utilized to prevent overfitting. The models were Henry, Langmuir, Freundlich, Temkin, Dubinin-Radushkevich, Jovanovic, Redlich-Peterson, Sips, Toth, Hill, Khan, BET, Vieth-Sladek, Radke-Prausnitz, Brouers–Sotolongo, Fritz-Schlunder III, Unilan, Fowler-Guggenheim and Moreau. Statistical analysis based on error function analyses such as root-mean-square error (RMSE), adjusted coefficient  of determination  (adjR2),  accuracy factor (AF),  bias  factor  (BF), Bayesian Information Criterion (BIC), corrected AICc (Akaike Information Criterion), and Hannan-Quinn Criterion (HQC) showed that Freundlich model was the best model. The value of the maximum monolayer adsorption capacity for Hg binding to rice husk ash according to the Langmuir’s parameter  qmL was 3.998 mg g-1 (95% Confidence interval from 2.473 to 5.523), while bL (L mg-1), the Langmuir model constants  was 0.067 L mg-1 (95% C.I. from 0.001 to 0.134). The Freundlich model is unable to forecast the maximal adsorption capacity. The Halsey rearrangement of the Freundlich equation gave the estimated maximum absorption of 3.39 mg g-1, which is very close to the experimental value. The nonlinear regression method provides parameter values within the 95% confidence interval, facilitating improved comparability with prior research.

References

Alam L, Mokhtar M, Ta GC, Lee KE, Latif MT. Environmental scan and framework of watershed risk assessment in Malaysia. In: Environmental Risk Analysis for Asian-Oriented, Risk-Based Watershed Management: Japan and Malaysia [Internet]. 2018. p. 105-21. Available from: https://www.scopus.com/inward/record.uri?eid=2-s2.0-85075846578&doi=10.1007%2f978-981-10-8090-6_8&partnerID=40&md5=38c94ec4a4006b374dc582aa9e32ced1

Alissa EM, Ferns GA. Heavy metal poisoning and cardiovascular disease. J Toxicol. 2011;2011:870125.

Sulaiman MR. Update of mercury in fish with a focus on its current status in Malaysia. J Environ Bioremediation Toxicol. 2013 Dec 27;1(1):14-9.

Balassone G, Aiello G, Barra D, Cappelletti P, De Bonis A, Donadio C, et al. Effects of anthropogenic activities in a Mediterranean coastland: the case study of the Falerno-Domitio littoral in Campania, Tyrrhenian Sea (southern Italy). Mar Pollut Bull. 2016;112(1-2):271-90.

Basri, Sakakibara M, Sera K, Kurniawan IA. Mercury contamination of cattle in artisanal and small-scale gold mining in Bombana, Southeast Sulawesi, Indonesia. Geosciences. 2017 Dec;7(4):133.

Goutam Mukherjee A, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A. Heavy metal and metalloid - induced reproductive toxicity. Environ Toxicol Pharmacol. 2022 May 1;92:103859.

Zhao M, Li Y, Wang Z. Mercury and Mercury-Containing Preparations: History of Use, Clinical Applications, Pharmacology, Toxicology, and Pharmacokinetics in Traditional Chinese Medicine. Front Pharmacol [Internet]. 2022 [cited 2023 Aug 21];13. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2022.807807

Crocetto F, Risolo R, Colapietro R, Bellavita R, Barone B, Ballini A, et al. Heavy Metal Pollution and Male Fertility: An Overview on Adverse Biological Effects and Socio-Economic Implications. Endocr Metab Immune Disord - Drug Targets. 2023;23(2):129-46.

Perrault JR, Buchweitz JP, Lehner AF. Essential, trace and toxic element concentrations in the liver of the world's largest bony fish, the ocean sunfish (Mola mola). Mar Pollut Bull. 2014;79(1-2):348-53.

Shi JZ, Kang F, Wu Q, Lu YF, Liu J, Kang YJ. Nephrotoxicity of mercuric chloride, methylmercury and cinnabar-containing Zhu-Sha-An-Shen-Wan in rats. Toxicol Lett. 2011;200(3):194-200.

Frasco MF, Fournier D, Carvalho F, Guilhermino L. Does mercury interact with the inhibitory effect of dichlorvos on Palaemon serratus (Crustacea: Decapoda) cholinesterase? Sci Total Environ. 2008;404(1):88-93.

Underwood EJ. Environmental sources of heavy metals and their toxicity to man and animals. Prog Water Technol. 1979;11(4-5):33-45.

Foroutan R, Peighambardoust SJ, Ahmadi A, Akbari A, Farjadfard S, Ramavandi B. Adsorption mercury, cobalt, and nickel with a reclaimable and magnetic composite of hydroxyapatite/Fe3O4/polydopamine. J Environ Chem Eng. 2021;9(4).

Zhang Z, Xia K, Pan Z, Yang C, Wang X, Zhang G, et al. Removal of mercury by magnetic nanomaterial with bifunctional groups and core-shell structure: Synthesis, characterization and optimization of adsorption parameters. Appl Surf Sci. 2020;500.

Bessa A, Gonçalves G, Henriques B, Domingues EM, Pereira E, Marques PAAP. Green Graphene-Chitosan Sorbent Materials for Mercury Water Remediation. Nanomaterials. 2020 Aug;10(8):1474.

Ghasemi SS, Hadavifar M, Maleki B, Mohammadnia E. Adsorption of mercury ions from synthetic aqueous solution using polydopamine decorated SWCNTs. J Water Process Eng. 2019;32.

Mechirackal Balan B, Shini S, Krishnan KP, Mohan M. Mercury tolerance and biosorption in bacteria isolated from Ny-Ålesund, Svalbard, Arctic. J Basic Microbiol. 2018 Apr;58(4):286-95.

Gasong BT, Abrian S, Sigit Setyabudi FMC. Methylmercury Biosorption Activity by Methylmercury-resistant Lactic Acid Bacteria Isolated From West Sekotong, Indonesia. HAYATI J Biosci. 2017;24(4):182-6.

Arshadi M, Mousavinia F, Khalafi-Nezhad A, Firouzabadi H, Abbaspourrad A. Adsorption of mercury ions from wastewater by a hyperbranched and multi-functionalized dendrimer modified mixed-oxides nanoparticles. J Colloid Interface Sci. 2017;505:293-306.

Song ST, Hau YF, Saman N, Johari K, Cheu SC, Kong H, et al. Process analysis of mercury adsorption onto chemically modified rice straw in a fixed-bed adsorber. J Environ Chem Eng. 2016;4(2):1685-97.

Hong Y, Duan Y, Zhu C, Zhou Q, She M, Du H. Experimental study on mercury adsorption of S-impregnated coconut shell activated carbon by duct injection. Dongnan Daxue Xuebao Ziran Kexue BanJournal Southeast Univ Nat Sci Ed. 2015;45(3):521-5.

Bandaru NM, Reta N, Dalal H, Ellis AV, Shapter J, Voelcker NH. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J Hazard Mater. 2013;261:534-41.

Peer Mohaideen MS, Srinivasan SGN, Abdul Kader JAM. Adsorption study of mercury on charcoal. Bull Electrochem. 2000;16(3):140-3.

Mesfin Yeneneh A, Maitra S, Eldemerdash U. Study on biosorption of heavy metals by modified lignocellulosic waste. J Appl Sci. 2011;11(21):3555-62.

Yeneneh AM, Thanabalan M, Demerdash UMNE. Biosorption of heavy metals by potassium hydrogen phosphate and sodium oxalate modified lignocellulosic waste. In: 2011 National Postgraduate Conference - Energy and Sustainability: Exploring the Innovative Minds, NPC 2011. 2011.

Younis ShA, El-Gendy NSh, El-Azab WI, Moustafa YM, Hashem AI. The biosorption of phenol from petroleum refinery wastewater using spent waste biomass. Energy Sources Part Recovery Util Environ Eff. 2014;36(23):2566-78.

Garg R, Garg R, Thakur A, Arif SM. Water remediation using biosorbent obtained from agricultural and fruit waste. Mater Today Proc. 2020;46:6669-72.

Jagaba AH, Kutty SRM, Khaw SG, Lai CL, Isa MH, Baloo L, et al. Derived hybrid biosorbent for zinc(II) removal from aqueous solution by continuous-flow activated sludge system. J Water Process Eng. 2020 Apr 1;34:101152.

Ag ES, Na B, Se G. Adsorption of Heavy Metal Ions from Aqueous Solutions onto Rice Husk Ash Low Cost Adsorbent. Environ Anal Toxicol. 2018;8(1):1-5.

Dan-Iya BI, Shukor MY. Isothermal Modelling of the Adsorption of Chromium onto Calcium Alginate Nanoparticles. J Environ Microbiol Toxicol. 2021;9(2):1-7.

Khare KS, Phelan FR. Quantitative Comparison of Atomistic Simulations with Experiment for a Cross-Linked Epoxy: A Specific Volume-Cooling Rate Analysis. Macromolecules. 2018;51(2):564-75.

Halmi MIE, Ku Ahamad KE, Shukor MY, Wasoh MH, Abdul Rachman AR, Sabullah MK, et al. Mathematical modelling of the degradation kinetics of Bacillus cereus grown on phenol. J Environ Bioremediation Toxicol. 2014;2(1):1-8.

Langmuir I. THE ADSORPTION OF GASES ON PLANE SURFACES OF GLASS, MICA AND PLATINUM. J Am Chem Soc. 1918;40(2):1361-402.

Schirmer W. Physical Chemistry of Surfaces. Z Für Phys Chem. 1999;210(1):134-5.

Ridha FN, Webley PA. Anomalous Henry's law behavior of nitrogen and carbon dioxide adsorption on alkali-exchanged chabazite zeolites. Sep Purif Technol. 2009;67(3):336-43.

Jovanovi? DS. Physical adsorption of gases - I: Isotherms for monolayer and multilayer adsorption. Kolloid-Z Amp Z Für Polym. 1969;235(1):1203-13.

Carmo AM, Hundal LS, Thompson ML. Sorption of hydrophobic organic compounds by soil materials: Application of unit equivalent Freundlich coefficients. Environ Sci Technol. 2000;34(20):4363-9.

Radushkevich LV. Potential theory of sorption and structure of carbons. Zhurnal Fiz Khimii. 1949;23:1410-20.

Dubinin MM. Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents. Zh Fiz Khim. 1965;39(6):1305-17.

Temkin MI, Pyzhev V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim USSR. 1940;12(3):327-56.

Chu KH. Revisiting the Temkin Isotherm: Dimensional Inconsistency and Approximate Forms. Ind Eng Chem Res [Internet]. 2021 Aug 16 [cited 2022 Sep 1]; Available from: https://pubs.acs.org/doi/pdf/10.1021/acs.iecr.1c01788

Redlich O, Peterson DL. A Useful Adsorption Isotherm. Shell Dev Co Emeryv Calif. 1958;63:1024.

Sips R. On the structure of a catalyst surface. J Chem Phys. 1948;16(5):490-5.

Tóth J. Uniform interpretation of gas/solid adsorption. Adv Colloid Interface Sci. 1995;55(C):1-239.

Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 1910;40:iv-vii.

Khan AA, Singh RP. Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surf. 1987;24(1):33-42.

Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am Chem Soc. 1938;60(2):309-19.

Vieth WR, Sladek KJ. A model for diffusion in a glassy polymer. J Colloid Sci. 1965;20(9):1014-33.

Radke CJ, Prausnitz JM. Adsorption of Organic Solutes from Dilute Aqueous Solution of Activated Carbon. J Am Chem Soc. 1972;11(4):445-51.

Hamissa AMB, Brouers F, Mahjoub B, Seffen M. Adsorption of Textile Dyes Using Agave Americana (L.) Fibres: Equilibrium and Kinetics Modelling. Adsorpt Sci Technol. 2007 Jun 1;25(5):311-25.

Fritz W, Schluender EU. Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon. Chem Eng Sci. 1974;29(5):1279-82.

Chu KH, Tan B. Is the Frumkin (Fowler-Guggenheim) adsorption isotherm a two- or three-parameter equation? Colloid Interface Sci Commun. 2021 Nov 1;45:100519.

Martucci A, Braschi I, Bisio C, Sarti E, Rodeghero E, Bagatin R, et al. Influence of water on the retention of methyl tertiary-butyl ether by high silica ZSM-5 and Y zeolites: A multidisciplinary study on the adsorption from liquid and gas phase. RSC Adv. 2015;5(106):86997-7006.

Motulsky HJ, Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. FASEB J. 1987;1(5):365-74.

Burnham KP, Anderson DR. Multimodel inference: Understanding AIC and BIC in model selection. Sociol Methods Res. 2004;33(2):261-304.

Akaike H. A New Look at the Statistical Model Identification. IEEE Trans Autom Control. 1974;19(6):716-23.

Homagai PL, Poudel R, Poudel S, Bhattarai A. Adsorption and removal of crystal violet dye from aqueous solution by modified rice husk. Heliyon. 2022;8(4):e09261.

Langmuir I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J Am Chem Soc. 1916;38(11):2221-95.

Foo KY, Hameed BH. Insights into the modeling of adsorption isotherm systems. Chem Eng J. 2010;156(1):2-10.

Freundlich H. Über die adsorption in lösungen (Over the adsorption in solution). Z Für Phys Chem. 1907;57(1):385-470.

Barkhordar B, Ghias Aldin M. Comparision of Langmuir and Freundlich equilibriums in Cr, Cu and Ni adsorption by Sargassum. Iran J Environ Health Sci Eng. 2004 Jan 1;1(2):58-64.

Crittenden JC, Watson HM. Adsorption. In: MWH's Water Treatment: Principles and Design, Third Edition [Internet]. John Wiley & Sons, Ltd; 2012 [cited 2020 May 31]. p. 1117-262. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118131473.ch15

Al-Ghouti MA, Da'ana DA. Guidelines for the use and interpretation of adsorption isotherm models: A review. J Hazard Mater. 2020 Jul 5;393:122383.

Hu Q, Pang S, Wang D. In-depth Insights into Mathematical Characteristics, Selection Criteria and Common Mistakes of Adsorption Kinetic Models: A Critical Review. Sep Purif Rev. 2021 Jul 1;0(0):1-19.

Baker H. Removal of Lead Ions from Waste Water Using Modified Jordanian Zeolite. Chem Sci Int J. 2020 Nov 9;19-30.

Liyanage LMM, Lakmali WGM, Athukorala SNP, Jayasundera KB. Application of live Chlorococcum aquaticum biomass for the removal of Pb(II) from aqueous solutions. J Appl Phycol. 2020 Dec 1;32(6):4069-80.

Ahmad R, Mirza A. Synthesis of Guar gum/bentonite a novel bionanocomposite: Isotherms, kinetics and thermodynamic studies for the removal of Pb (II) and crystal violet dye. J Mol Liq. 2018 Jan 1;249:805-14.

Daifullah A a. M, Moloukhia H. Removal of cobalt and europium radioisotopes using activated carbon prepared from apricot stones. Isot Radiat Res [Internet]. 2002 Jul 1 [cited 2022 Jul 26];34. Available from: https://www.osti.gov/etdeweb/biblio/20395653

Moloukhia H, El-Zakla T, Belacy N. Use of lignocellulosic biomass in removal of 60 Co and 13'4 Cs from radioactive wastewater. Arab J Nucl Sci Appl. 2010;43(1):121-30.

Rajapaksha AU, Vithanage M, Jayarathna L, Kumara CK. Natural Red Earth as a low cost material for arsenic removal: Kinetics and the effect of competing ions. Appl Geochem. 2011 Apr 1;26(4):648-54.

Mahapatra A, Mishra BG, Hota G. Electrospun Fe2O3-Al2O3 nanocomposite fibers as efficient adsorbent for removal of heavy metal ions from aqueous solution. J Hazard Mater. 2013 Aug 15;258-259:116-23.

Sharifi S, Nabizadeh R, Akbarpour B, Azari A, Ghaffari HR, Nazmara S, et al. Modeling and optimizing parameters affecting hexavalent chromium adsorption from aqueous solutions using Ti-XAD7 nanocomposite: RSM-CCD approach, kinetic, and isotherm studies. J Environ Health Sci Eng. 2019 Dec 1;17(2):873-88.

Calderón C, Levío-Raimán M, Diez MC. Cadmium removal for marine food application: comparative study of different adsorbents. Int J Environ Sci Technol [Internet]. 2021 Oct 29 [cited 2022 Jul 26]; Available from: https://doi.org/10.1007/s13762-021-03746-9

Yakubu A, Olatunji GA, Adekola FA. Modified/Unmodified Nanoparticle Adsorbents of Cellulose Origin With High Adsorptive Potential for Removal of Pb(II) From Aqueous Solution. Eur Sci J ESJ. 2017 Sep 30;13(27):425-425.

Rushton G, Karns C, Shimizu K. A critical examination of the use of the Freundlich isotherm in characterizing molecularly imprinted polymers (MIPs). Anal Chim Acta. 2005 Jan 3;528:107-13.

Hamdaoui O, Naffrechoux E. Modeling of adsorption isotherms of phenol and chlorophenols onto granular activated carbon: Part I. Two-parameter models and equations allowing determination of thermodynamic parameters. J Hazard Mater. 2007 Aug 17;147(1):381-94.

Knott G, Shrager R. On-line modeling by curve-fitting. SIGGRAPH Comput Graph. 1972;6(4):138-51.

Daifullah AAM, Girgis BS, Gad HMH. Utilization of agro-residues (rice husk) in small waste water treatment plans. Mater Lett. 2003;57(11):1723-31.

Abdelwahab O, Nemr A El, El-Sikaily A, Khaled A. Use of rice husk for adsorption of direct dyes from aqueous solution: A case study of direct F. Scarlet Green synthesis of TiO2 nanoparticles and its toxicity View project Industrial valorization of local biological materials and wastes for wastewater tre. Egypt J Aquat Res. 2005;31(May).

Della VP, Kühn I, Hotza D.

Downloads

Published

2023-07-31

How to Cite

Dan-Iya, B. I. ., Ada, F. A., Ubana, M. A., Haruna, I., Grema, A., & Shukor, M. Y. (2023). Mercury Sorption onto Rice Husk Ash: An Isothermal Remodelling. Bioremediation Science and Technology Research (e-ISSN 2289-5892), 11(1), 23–32. https://doi.org/10.54987/bstr.v11i1.833

Issue

Section

Articles